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Common azimuth migration for elliptical and VTI media

Satyakee Sen and Biondo Biondi1

ABSTRACT

We derive the Commom Azimuth downward continuation operator for elliptically
anisotropic and VTI media. For elliptically anisotropic media, the Common Azimuth
downward continuation operator derived by a stationary phase approximation of the full
3-D downward continuation operator is exact and it agrees with the constraint imposed
by the Common Azimuth approximation on the propagation direction of the source and
receiver rays. For VTI media, the dispersion relationship is much more complicated and
results in a quartic equation for the stationary path. We introduce a bounded form of Com-
mon Azimuth migration for this kind of media, which allows usto develop closed-form
analytical solutions without directly solving the quarticequation. Error analysis indicates
that the derived analytical solution has similar accuracy as that obtained by solving the full
quartic equation. 3-D impulse responses of the anisotropicCommon Azimuth downward
continuation operator also show significant differences compared to the isotropic operator
even at moderate propagation angles.

INTRODUCTION

Over the past several decades, anisotropy has been recognized as one of the important factors
effecting the accuracy of seismic imaging methods. If anisotropy is not taken into account
by wavefield extrapolation operators, subsurface reflectors (especially steeply dipping ones)
will be mispositioned. Thus, incorporating anisotropy into existing isotropic wavefield con-
tinuation operators has gained significant importance overthe past several years. Several
methods have been developed to handle anisotropy which include both implicit and explicit
extrapolation operators. These include anisotropic implicit methods (Ristow and Ruhl, 1997),
anisotropic PSPI (Rousseau, 1997), explicit operators (Uzcategui, 1995), (Zhang et al., 2001),
reference isotropic with explicit correction filters (Baumstein and Anderson, 2003) and explicit
anisotropic correction filters (Shan and Biondi, 2004). However, no such method has been de-
veloped to incorporate anisotropy into the Common Azimuth migration operator. Common
Azimuth migration (Biondi and Palacharla, 1996) is one of the most computationally effective
wavefield continuation method for large 3-D marine surveys.The computational effective-
ness of this method can be attributed to the stationary path approximation that this method
uses which shrinks the computational volume for full 3-D wavefields from a five-dimensional
space to a four-dimensional space. This greatly reduces thecomputations that are involved
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at each depth step. Thus, it would be extremely beneficial if anisotropy can be incorporated
into the existing isotropic Common Azimuth migration downward continuation operator. In
this paper, we develop a method for introducing anisotropy into Common Azimuth migration.
In the following sections, we develop the anisotropic Common Azimuth migration operator,
firstly for the relatively simple elliptically anisotropy media and then for the more complex
VTI media. We then perform error analysis for our derived analytical solution for the VTI
media and finally compare the 3-D impulse responses of the elliptically anisotropic Common
Azimuth operator with that of the isotropic operator.

ELLIPTICAL ANISOTROPY

In this section, we derive the Common Azimuth downward continuation operator for an el-
liptically anisotropic media. The 3-D dispersion relationfor VTI media given by Alkhalifah
(1998) is:

kz =
ω

v

√√√√
ω2
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wherev is the vertical P wave velocity andk(kx,ky,kz) is the wavenumber vector in Cartesian
coordinates andω is the circular frequency. The anisotropic parametersε andδ are defined as:
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2C33
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In deriving this dispersion relation it is assumed that the shear wave velocity is zero. This
assumption holds for the remainder of this paper. Now for an elliptically anisotropic media
we haveη = 0 (in other wordsε = δ) so that the above equation simplifies to:
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Thus in 3-D the vertical wavenumber for the full Double Square Root (DSR) form of the
elliptically anisotropic migration operator is:
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whereks(ksx,ksy) is the source wavenumber vector andkr(krx ,kry) is receiver wavenumber
vector. The equivalent form in midpoint-offset coordinates can be obtained by using the fol-
lowing simple transformations between the wavenumbers:

ks =
km −kh

2
, (5)

kr =
km +kh

2
. (6)
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wherekm(kmx,kmy) is the midpoint wavenumber vector andkh(khx,khy) is the offset wavenum-
ber vector. Substituting these transformations in equation (4) gives the vertical wavenumber
for the elliptically anisotropic migration operator in midpoint-offset coordinates
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The Common Azimuth downward continuation operator introduces a reduction in the dimen-
sionality of the dataset by evaluating the new wavefield at a subsequent depth step only along
the offset azimuth of the data in the previous depth step. Thedownward continuation operator
(Biondi and Palacharla, 1996) can be expressed as:
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Since the common azimuth data is independent ofkhy, the integral can be pulled inside and
analytically approximated by the stationary phase method.The stationary path approximation
for the above operator can be found by setting the derivativeof the wavenumberkz with respect
to khy to zero. This gives:
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As in the case of the isotropic Common Azimuth migration operator, the above equation has
two solutions. In choosing between these two solutions, we consider the limiting case of
the in-line offset wavenumber (khx) equal to zero. In this case, one of the solution diverges
while the other one, which has a minus sign on the numerator, goes to zero. We accept this
solution. This gives the stationary path approximation foran elliptically anisotropic media.
Hence, the new vertical wavenumber,ˆkze for elliptically anisotropic media is evaluated along
the stationary path given in equation(9) and is equal to:

k̂ze= DS R[ω,km,khx, k̂hy,z] (10)

STATIONARY PATH AND THE CONSTRAINTS ON THE RAY DIRECTIONS

In this section we show that the stationary path approximation derived in the previous section
(equation (9)) is equivalent to imposing the constraint that the source and receiver rays must
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be coplanar. For this constraint to hold, the following relation must be satisfied among the ray
parameters:

pry

psy
=

prz

psz
. (11)

where (psx, psy, psz) are the rays downward propagating the sources and (prx , pry , prz) are the
rays downward propagating the receivers. Applying the transformation from wavenumbers to
ray parameter using the relationp = kω to equation (3) we have:
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Substituting equation (12) in equation (11) and after some algebra we get:
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Substituting the following relations in equation(13) gives the stationary path approximation
derived in the previous section given by equation (9):
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, (14)
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VTI COMMON AZIMUTH WITH BOUNDS

In this section, we derive an analytical form for the Common Azimuth migration operator for
VTI media. As before, we start with the dispersion relation given by Alkhalifah (1998), now
represented in terms of ray parameters:
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Using the geometrical constraints on the ray path for CommonAzimuth migration (equation(11))
and after some simplifications, we get:
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where

a0 = 2η(1+2δ)v4
s , (20)

a1 = −2η(1+2δ)v4
r , (21)

a2 = v2
r

{
1−2η(1+2δ)v2

r p2
rx − (1+2ε)p2

rx v2
s

}
, (22)

a3 = −v2
s

{
1−2η(1+2δ)v2

s p2
sx− (1+2ε)p2

sxv
2
r

}
. (23)

Note that equation (19) is a quartic equation in bothkhy andkmy. This equation might be
solved numerically forkhy for givenkmy values. But we want to have a closed form analytical
solution. Rewriting equation (19) in a more suitable form, we get:
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where

A0 = v2
r pry2(1+2ε)p2

sxv
2
s , (25)

A1 = v2
s p2

sy(1+2ε)p2
rx . (26)

Considering the first term in the curly bracket on the RHS of equation(24), we observe that in
order to drop the fourth order term inpry , we need:
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This can be rewritten as:

1−2η(1+2δ)sin2θx >> 2η(1+2δ)sin2θy. (28)

Recognizing that sin2θ is bounded in the interval (0,1), we can write:

1 >> 4 | η(1+2δ) | . (29)

Thus, we obtain a bound onη as:
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A similar analysis can be carried out for the second term in curly brackets on the RHS of
equation (24) for dropping the fourth order term inpsy, which again gives the same bound on
η. Thus for VTI media, when the above bound holds, we can drop the fourth order terms in
equation (19) giving:
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Now using equations (14) to (17), we get:
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This equation gives an analytical form of the stationary path approximation for VTI media.
As before, the vertical wavenumber,k̂zvt i , is evaluated along this stationary path as:

k̂zvt i = DS R[ω,km,khx, k̂hy,z] (35)

Note that whenη = 0, meaning for elliptically anisotropic media equation (34), reduces to
equation (9) derived earlier for elliptically anisotropy media.

ERROR ANALYSIS

In this section, we compare the accuracy of the approximatedanalytical stationary path ap-
proximation for VTI media with the one obtained by numerically solving the full quartic
equation for differentη values (top panel of Figures 1-3). From the plots, we observethat
the approximated analytical equation has similar accuracyas the one obtained by solving the
quartic equation. Even when theη value exceeds the bound that was given in the previous sec-
tion, the relative error is still sufficiently small. This indicates that our approximation should
hold for a wide range ofη values. The middle panel of Figures 1-3 shows the relative error
between the isotropic and the analytically derived anisotropic stationary path. The bottom
panels of figures 1-3 show the vertical wavenumbers computedfor isotropic and anisotropic
media for differentη values. It can be seen that there are significant differencesbetween the
anisotropic and isotropickz values which, if ignored, will lead to significant mispositioning of
migrated events.
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Figure 1: Relative Error plots forη = 0.08, relative error inkhy between analytical and quartic
solutions (top panel), relative error between analytical anisotropic and isotropickhy (mid-
dle panel), relative error between anisotropic (solid) andisotropic (dashed)kz (bottom panel)
ssen-eta08[CR]
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Figure 2: Relative error plots forη = 17, relative error inkhy between analytical and quartic
solutions (top panel), relative error between analytical anisotropic and isotropickhy (mid-
dle panel), relative error between anisotropic (solid) andisotropic (dashed)kz (bottom panel)
ssen-eta17[CR]
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Figure 3: Relative error plots forη = 0.33, relative error inkhy between analytical and quartic
solutions (top panel), relative error between analytical anisotropic and isotropickhy (mid-
dle panel), relative error between anisotropic (solid) andisotropic (dashed)kz (bottom panel)
ssen-eta33[CR]

3-D IMPULSE RESPONSES

In this section, we compare the 3-D impulse responses of the anisotropic Common Azimuth
migration operator with the corresponding isotropic one. For this paper, we consider impulse
responses for elliptical anisotropy only. The verticalP wave velocity in the medium is 2000
m/s. The anisotropic parametersε andδ are both equal to 0.15. Figures 4 and 5 show in-line
sections of the 3-D impulse responses for elliptically anisotropic and isotropic media respec-
tively. These figures clearly show the difference of incorporating anisotropy into the Common
Azimuth downward continuation operator, especially for energy propagating at moderate to
steep angles. Figures 6 and 7 show cross-line sections of the3-D impulse responses for el-
liptically anisotropic and isotropic media respectively.Again it can be seen that there are
significant differences for energy propagating at moderateto steep angles once anisotropy is
incorporated into the Common Azimuth operator. Finally, Figures 8 and 9 show depth slices of
the 3-D impulse responses for elliptically anisotropic andisotropic media respectively. Again,
we also observe significant differences between the two depth slices, especially the more el-
liptical nature of the depth slice for the anisotropic operator.

CONCLUSION

We have derived a Common Azimuth migration operator for elliptically anisotropic and VTI
media. The elliptically anisotropic Common Azimuth migration operator is exact for all range
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Figure 4: An inline slice of the 3D impulse response in an elliptically anisotropic media at
y = 0 m. ssen-aniso15_inline[CR]

Figure 5: An inline slice of the 3D impulse response in an isotropic media aty = 0 m
ssen-iso_inline[CR]

Figure 6: A cross-line slice of the 3D impulse response in an elliptically anisotropic media at
x = 0 m ssen-aniso15_xline[CR]
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Figure 7: A cross-line slice of the 3D impulse response in an isotropic media atx = 0 m
ssen-iso_xline[CR]

Figure 8: A horizontal slice of the 3D impulse response in an elliptically anisotropic media at
a depth ofz = 600 m. ssen-aniso15_depth_slice[CR]

Figure 9: A horizontal slice of the 3D impulse response in an isotropic medium atz= 600 m.
ssen-iso_depth_slice[CR]
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of the governing anisotropic parameters, namelyδ andε. The Common Azimuth operator
that we have developed for VTI media is a bounded one, meaningthat it should be accurate
within the certain bounds on the anisotropic parameters. But the error analysis indicates that
even when these bounds are exceeded, the approximation is still good and the accuracy is
comparable to the one obtained by solving the full quartic equation. 3-D impulse responses
show that there are significant differences between the isotropic and anisotropic Common Az-
imuth downward continuation operator, which needs to be taken into account by the migration
algorithm.
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