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Wave-equation angle-domain Hessian

Alejandro A. Valenciano and Biondo BioAdi

ABSTRACT

A regularization in the reflection angle dimension (and, engenerally in the reflection
and azimuth angles) is necessary to stabilize the wavetieguaversion problem. The
angle-domain Hessian can be computed from the subsurfésst-blessian by an offset-
to-angle transformation. This transformation can be dongé image space following
the Sava and Fomel (2003) approach. To perform the inver$ierangle-domain Hessian
matrix can be used explicitly, or implicitly as a chain of thiéset-to-angle operator and
the subsurface offset Hessian matrix.

INTRODUCTION

Seismic imaging using non-unitary migration operatorsagdbout, 1992) often produce im-
ages with reflectors correctly positioned but biased annidis (Nemeth et al., 1999; Duquet
and Marfurt, 1999; Ronen and Liner, 2000; Chavent and Be$3D9). One way to solve this
problem is to use the inversion formalism introduced by fitota (1987) to solve geophysical
imaging problems, where the image can be obtained by weiglitie migrated image with
the inverse of the Hessian matrix. However, when the dinoeissof the problem get large, the
explicit calculation of the Hessian matrix and its invergedmes unfeasible.

Valenciano and Biondi (2004) proposed computing the Hagsia target-oriented fash-
ion to reduce the size of the problem. The zero-offset irvérsage can be estimated as the
solution of a non-stationary least-squares filtering prohl by means of a conjugate gradi-
ent algorithm (Valenciano et al., 2005b,a). This approaehgders unnecessary an explicit
computation of inverse of the Hessian matrix.

In this paper, we define the wave-equation angle-domainiate$som the subsurface
offset wave-equation Hessian via an angle-to-offset foarmation following the Sava and
Fomel (2003) approach. To perform the inversion, the adgleain Hessian matrix can be
used explicitly or, implicitly as a chain of the offset-tagle operator and the subsurface offset
Hessian matrix.

The definition of the wave-equation angle-domain Hessilanwalthe angle-domain regu-
larization required to stabilize the wave equation invargroblem (Prucha et al., 2000; Kuehl
and Sacchi, 2001). It also allows to obtain a prestack irvensige, adding the possibility of
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doing amplitude vs. angle (AVA) analysis for reservoir @dwerization.

LINEAR LEAST-SQUARESINVERSION

Tarantola (1987) formalizes the geophysical inverse mmoldby giving a theoretical approach
to compensate for experimental deficiency (e.g., acqoisgieometry, complex overburden),
while being consistent with the acquired data. His appraachbe summarized as follows:
given a linear modeling operatbr, compute synthetic dath using,

d=Lm, (1)
wherem is a reflectivity model. Given the recorded ddtas, a quadratic cost function,
S(m) = ||d — dopsll* = |LM — dops|?, )
is formed. The reflectivity modeh that minimizesS(m) is given by

= (L'L)"'L'dobs 3)
H_lmmig, 4)

3> 2

whereL’ (migration operator) is the adjoint of the linear modelingematorL, Mpq is the
migration image, an#l = L'L is the Hessian o§(m).

The main difficulty with this approach is the explicit calatibn of the Hessian inverse. In
practice, it is more feasible to compute the least-squaresse image as the solution of the
linear system of equations,

by using an iterative conjugate gradient algorithm.

The inversion inherent in equation 5 needs regularizatyncha et al. (2000) and Kuehl
and Sacchi (2001) propose smoothing the image in the oiggiarameter dimension, which
is equivalent to the same procedure in the reflection angheiasion. This idea can be gener-
alize to include the azimuth dimension.

The least squares solution of equation 5 is obtained usmgtting goals,

H(x, ®;X,0)M(X,®) — Mpig(X,®) ~ 0,
D(®)M(x,0) ~ O, (6)

where® = (0,«) are the reflection and the azimuth angles, Bx(@) is a smoothing operator
in the reflection and azimuth angle dimensions.

The next sections show how to include the subsurface offise¢rtsion in the Hessian
computation and how to go from subsurface offset to reflacind azimuth angle dimensions
following the Sava and Fomel (2003) approach.
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EXPANDING HESSIAN DIMENSIONALITY

Valenciano et al. (2005b) define the zero subsurface-oHsssian by using the adjoint of
the zero subsurface-offset migration as the modeling ogela Then the zero-offset inverse
image can be estimated as the solution of a non-stationasy-guares filtering problem, by
means of a conjugate gradient algorithm (Valenciano e@bDhb,a). But, from the results
reported by Prucha et al. (2000), Kuehl and Sacchi (2001, \@tenciano et al. (2005a),
regularization in the reflection angle dimension is neagstastabilize the wave-equation
inversion problem.

Subsur face-offset Hessian

The prestack migration image (subsurface offset domainafgroup of shots positioned at
Xs = (Xs, ¥s, 0) and a group of receivers positioneckat= (X, ¥;,0) can be given by the adjoint
of a linear operatoL acting on the data-spacéxs, X, ; w) as

m(x,h) = L’'d(Xs,Xr;w)

= Y 3 Y Gx+hxs )G x—hx i)Y Y dixexeiw), ()

w Xs Xr h
whereG(X,Xs; w) andG(x, X, ; w) are the Green functions from shot positinand receiver
positionx; to a model space point= (X,Y,z), andh = (hy,hy,h;) is the subsurface offset.
The symbolsZ . and Z , are spray (adjoint of the sum) operators in the subsurfdsetof
and model space dimensions, respectively.

The synthetic data can be modeled (as the adjoint of equéjibg the linear operatdr
acting on the model spa@e(x, h) with x = (x,y, z) andh = (hy,hy)

d(Xs,Xr;@) = Lm(x,h)

= Y S Gx-hx;0)Gx+hxso) Y Y Y ‘mxh),  (8)
X h w

Xy Xs
/ / / ) )
where the symbo!sZ xr’sz’_ and > _ are spray operators in the shot, receiver, and
frequency dimensions, respectively.

In equations 7 and 8 the Green functions are computed by nufahs one-way wave
equation (Ehinger et al., 1996) and the extrapolation ifop@ed using the adequate paraxial
wave equations (flux conservation) (Bamberger et al., 1988)

The quadratic cost function is

S = 2333 Id— donl? (©)

[} Xs Xr

- %Z ZZ [d(Xs, Xr; w) — dobs]/ [d(Xs,Xr; @) — dops] ,

[} Xs Xr
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while its first derivative, with respect to the model paraangin(x, h), is

aifz(:r)]) = % Xw: ; ;{G/(x —h, % ; 0)G' (X + h, xs; @) [d(Xs, X ; @) — ops]
+[d(Xs, Xr; ) — dobg] ' G(X — N, Xr; @)G(X + h, Xs; )}, (10)

and its second derivative with respect to the model parasatés, h) andm(x’,h’) is the
subsurface offset Hessian:

0%S(m)
am(x,h)om(x’,h")
Hx X, h) = 3 Y G/ (x+hxs0)GX + 1, x5 0) Y " G'(x—h,X;0)G(X —h', X} ).

@ Xs Xr

H(x,h;x’,h") (11)

The next subsection shows how to go from subsurface offsefliiection and azimuth angle
dimensions following the Sava and Fomel (2003) approach.

Angle-domain Hessian
Sava and Fomel (2003) define an image space transformationsiubsurface offset to reflec-
tion and azimuth angle as:

m(x,®) = T/(©,h)m(x,h), (12)

where® = (0,«) are the reflection and the azimuth angles, @, h) is the adjoint of the
angle-to-offset transformation operator (slant stack).

Substituting the prestack migration image (subsurfacgebfflomain) in equation 7 into
equation 12 we obtain the expression for the prestack nigranage in the angle-domain
that follows:

m(x,0) = T/(©,h)L’d(xs,X;w) (13)
= TOENY I Y G x+hxs50)G (x—hx:0)Y " Y dixex;w).
® Xs Xr h X

The synthetic data can be modeled (as the adjoint of equatipiby the chain of linear
operatorL and the angle-to-offset transformation operator actinthermodel space,

d(Xs,Xr;@) = LT(®,h)m(x,®)
= Y Y GK-hx:@)Gx+hxs®) Y Y " T(O,h)m(x,0),(14)
X h w

Xr Xs
The quadratic cost function is

Sm) = %ZZan—domnz

[} Xs Xr

= % Z Z Z [d(Xs, X ; @) — dobg] [d(Xs, Xr ; @) — dobs] , (15)

[} Xs Xr
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while its first derivative with respect to the model parameite(x, ®) is

o) = 3 2 20 2T, Bt ) (X i) [0 X 0) ~ oo

w Xs Xr

+[d(Xs, X ; @) — dobg] G(X — h, Xr; 0)G(X+ h,Xs; @) T(®,h)} (16)

and its second derivative with respect to the model parasetéx, ®) andm(x’,®’) is the
angle-domain Hessian

9°S(m)
am(x,®)am(x’,®")
= Y > ) T(0,hG X+h,xs50)G(X +h,xs; )

w Xs Xr
x G'(X—=hX;0)G(X —h X ;0)T(O,h)
= T(©,h)) > Y G'(x+hxsw)GX +h,xs 0)

H(x,0;X,0) =

w Xs Xr
x  G'(X—hx;0)GX —h X ;w)T(O',h)
= T/(®,h)H(x,h;x,h")T(©,h). a7

Explicit vs. implicit Hessian matrix computation

Equation 17 expresses the angle-domain Hessian as a ch#ie offset-to-angle operator
and the subsurface offset Hessian matrix. This impliestthanplement the angle-domain
wave-equation inversion using a conjugate gradient dlyorithere is no need to explicitly
compute the angle Hessian matrix. But the possible drawlisattiat, for each iteration, the
offset-to-angle transformation needs to be performed.

A different strategy might be to explicitly compute the agglomain Hessian matrix. This
can be done by a simple manipulation the terms in equation 17

H(x,0;x,0) = T/(08,h)H(x,h;x,h)T(®',h)
T'(®,h) (T'(®',h)H'(x,h;x',h"))" (18)

Due to the symmetry of the Hessian matrix equation 18 turnas in
H(x,0;x,0) = T'(8,h)(T(®,h)H(x,h;x,h))". (19)

In practice, equation 19 takes the subsurface offset Hess&irix and applies an offset-to-
angle transformation, then transposes the resulting xnatd reapplies the same offset-to-
angle transformation.

This explicit angle Hessian matrix computation could bexgreasive operation, but it has
the advantage of only needing to be performed once. In cgirttréhe application of a chain of
the offset-to-angle operator and the subsurface offsetigiesnatrix (implicit approach) which
needs to be performed at each conjugate gradient iterdfi@ch approach has its advantages
and disadvantages, thus the specific application will teatehich path to follow.
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CONCLUSIONS

The wave-equation angle-domain Hessian can be computedtifre subsurface offset wave-
equation Hessian via an angle-to-offset transformatidloviang the approach presented by
Sava and Fomel (2003). This result allow us to implement giteadomain regularization that
stabilizes the the wave equation inversion problem.

In order to perform the wave-equation angle-domain ineersihe angle-domain Hessian
matrix can be used explicitly or, implicitly as a chain of thiéset-to-angle operator and the
subsurface offset Hessian matrix. Since each approactishadvantages and disadvantages
the specific application will dictate which path to follow.
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