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Common azimuth migration for elliptical and VTI media

Satyakee Sen and Biondo Biohdi

ABSTRACT

We derive the Commom Azimuth downward continuation operdtw elliptically

anisotropic and VTl media. For elliptically anisotropic dwe, the Common Azimuth
downward continuation operator derived by a stationarysplepproximation of the full
3-D downward continuation operator is exact and it agreél thie constraint imposed
by the Common Azimuth approximation on the propagationatioa of the source and
receiver rays. For VTI media, the dispersion relationskipmuch more complicated and
results in a quartic equation for the stationary path. Weduce a bounded form of Com¢
mon Azimuth migration for this kind of media, which allows tesdevelop closed-form
analytical solutions without directly solving the quartiguation. Error analysis indicate
that the derived analytical solution has similar accuracthat obtained by solving the ful
guartic equation. 3-D impulse responses of the anisott©@prmamon Azimuth downward
continuation operator also show significant differenceagared to the isotropic operatg
even at moderate propagation angles.
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INTRODUCTION

Over the past several decades, anisotropy has been reed@sone of the important factors
effecting the accuracy of seismic imaging methods. If anigry is not taken into account
by wavefield extrapolation operators, subsurface refledespecially steeply dipping ones)
will be mispositioned. Thus, incorporating anisotropyoiixisting isotropic wavefield con-
tinuation operators has gained significant importance tverpast several years. Several
methods have been developed to handle anisotropy whichdadoth implicit and explicit
extrapolation operators. These include anisotropic ioitpiethods (Ristow and Ruhl, 1997),
anisotropic PSPI (Rousseau, 1997), explicit operatorsdtégui, 1995), (Zhang et al., 2001),
reference isotropic with explicit correction filters (Basit@in and Anderson, 2003) and explicit
anisotropic correction filters (Shan and Biondi, 2004). ld@er, no such method has been de-
veloped to incorporate anisotropy into the Common Azimutbration operator. Common
Azimuth migration (Biondi and Palacharla, 1996) is one eftmost computationally effective
wavefield continuation method for large 3-D marine surveyhe computational effective-
ness of this method can be attributed to the stationary ggthoaimation that this method
uses which shrinks the computational volume for full 3-D ef@@lds from a five-dimensional
space to a four-dimensional space. This greatly reducesaimputations that are involved
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at each depth step. Thus, it would be extremely beneficialifaaropy can be incorporated
into the existing isotropic Common Azimuth migration dowarg continuation operator. In
this paper, we develop a method for introducing anisotropy Common Azimuth migration.
In the following sections, we develop the anisotropic Commaimuth migration operator,
firstly for the relatively simple elliptically anisotropy edia and then for the more complex
VTl media. We then perform error analysis for our derivedlynzal solution for the VTI
media and finally compare the 3-D impulse responses of thiedllly anisotropic Common
Azimuth operator with that of the isotropic operator.

ELLIPTICAL ANISOTROPY

In this section, we derive the Common Azimuth downward cuardtion operator for an el-
liptically anisotropic media. The 3-D dispersion relation VTl media given by Alkhalifah
(1998) is:

(1)
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wherev is the vertical P wave velocity ardky, ky, k) is the wavenumber vector in Cartesian
coordinates ana is the circular frequency. The anisotropic parameteasds are defined as:
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In deriving this dispersion relation it is assumed that theas wave velocity is zero. This

assumption holds for the remainder of this paper. Now for |ptieally anisotropic media
we haven = 0 (in other words = §) so that the above equation simplifies to:

(2)
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Thus in 3-D the vertical wavenumber for the full Double Squ&oot (DSR) form of the
elliptically anisotropic migration operator is:

w2
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whereks(ksx, ksy) is the source wavenumber vector aadk:x,kry) is receiver wavenumber
vector. The equivalent form in midpoint-offset coordiratan be obtained by using the fol-
lowing simple transformations between the wavenumbers:

. km - kh
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wherekm (Kmx, Kmy) is the midpoint wavenumber vector akiglknx, kny) is the offset wavenum-
ber vector. Substituting these transformations in equna#d gives the vertical wavenumber
for the elliptically anisotropic migration operator in npioint-offset coordinates

= \'/0)72 - %{(kmx— knx)? + (Kmy — khy)z}(1+ 2¢)+

(S, 2)2
w_z_l{(k + Knx)2 + (Kmy + ki )2}(1-‘1-26) (7)
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The Common Azimuth downward continuation operator inticegtua reduction in the dimen-
sionality of the dataset by evaluating the new wavefield atsasquent depth step only along
the offset azimuth of the data in the previous depth step.dbaenward continuation operator
(Biondi and Palacharla, 1996) can be expressed as:
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Since the common azimuth data is independeri,gf the integral can be pulled inside and
analytically approximated by the stationary phase methbé.stationary path approximation
for the above operator can be found by setting the derivafittee wavenumbék, with respect
to kny to zero. This gives:

Vit~ 8ot k)21 20 5 — Hme — K 2(1426)
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lA<hy = Kmy

As in the case of the isotropic Common Azimuth migration aper, the above equation has
two solutions. In choosing between these two solutions, aresider the limiting case of
the in-line offset wavenumbekyx) equal to zero. In this case, one of the solution diverges
while the other one, which has a minus sign on the numerab@s ¢p zero. We accept this
solution. This gives the stationary path approximationdorelliptically anisotropic media.
Hence, the new vertical wavenumbleye for elliptically anisotropic media is evaluated along
the stationary path given in equation(9) and is equal to:

kze= DS Rw,Kkm, knx, Kny, 7] (10)
STATIONARY PATH AND THE CONSTRAINTSON THE RAY DIRECTIONS

In this section we show that the stationary path approxmnadierived in the previous section
(equation (9)) is equivalent to imposing the constraint tha source and receiver rays must
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be coplanar. For this constraint to hold, the following tiela must be satisfied among the ray
parameters:

Py _ Pz (11)

Psy  Psz
where (sx, Psy: Psz) are the rays downward propagating the sources pid fry, prz) are the
rays downward propagating the receivers. Applying thesfiamimation from wavenumbers to
ray parameter using the relatipn= kw to equation (3) we have:

2
P = S — (05 + B+ 20 12)

Substituting equation (12) in equation (11) and after solgetaa we get:

by — ey 22— PR(L+20)— /5 — PR (1+2)
Pyt Poy [ — BB, (1426 + /5 — P (1 +20)

(13)

Substituting the following relations in equation(13) givine stationary path approximation
derived in the previous section given by equation (9):

pa = K, (14)
=l (15)
= e (16)

Pry = kmyT—Ic;km/ (17)

VTI COMMONAZIMUTH WITH BOUNDS

In this section, we derive an analytical form for the Commainduth migration operator for
VTI media. As before, we start with the dispersion relatioreg by Alkhalifah (1998), now
represented in terms of ray parameters:

1| 1-(1+2e)(pg + pHv?
‘T v\ 1-2n(1+28)(pZ + p2)v?’

(18)

Using the geometrical constraints on the ray path for ComAmmuth migration (equation(11))
and after some simplifications, we get:

a0 g, + a1 pry +a2pfy +aspsy’ =0. (19)
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where
ao = 2n(1+ 285)vs, (20)
ap = —2n(1+28)v7, (21)
ap = vf{l— 2n(1+28)v7 pry — (1+2¢) iy vi}, (22)
ag = —vi{l— 2n(1+28)v3 ply— (1+2e)p§xv?}- (23)

Note that equation (19) is a quartic equation in bkth andkyny. This equation might be
solved numerically fokny for givenkmy values. But we want to have a closed form analytical
solution. Rewriting equation (19) in a more suitable forne, get:

v PRy {1— 2n(1+428)v7 pi — 2n(1+28)vf p?y}—

v2 pgy{ 1—2n(1+28)v? p2, — 2n(1+ 25)v? pgy} —Ao+A; =0. (24)

where
Ao = v7pry*(1+42¢) el (25)
Ar = vZp5(142€) Py (26)

Considering the first term in the curly bracket on the RHS ofatipn(24), we observe that in
order to drop the fourth order term my, we need:

1—2n(1+28)v7 by >> 2n(1+ 28)v7 Py - (27)
This can be rewritten as:
1—2n(1+28)sin?6y >> 2n(1+ 28)sin’éy. (28)
Recognizing that sfr9 is bounded in the interval (0, 1), we can write:
1>>4|n(1+25)]. (29)

Thus, we obtain a bound onas:

&

1
|ﬂ|<<m 2 (30)



130 Sen and Biondi SEP-120

A similar analysis can be carried out for the second term nhydorackets on the RHS of
equation (24) for dropping the fourth order termpgy, which again gives the same bound on
n. Thus for VTl media, when the above bound holds, we can dreddhrth order terms in
equation (19) giving:

\/v_lz - {(1+ 2€) p3 +2n(1+ 28)‘;—§p§x}
pry . r r

Py _ (31)
Psy 1 > VE 32
2 (1+2¢) Psx 2n(1+ 28)1)_% Prx
Now using equations (14) to (17), we get:
kny A—B
Zhy i (32)
kmy A+B
where
w? 1 vé
A= [ =5 = 2] L 26)mx+knx) + 20(1+28) 5 (Kne = ki) (33)
r r
and
w? 1 v?
B= 2Z 2 (14 2¢)(kmx — knx)?+2n(1+ 23);(kmx+ Knx)? [ - (34)
S S

This equation gives an analytical form of the stationanhpgiproximation for VTl media.
As before, the vertical wavenumbéy,;, is evaluated along this stationary path as:

I221)“ = DS Iq:a)1km1th1Rh)hz] (35)

Note that whem = 0, meaning for elliptically anisotropic media equation }3#duces to
equation (9) derived earlier for elliptically anisotropydia.

ERROR ANALYSIS

In this section, we compare the accuracy of the approximartedytical stationary path ap-
proximation for VTl media with the one obtained by numerigadolving the full quartic
equation for different) values (top panel of Figures 1-3). From the plots, we obstrae
the approximated analytical equation has similar accuaaaye one obtained by solving the
guartic equation. Even when thevalue exceeds the bound that was given in the previous sec-
tion, the relative error is still sufficiently small. Thisditates that our approximation should
hold for a wide range ofy values. The middle panel of Figures 1-3 shows the relatikar er
between the isotropic and the analytically derived anggntr stationary path. The bottom
panels of figures 1-3 show the vertical wavenumbers compoteidotropic and anisotropic
media for different; values. It can be seen that there are significant differelbetgeen the
anisotropic and isotropik;, values which, if ignored, will lead to significant mispositing of
migrated events.
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Figure 1: Relative Error plots for = 0.08, relative error ik, between analytical and quartic
solutions (top panel), relative error between analyticasatropic and isotropidkyy (mid-
dle panel), relative error between anisotropic (solid) eatropic (dashed, (bottom panel)
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Figure 2: Relative error plots for = 17, relative error irk,y between analytical and quartic
solutions (top panel), relative error between analyticasatropic and isotropidkyy (mid-
dle panel), relative error between anisotropic (solid) eatropic (dashed, (bottom panel)
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Figure 3: Relative error plots for = 0.33, relative error itkny between analytical and quartic
solutions (top panel), relative error between analyticasatropic and isotropidkyy (mid-
dle panel), relative error between anisotropic (solid) eatropic (dashed, (bottom panel)
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3-D IMPUL SE RESPONSES

In this section, we compare the 3-D impulse responses ofrtis®t@opic Common Azimuth
migration operator with the corresponding isotropic onex. this paper, we consider impulse
responses for elliptical anisotropy only. The verti€alvave velocity in the medium is 2000
m/s. The anisotropic parameterands are both equal to 0.15. Figures 4 and 5 show in-line
sections of the 3-D impulse responses for elliptically amgpic and isotropic media respec-
tively. These figures clearly show the difference of incogpimg anisotropy into the Common
Azimuth downward continuation operator, especially foemgy propagating at moderate to
steep angles. Figures 6 and 7 show cross-line sections &bhénpulse responses for el-
liptically anisotropic and isotropic media respectivelikgain it can be seen that there are
significant differences for energy propagating at modei@tteep angles once anisotropy is
incorporated into the Common Azimuth operator. Finallgufes 8 and 9 show depth slices of
the 3-D impulse responses for elliptically anisotropic audropic media respectively. Again,
we also observe significant differences between the twohddjtes, especially the more el-
liptical nature of the depth slice for the anisotropic opera

CONCLUSION

We have derived a Common Azimuth migration operator fopgdally anisotropic and VTI
media. The elliptically anisotropic Common Azimuth migeoatoperator is exact for all range
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Figure 4: An inline slice of the 3D impulse response in arnpétially anisotropic media at
y = 0 m.|ssen-aniso15_inlif¢CR]
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Figure 5: An inline slice of the 3D impulse response in anrgut media aty = 0 m
| ssen-iso_inling[CR]
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Figure 6: A cross-line slice of the 3D impulse response inliptieally anisotropic media at
x = 0 m|ssen-aniso15_xlin¢CR]
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Figure 7: A cross-line slice of the 3D impulse response insmtropic media ak = 0 m
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Figure 8: A horizontal slice of the 3D impulse response inléipteally anisotropic media at
a depth ofz= 600 m. ssen-anisolS_depth_in\c[étR]
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Figure 9: A horizontal slice of the 3D impulse response insmtropic medium at = 600 m.
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of the governing anisotropic parameters, namebnde. The Common Azimuth operator
that we have developed for VTI media is a bounded one, medhatgt should be accurate
within the certain bounds on the anisotropic parameters tiBuerror analysis indicates that
even when these bounds are exceeded, the approximatiail goet and the accuracy is
comparable to the one obtained by solving the full quarticagign. 3-D impulse responses
show that there are significant differences between theoiotand anisotropic Common Az-
imuth downward continuation operator, which needs to bertakto account by the migration
algorithm.
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