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Wave-equation angle-domain Hessian

Alejandro A. Valenciano and Biondo Biondi1

ABSTRACT

A regularization in the reflection angle dimension (and, more generally in the reflection
and azimuth angles) is necessary to stabilize the wave-equation inversion problem. The
angle-domain Hessian can be computed from the subsurface-offset Hessian by an offset-
to-angle transformation. This transformation can be done in the image space following
the Sava and Fomel (2003) approach. To perform the inversion, the angle-domain Hessian
matrix can be used explicitly, or implicitly as a chain of theoffset-to-angle operator and
the subsurface offset Hessian matrix.

INTRODUCTION

Seismic imaging using non-unitary migration operators (Claerbout, 1992) often produce im-
ages with reflectors correctly positioned but biased amplitudes (Nemeth et al., 1999; Duquet
and Marfurt, 1999; Ronen and Liner, 2000; Chavent and Plessix, 1999). One way to solve this
problem is to use the inversion formalism introduced by Tarantola (1987) to solve geophysical
imaging problems, where the image can be obtained by weighting the migrated image with
the inverse of the Hessian matrix. However, when the dimensions of the problem get large, the
explicit calculation of the Hessian matrix and its inverse becomes unfeasible.

Valenciano and Biondi (2004) proposed computing the Hessian in a target-oriented fash-
ion to reduce the size of the problem. The zero-offset inverse image can be estimated as the
solution of a non-stationary least-squares filtering problem, by means of a conjugate gradi-
ent algorithm (Valenciano et al., 2005b,a). This approach,renders unnecessary an explicit
computation of inverse of the Hessian matrix.

In this paper, we define the wave-equation angle-domain Hessian from the subsurface
offset wave-equation Hessian via an angle-to-offset transformation following the Sava and
Fomel (2003) approach. To perform the inversion, the angle-domain Hessian matrix can be
used explicitly or, implicitly as a chain of the offset-to-angle operator and the subsurface offset
Hessian matrix.

The definition of the wave-equation angle-domain Hessian allows the angle-domain regu-
larization required to stabilize the wave equation inversion problem (Prucha et al., 2000; Kuehl
and Sacchi, 2001). It also allows to obtain a prestack inverse image, adding the possibility of
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doing amplitude vs. angle (AVA) analysis for reservoir characterization.

LINEAR LEAST-SQUARES INVERSION

Tarantola (1987) formalizes the geophysical inverse problem by giving a theoretical approach
to compensate for experimental deficiency (e.g., acquisition geometry, complex overburden),
while being consistent with the acquired data. His approachcan be summarized as follows:
given a linear modeling operatorL, compute synthetic datad, using,

d = Lm, (1)

wherem is a reflectivity model. Given the recorded datadobs, a quadratic cost function,

S(m) = ‖d−dobs‖
2 = ‖Lm−dobs‖

2, (2)

is formed. The reflectivity model̂m that minimizesS(m) is given by

m̂ = (L′L)−1L′dobs (3)

m̂ = H−1mmig, (4)

whereL′ (migration operator) is the adjoint of the linear modeling operatorL, mmig is the
migration image, andH = L′L is the Hessian ofS(m).

The main difficulty with this approach is the explicit calculation of the Hessian inverse. In
practice, it is more feasible to compute the least-squares inverse image as the solution of the
linear system of equations,

Hm̂ = mmig, (5)

by using an iterative conjugate gradient algorithm.

The inversion inherent in equation 5 needs regularization.Prucha et al. (2000) and Kuehl
and Sacchi (2001) propose smoothing the image in the offset ray parameter dimension, which
is equivalent to the same procedure in the reflection angle dimension. This idea can be gener-
alize to include the azimuth dimension.

The least squares solution of equation 5 is obtained using the fitting goals,

H(x,2;x′,2′)m̂(x,2)−mmig(x,2) ≈ 0,

D(2)m̂(x,2) ≈ 0, (6)

where2 = (θ ,α) are the reflection and the azimuth angles, andD(2) is a smoothing operator
in the reflection and azimuth angle dimensions.

The next sections show how to include the subsurface offset dimension in the Hessian
computation and how to go from subsurface offset to reflection and azimuth angle dimensions
following the Sava and Fomel (2003) approach.
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EXPANDING HESSIAN DIMENSIONALITY

Valenciano et al. (2005b) define the zero subsurface-offsetHessian by using the adjoint of
the zero subsurface-offset migration as the modeling operator L. Then the zero-offset inverse
image can be estimated as the solution of a non-stationary least-squares filtering problem, by
means of a conjugate gradient algorithm (Valenciano et al.,2005b,a). But, from the results
reported by Prucha et al. (2000), Kuehl and Sacchi (2001), and Valenciano et al. (2005a),
regularization in the reflection angle dimension is necessary to stabilize the wave-equation
inversion problem.

Subsurface-offset Hessian

The prestack migration image (subsurface offset domain) for a group of shots positioned at
xs = (xs, ys,0) and a group of receivers positioned atxr = (xr , yr ,0) can be given by the adjoint
of a linear operatorL acting on the data-spaced(xs,xr ;ω) as

m(x,h) = L′d(xs,xr ;ω)

=
∑

ω

∑

xs

∑

xr

G′(x+h,xs;ω)G′(x−h,xr ;ω)
∑′

h

∑′

x

d(xs,xr ;ω), (7)

whereG(x,xs;ω) andG(x,xr ;ω) are the Green functions from shot positionxs and receiver
positionxr to a model space pointx = (x, y,z), andh = (hx,hy,hz) is the subsurface offset.

The symbols
∑′

h
and

∑′

x
are spray (adjoint of the sum) operators in the subsurface offset

and model space dimensions, respectively.

The synthetic data can be modeled (as the adjoint of equation7) by the linear operatorL
acting on the model spacem(x,h) with x = (x, y,z) andh = (hx,hy)

d(xs,xr ;ω) = Lm(x,h)

=
∑

x

∑

h

G(x−h,xr ;ω)G(x+h,xs;ω)
∑′

xr

∑′

xs

∑′

ω

m(x,h), (8)

where the symbols
∑′

xr
,
∑′

xs
, and

∑′

ω

are spray operators in the shot, receiver, and

frequency dimensions, respectively.

In equations 7 and 8 the Green functions are computed by meansof the one-way wave
equation (Ehinger et al., 1996) and the extrapolation is performed using the adequate paraxial
wave equations (flux conservation) (Bamberger et al., 1988).

The quadratic cost function is

S(m) =
1

2

∑

ω

∑

xs

∑

xr

‖d−dobs‖
2 (9)

=
1

2

∑

ω

∑

xs

∑

xr

[d(xs,xr ;ω)−dobs]
′ [d(xs,xr ;ω)−dobs] ,



78 Valenciano and Biondi SEP–123

while its first derivative, with respect to the model parametersm(x,h), is

∂S(m)

∂m(x,h)
=

1

2

∑

ω

∑

xs

∑

xr

{G′(x−h,xr ;ω)G′(x+h,xs;ω) [d(xs,xr ;ω)−dobs]

+ [d(xs,xr ;ω)−dobs]
′ G(x−h,xr ;ω)G(x+h,xs;ω)}, (10)

and its second derivative with respect to the model parameters m(x,h) and m(x′,h′) is the
subsurface offset Hessian:

H(x,h;x′,h′) =
∂

2S(m)

∂m(x,h)∂m(x′,h′)
(11)

H(x,h;x′,h′) =
∑

ω

∑

xs

G′(x+h,xs;ω)G(x′ +h′,xs;ω)
∑

xr

G′(x−h,xr ;ω)G(x′ −h′,xr ;ω).

The next subsection shows how to go from subsurface offset toreflection and azimuth angle
dimensions following the Sava and Fomel (2003) approach.

Angle-domain Hessian

Sava and Fomel (2003) define an image space transformation from subsurface offset to reflec-
tion and azimuth angle as:

m(x,2) = T′(2,h)m(x,h), (12)

where2 = (θ ,α) are the reflection and the azimuth angles, andT′(2,h) is the adjoint of the
angle-to-offset transformation operator (slant stack).

Substituting the prestack migration image (subsurface offset domain) in equation 7 into
equation 12 we obtain the expression for the prestack migration image in the angle-domain
that follows:

m(x,2) = T′(2,h)L′d(xs,xr ;ω) (13)

= T′(2,h)
∑

ω

∑

xs

∑

xr

G′(x+h,xs;ω)G′(x−h,xr ;ω)
∑′

h

∑′

x

d(xs,xr ;ω).

The synthetic data can be modeled (as the adjoint of equation14) by the chain of linear
operatorL and the angle-to-offset transformation operator acting onthe model space,

d(xs,xr ;ω) = LT(2,h)m(x,2)

=
∑

x

∑

h

G(x−h,xr ;ω)G(x+h,xs;ω)
∑′

xr

∑′

xs

∑′

ω

T(2,h)m(x,2), (14)

The quadratic cost function is

S(m) =
1

2

∑

ω

∑

xs

∑

xr

‖d−dobs‖
2

=
1

2

∑

ω

∑

xs

∑

xr

[d(xs,xr ;ω)−dobs]
′ [d(xs,xr ;ω)−dobs] , (15)
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while its first derivative with respect to the model parameters m(x,2) is

∂S(m)

∂m(x,2)
=

1

2

∑

ω

∑

xs

∑

xr

{T′(2,h)G′(x−h,xr ;ω)G′(x+h,xs;ω) [d(xs,xr ;ω)−dobs]

+ [d(xs,xr ;ω)−dobs]
′ G(x−h,xr ;ω)G(x+h,xs;ω)T(2,h)} (16)

and its second derivative with respect to the model parameters m(x,2) andm(x′,2′) is the
angle-domain Hessian

H(x,2;x′,2′) =
∂

2S(m)

∂m(x,2)∂m(x′,2′)

=
∑

ω

∑

xs

∑

xr

T′(2,h)G′(x+h,xs;ω)G(x′ +h′,xs;ω)

× G′(x−h,xr ;ω)G(x′ −h′,xr ;ω)T(2′,h′)

= T′(2,h)
∑

ω

∑

xs

∑

xr

G′(x+h,xs;ω)G(x′ +h′,xs;ω)

× G′(x−h,xr ;ω)G(x′ −h′,xr ;ω)T(2′,h′)

= T′(2,h)H(x,h;x′,h′)T(2′,h′). (17)

Explicit vs. implicit Hessian matrix computation

Equation 17 expresses the angle-domain Hessian as a chain ofthe offset-to-angle operator
and the subsurface offset Hessian matrix. This implies thatto implement the angle-domain
wave-equation inversion using a conjugate gradient algorithm there is no need to explicitly
compute the angle Hessian matrix. But the possible drawbackis that, for each iteration, the
offset-to-angle transformation needs to be performed.

A different strategy might be to explicitly compute the angle-domain Hessian matrix. This
can be done by a simple manipulation the terms in equation 17

H(x,2;x′,2′) = T′(2,h)H(x,h;x′,h′)T(2′,h′)

= T′(2,h)
(

T′(2′,h′)H′(x,h;x′,h′)
)′

. (18)

Due to the symmetry of the Hessian matrix equation 18 turns into:

H(x,2;x′,2′) = T′(2,h)
(

T′(2′,h′)H(x,h;x′,h′)
)′

. (19)

In practice, equation 19 takes the subsurface offset Hessian matrix and applies an offset-to-
angle transformation, then transposes the resulting matrix and reapplies the same offset-to-
angle transformation.

This explicit angle Hessian matrix computation could be an expensive operation, but it has
the advantage of only needing to be performed once. In contrast to the application of a chain of
the offset-to-angle operator and the subsurface offset Hessian matrix (implicit approach) which
needs to be performed at each conjugate gradient iteration.Each approach has its advantages
and disadvantages, thus the specific application will dictate which path to follow.
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CONCLUSIONS

The wave-equation angle-domain Hessian can be computed from the subsurface offset wave-
equation Hessian via an angle-to-offset transformation following the approach presented by
Sava and Fomel (2003). This result allow us to implement an angle-domain regularization that
stabilizes the the wave equation inversion problem.

In order to perform the wave-equation angle-domain inversion, the angle-domain Hessian
matrix can be used explicitly or, implicitly as a chain of theoffset-to-angle operator and the
subsurface offset Hessian matrix. Since each approach has its advantages and disadvantages
the specific application will dictate which path to follow.
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