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Geomechanical constants of heterogeneous reservoirs: pore fluid
effects on shear modulus

James G. Berryman1

ABSTRACT

To provide quantitative measures of the importance of fluid effects on shear waves in
the heterogeneous reservoirs, a model material called a “random polycrystal of porous
laminates” is introduced. This model poroelastic materialhas constituent grains that are
layered (or laminated), and each layer is an isotropic, microhomogeneous porous medium.
All grains are composed of exactly the same porous constituents, and have the same rela-
tive volume fractions. But the order of lamination is not important because the up-scaling
method used to determine the transversely isotropic (hexagonal) properties of the grains is
Backus averaging, which — for quasi-static or long-wavelength behavior — depends only
on the volume fractions and layer properties. Grains are then jumbled together totally at
random, filling the reservoir, and producing an overall isotropic poroelastic medium. The
poroelastic behavior of this medium is then analyzed using the Peselnick-Meister-Watt
bounds (of Hashin-Shtrikman type). We study the dependenceof the shear modulus on
pore fluid properties and determine the expected range of behavior. In particular we com-
pare and contrast these results with those anticipated fromGassmann’s fluid substitution
formulas, and to the predictions of Mavko and Jizba for very low porosity rocks with flat
cracks. This approach also permits the study of arbitrary numbers of constituents, but for
simplicity the numerical examples are restricted here to just two constituents. This restric-
tion also permits the use of some special exact results available for computing the overall
effective stress coefficient in any two-component porous medium. The bounds making
use of polycrystalline microstructure are very tight. Results for shear modulus demon-
strate that the ratio of compliance differencesR (i.e., shear compliance changes over bulk
compliance changes) is usually nonzero and can take a wide range of values, both above
and below the valueR = 4/15 for low porosity, very low aspect ratio flat cracks. Results
show the overall shear modulus in this model can depend relatively strongly on mechani-
cal properties of the pore fluids, sometimes (but rarely) more strongly than the dependence
of the overall bulk modulus on the fluids.
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INTRODUCTION

Heterogeneity of the earth plays a significant role in determining geophysical and geomechan-
ical constants such as the bulk and shear moduli and the elastic and/or poroelastic wave speeds.
The heterogeneities of importance may be due to fine layering(Postma, 1955; Backus, 1962)
[layers being thin compared to seismic wavelength], due to partial or patchy saturation of pore
fluids (White, 1975; Knight and Nolen-Hoeksema, 1990; Dvorkin et al., 1999; Johnson, 2001;
Li et al., 2001), due to random positioning of joints and fractures (Berryman and Wang, 1995;
Pride and Berryman, 2003; Prideet al., 2004), due to anisotropic stress distribution, etc. There
have been many attempts to attack all of these problems, and the up-scaling methods employed
have ranged fromad hocto mathematically rigorous, and have had varying degrees ofsuccess
in modeling field and laboratory data.

One of the main purposes of the present paper is to introduce asemi-analytical model of the
earth, and especially of fluid-bearing earth reservoirs, that provides well-controlled estimates
of the properties of most interest such as elastic/poroelastic constants, fluid permeability, etc.
The concept is based on “random polycrystals of porous laminates.” Locally layered regions
are treated as laminates and the poroelastic and other constants can be computed essentially
exactly (i.e., within the assumed long wavelength limit and perfect layering of the laminate
model) using Backus (1962) averaging for poroelastic constants (and similar methods for other
parameters), in the long-wavelength or quasi-static limits. Then, since such layered materials
are typically anisotropic (having hexagonal symmetry whenthe layers are isotropic), I assume
that the earth is composed of a statistically isotropic jumble of such layered regions. The
locally layered, anisotropic regions may be termed “grains” or “crystals.” Then, the overall
behavior of this system can be determined/estimated using another method from the theory of
composites: the well-known Hashin-Shtrikman bounds (Hashin and Shtrikman, 1962). In this
case the bounds of interest for the types of crystal symmetrythat arise are those first obtained
by Peselnick and Meister (1965) and later refined by Watt and Peselnick (1980). These bounds
have been refined further recently by the author (Berryman, 2004b; 2005). In particular, these
recent refinements provide sufficient insight into the resulting equations that self-consistent
estimates (lying between the rigorous bounds) of the elastic constants can be formulated and
very easily computed. I find that the Peselnick-Meister-Watt upper and lower bounds are
already quite close together for this model material, so theresulting self-consistent estimates
are very well constrained. The bounds then serve as error bars on the self-consistent model
estimates.

The method being introduced can be applied to a wide variety of difficult technical issues
concerning geomechanical constants of earth reservoirs. The one issue that will be addressed
at length here is the question of how shear moduli in fully saturated, partially saturated, and/or
patchy saturated porous earth may or may not depend on mechanical properties of the pore
fluids. The well-known fluid substitution formulas of Gassmann (1951) [also see Berryman
(1999)] show that — for isotropic, microhomogeneous (single solid constituent) porous media
— the undrained bulk modulus depends strongly on a pore-liquid’s bulk modulus, but the
undrained shear modulus is not at all affected by changes in the pore-liquid modulus. Since
the system we are considering violates Gassmann’s microhomogeneity constraint as well as
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the the isotropy constraint in the vicinity of layer interfaces, I expect that the shear modulus
will in fact depend on the fluid properties in this model (Mavko and Jizba, 1991; Berryman
and Wang, 2001; Berrymanet al., 2002b). The semi-analytical model presented here allows
me to explore this issue in some detail, to show that overall shear modulus does depend on
pore-fluid mechanics, and to quantify these effects.

The next section introduces the basic tools used later in thelayer analysis. The third
section reviews the Peselnick-Meister-Watt bounds and presents the new formulation of them.
The fourth section summarizes the results needed from poroelastic analysis. The fifth section
presents the main new results of the paper, including four distinct scenarios that help elucidate
the behavior of the overall shear modulus and compare it to that of the bulk modulus. The final
section summarizes our conclusions. Appendix A provides a brief proof of one of the results
used in the text concerning the behavior of the effective stress coefficient for patchy saturation.
Appendix B shows that Hill’s equation should be used cautiously in analysis of heterogeneous
reservoirs.

ELASTICITY OF LAYERED MATERIALS

We assume that a typical building block of the random system is a small grain of laminate
material whose elastic response for such a transversely isotropic (hexagonal) system can be
described locally by:
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whereσi j are the usual stress components fori , j = 1−3 in Cartesian coordinates, with 3 (or
z) being the axis of symmetry (the lamination direction for such a layered material). Displace-
mentui is then related to strain componentei j by ei j = (∂ui /∂xj + ∂uj /∂xi )/2. This choice
of definition introduces some convenient factors of two intothe 44,55,66 components of the
stiffness matrix shown in (1).

For definiteness we also assume that this stiffness matrix in(1) arises from the lamination
of N isotropic constituents having bulk and shear moduliKn, µn, in theN > 1 layers present
in each building block. It is important that the thicknessesdn always be in the same proportion
in each of these laminated blocks, so thatfn = dn/

∑

n′ dn′ . But the order in which layers were
added to the blocks in unimportant, as Backus’s formulas (Backus, 1962) for the constants
show. For the overall behavior for the quasistatic (long wavelength) behavior of the system
we are studying, Backus’s results [also see Postma (1955), Berryman (1998,2004a,b), Milton
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(2002)] state that

c33 =
〈

1
K+4µ/3

〉−1
, c13 = c33

〈

K−2µ/3
K+4µ/3

〉

,

c44 =
〈

1
µ

〉−1
, c66 = 〈µ〉 ,

c11 = c2
13

c33
+4c66−4

〈

µ2

K+4µ/3

〉

, c12 = c11−2c66.

(2)

This bracket notation can be correctly viewed: (a) as a volume average, (b) as a line integral
along the symmetry axisx3, or (c) as a weighted summation〈Q〉 =

∑

n fnQn over any relevant
physical quantityQ taking a constant valueQn in then-th layer.

The bulk modulus for each laminated grain is that given by thecompressional Reuss av-
erageK R of the corresponding compliance matrixsi j [the inverse of the usual stiffness ma-
trix ci j , whose nonzero components are shown in (1)]. The well-knownresult is given by
e= e11+e22+e33 = σ/Keff, where 1/Keff = 1/K R = 2s11+2s12+4s13+s33. Whenµn = µ

is constant in a layered grain, the definition ofK R implies Hill’s equation (Hill, 1963, 1964;
Milton, 2002), which is given by

K ∗ =

[

N
∑

n=1

fn

Kn +4µ/3

]−1

−4µ/3. (3)

Here the bulk modulus of then-th constituent isKn, the shear modulus takes the same value
µn = µ for all n = 1,. . . , N, and the overall effective bulk modulus isK ∗. The volume frac-
tions fn are all nonnegative, and sum to unity.

Even thoughKeff = K R is the same for every grain, since the grains themselves are not
isotropic, the overall bulk modulusK ∗ of the random polycrystal does not necessarily have the
same value asK R for the individual grains (Hill, 1952). Hashin-Shtrikman bounds onK ∗ for
random polycrystals whose grains have hexagonal symmetry (Peselnick and Meister, 1965;
Watt and Peselnick, 1980) show in fact that theK R value lies outside the bounds in many
situations (Berryman, 2004b).

BOUNDS ON ELASTIC CONSTANTS FOR RANDOM POLYCRYSTALS

Voigt and Reuss Bounds

For hexagonal symmetry, the nonzero stiffness constants are: c11, c12, c13 = c23, c33, c44 = c55,
andc66 = (c11−c12)/2.

The Voigt average (Voigt, 1928) for bulk modulus of hexagonal systems is well-known to
be

KV = [2(c11+c12)+4c13+c33] /9. (4)

Similarly, for the shear modulus we have

µV =
1

5

(

Gv
eff +2c44+2c66

)

, (5)
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where the new term appearing here is essentially defined by (5) and given explicitly by

Gv
eff = (c11+c33−2c13−c66)/3. (6)

The quantityGv
eff is the energy per unit volume in a grain when a pure uniaxial shearstrainof

unit magnitude [i.e., (e11,e22,e33) = (1,1,−2)/
√

6], whose main compressive strain is applied
to the grain along its axis of symmetry (Berryman, 2004a,b).

The Reuss average (Reuss, 1929)K R for bulk modulus can also be written in terms of
stiffness coefficients as

1

K R−c13
=

1

c11−c66−c13
+

1

c33−c13
. (7)

The Reuss average for shear is

µR =
[

1

5

(

1

Gr
eff

+
2

c44
+

2

c66

)]−1

, (8)

which again may be taken as the definition ofGr
eff – i.e., the energy per unit volume in a

grain when a pure uniaxial shearstressof unit magnitude [i.e., (σ11,σ22,σ33) = (1,1,−2)/
√

6],
whose main compressive pressure is applied to a grain along its axis of symmetry.

For each grain having hexagonal symmetry, two product formulas hold (Berryman, 2004a):
3K RGv

eff = 3KV Gr
eff = ω+ω−/2 = c33(c11−c66)−c2

13. The symbolsω± stand for the quasi-
compressional and quasi-uniaxial-shear eigenvalues for the crystalline grains. Thus, it follows
that

Gr
eff = K RGv

eff/KV (9)

is a general formula, valid for hexagonal symmetry. We can choose to treat (5) and (8) as the
fundamental defining equations forGv

eff andGr
eff, respectively. Equivalently, we can use (9)

as the definition ofGr
eff.

Hashin-Shtrikman Bounds

It has been shown elsewhere (Berryman, 2004a,b) that the Peselnick-Meister-Watt bounds
for bulk modulus of a random polycrystal composed of hexagonal (or transversely isotropic)
grains are given by

K ±

P M =
KV (Gr

eff + ζ±)

(Gv
eff + ζ±)

=
K RGv

eff + KVζ±

Gv
eff + ζ±

, (10)

whereGv
eff (Gv

eff) is the uniaxial shear energy per unit volume for a unit applied shear strain
(stress). The second equality follows directly from the product formula (9). Parametersζ± are
defined by

ζ± =
G±

6

(

9K± +8G±

K± +2G±

)

. (11)
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In (11), values ofG± (shear moduli of isotropic comparison materials) are determined by
inequalities

0 ≤ G− ≤ min(c44,Gr
eff,c66), (12)

and

max(c44,G
v
eff,c66) ≤ G+ ≤ ∞. (13)

The values ofK± (bulk moduli of isotropic comparison materials) are then determined by
equalities

K± =
KV (Gr

eff − G±)

(Gv
eff − G±)

, (14)

given by Peselnick and Meister (1965) and Watt and Peselnick(1980). Also see Berryman,
2004b).

Bounds on the shear moduli are then given by

1
µ±

hex+ζ±

= 1
5

[ 1−γ±(KV−K±)
Gv

eff+ζ±+δ±(KV−K±)

+ 2
c44+ζ±

+ 2
c66+ζ±

]

,
(15)

whereγ± andδ± are given by

γ± =
−1

K± +4G±/3
and δ± =

[

4

15
−

2

5G±γ±

]−1

. (16)

KV is the Voigt average of the bulk modulus as defined previously.

POROELASTICITY ESTIMATES AND BOUNDS

My main focus here will be the extension of earlier work in elasticity to the case of locally
layered poroelastic media (Wang, 2000; Coussy, 2004), where the laminated grains (or crys-
tals) are formed by sequential layering ofN porous isotropic layers. Although these grains
each have the same quasi-static anisotropic elastic behavior, they do not necessarily have the
same shapes or the same orientations of their crystal symmetry axes. Specifically, we want to
study the case of isotropic random polycrystals, wherein the individuals can and do take on all
possible orientations of their symmetry axes (equiaxed, statistically isotropic polycrystals) so
that the overall composite polycrystal has isotropic behavior at the macroscopic level. Further-
more, in some applications, the pores of some grain layers may be filled with different fluids
(heterogeneous saturation conditions) than those in otherlayers. This model may or may not
be a realistic one for any given fluid-bearing reservoir whose geomechanics we need to model.
My first goal is arrive at a model for which many of the available modern tools of elastic and
poroelastic analysis apply, including Hashin-Shtrikman bounds for a reservoir having isotropic
constituents (Hashin and Shtrikman, 1962a,b,c; 1963a,b),Peselnick-Meister-Watt bounds for
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random polycrystals (Peselnick and Meister, 1965; Watt andPeselnick, 1980), certain exact
relationships known for two-component poroelastic media (Berryman and Milton, 1991), and
— whenever appropriate — self-consistent or other effective medium estimates of both elastic
constants and conductivities (electrical, thermal, and hydraulic). By constructing such a model
material, we expect to be able to make estimates of the behavior of the system and at the same
time be able to predict the range of variation likely to be observed around these estimates,
as well as identifying what material and microgeometry properties control those variations.
My further goal is to be able to make fairly precise statements about this model that are then
useful to our (both mine and the reader’s) intuition and to quantify how much is really known
about these complex systems. In particular, the hope is to identify assumptions currently and
commonly used in the literature without much apparent justification and to provide a means of
either verifying or falsifying these assumptions in the context of this model — if that proves
to be possible.

Two distinct results that will be required from poroelasticity theory are: (a) Gassmann’s
equations and (b) certain relationships that determine theoverall effective stress coefficient
of a composite poroelastic medium when it is composed of two porous materials satisfying
Gassmann’s assumptions. Gassmann’s results (Gassmann, 1951; Berryman, 1999; Wang,
2000) for the undrained bulk (K ) and shear (µ) moduli of microhomogeneous (one solid
constituent) porous media are:

Ku = Kd +
α2

(α −φ)/Km +φ/K f
=

Kd

1−αB
(17)

and

µu = µd. (18)

Here, Ku andµu are the undrained (pore fluid trapped) constants, whileKd andµd are the
drained (pore fluid untrapped) constants. Porosity (void volume fraction) isφ. Grain bulk and
shear moduli of the sole mineral constituent areKm andµm. The bulk modulus of the pore
fluid is K f . The factorα is the Biot-Willis (Biot and Willis, 1957) or volume effective stress
coefficient (Nur and Byerlee, 1971; Berryman, 1992; Gurevich, 2004), related toKm andKd

within each layer by

α(n) = 1− K (n)
d /K (n)

m . (19)

Skempton’s coefficient (Skempton, 1954) isB in (17).

Although my presentation is based on quasi-static results,my ultimate interest is often
applications to seismic wave propagation. In such circumstances a slightly different terminol-
ogy is used by some authors (Mavko and Jizba, 1991). In particular, for high frequency wave
propagation, fluid may be effectively trapped in the pores asit is unable to equilibrate through
pore-pressure diffusion on the time scale of wave passage. In this case, the term “unrelaxed” is
sometimes used instead of “undrained.” We will not make any further issue of this distinction
here and stick to the single term “undrained” for both types of applications.

For a porous medium composed of only two constituent porous media, each of which
is microhomogeneous and obeys Gassmann’s equations, the exact relation (Berryman and
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Milton, 1991) that determines the overall effective stresscoefficientα∗ – assuming only that
the constituents are in welded contact (volume fractions and spatial distribution of constituents
do not directly affect the result) – is:

α∗ −α(1)

α(2) −α(1)
=

K ∗
d − K (1)

d

K (2)
d − K (1)

d

. (20)

HereK ∗
d is the overall drained bulk modulus of the composite system,and the superscripts (1)

and (2) reference the two distinct components in the composite porous medium.

FOUR SCENARIOS

We now consider four scenarios of progressively greater complexity. For the first pair we as-
sume the mineralKm and drainedKd bulk moduli of all layers are uniform, and therefore that
the effective stress coefficient (α = 1− Kd/Km) is the same in each layer. Furthermore, the
overall volume effective stress coefficient is also the same[a fact that follows from (20)]. Al-
though specific in many respects, this model still permits some flexibility in the choice of pore
fluids and their spatial distribution. The other main freedom we have left is to assume that each
layer’s shear modulus is as sensitive or more sensitive thanits bulk modulus to irregularities
in the pore space (Makseet al., 1999). So, the shear modulus can vary significantly from layer
to layer, which will be important to our main discussion. Thesecond pair of scenarios allow
the bulk modulus to vary in the layers, and again study both uniform and patchy pore-fluid
saturation.

Constant Drained Bulk Modulus, Uniform Fluid Saturation

For assumed constant isotropic drained bulk modulus, we have K ∗
d = K (n)

d ≡ Kd for all N
layers as well as the overall medium, and whenN = 2 we can prove easily using (20) that
α∗ = α(1) = α(2). When the fluid is uniform throughout the medium, the undrained bulk moduli
also satisfyK ∗

u = K (n)
u ≡ Ku, since Gassmann’s equation depends only on constants that are

uniform throughout this model material. Now it has been shown previously (Berryman, 2004b)
that when the drained bulk modulus is uniform, a general result for Gv

eff = Gr
eff is

Gv
d =

[

N
∑

n=1

fn

µn +3Kd/4

]−1

−3Kd/4, (21)

fn being the volume fraction of the layers. This result followseasily from the Backus averages
presented in (2) and the formula forGv

eff in (6). In the presence of pore fluid and since each
layer is a Gassmann material, the shear moduli of the individual porous layers do not change.
So, a second result of the same type is available for the undrained uniaxial shear energy per
unit volumeGv

eff in this medium:

Gv
u =

[

N
∑

n=1

fn

µn +3Ku/4

]−1

−3Ku/4, (22)
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fn again being the volume fraction of the layers.

Neither of these two shear contributions is the overall modulus. They are just contributions
of the uniaxial shear component (within each laminated grain) as defined earlier. However,
they can be substituted for the termGv

eff in the Peselnick-Meister-Watt bounds defined by
(15). Note that it is easy to show from the forms of (21) and (22) that c44 ≤ Gv

d ≤ c66, and
similarly thatc44 ≤ Gv

u ≤ c66. [Furthermore, sinceKd ≤ Ku and the functionals in (21) and
(22) vary monotonically with their argumentsKd andKu, it is easy to see thatGv

d ≤ Gv
u.] Thus,

from (12) and (13), the best choices for shear moduli of the comparison materials are always
given byG− = c44 andG+ = c66 for this particular model material. Soζ± = (G±/6)(9K +
8G±)/(K +2G±) in (15), whereK takes the valuesK = Kd for the drained case andK = Ku

for the undrained case. In both cases,K R = KV = K since the drained bulk modulus is
uniform, so the form of the shear modulus bounds in (15) also simplifies to

1

µ± + ζ±

=
1

5

[

1

Gv
eff + ζ±

+
2

c44+ ζ±

+
2

c66+ ζ±

]

. (23)

We now have upper and lower bounds on the shear modulus in bothdrained and undrained
circumstances by using the appropriate values ofGv

eff andζ± for each case. It is also possible to
generate self-consistent estimates (Berryman, 2004b) forthese moduli directly from the form
of these bounds by instead making the substitutionsµ± → µ∗ andζ± → ζ ∗ ≡ (µ∗/6)(9K +
8µ∗)/(K +2µ∗). The results of all these formulas are illustrated in Figure 1.

Another important concept in these analyses will be the ratio of compliance differences
defined by

R ≡
1/µ∗

d −1/µ∗
u

1/K ∗
d −1/K ∗

u
. (24)

This quantity has been defined and discussed previously by Berrymanet al. (2002b). It is most
useful for determining the extent to which an identity derived by Mavko and Jizba (1991) for
very low porosity media containing randomly oriented fractures is either satisfied or violated
by other types of porous media. For the case studied by Mavko and Jizba (1991),R ≡ 4/15.
However, it has been shown that for penny-shaped cracks at finite porositiesR can be either
higher or lower than 4/15, and furthermore that the factorR tends to zero when the pores
approach spherical shapes (aspect ratio' 1) [see Goertz and Knight (1998) and Berrymanet
al. (2002b)]. So this ratio is a sensitive measure of the dependence ofµ∗

u on the fluid content
of a porous medium, and also to some extent on the microgeometry of the pores.

Figure 1 shows that, for most choices of volume fractions, the drained and undrained val-
ues of shear modulus bounds do not overlap. Clearly, as the volume fractions approach zero
or unity, the system approaches a pure Gassmann system; but,away from these limiting cases,
the results are both qualitatively and quantitatively different from Gassmann’s predictions.
Graphically speaking, it appears that the lower bound of theundrained constant is always
greater than the upper bound on the drained constants,i.e., µ−

u > µ+

d . But, when this figure is
magnified, we find there are small regions of volume fraction where this inequality is violated
slightly. So there is still little doubt that shear modulus is affected by pore fluids in these sys-
tems, and for some ranges of volume fraction there is no doubt. This result is a clear indication
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that Gassmann’s results for shear are not generally valid for this model – as expected. Figure
2 shows that the maximum value ofR for this case occurs aroundf2 ' 0.2. Furthermore, the
magnitude of this value is about 0.32, and therefore greaterthan 4/15. This shows again [as
was shown previously by Berrymanet al. (2002b)] thatR = 4/15 is alsonot in general an
upper bound onR.
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Figure 1: Illustrating the shear modulus results for the random polycrystals of porous lami-
nates model for homogeneous saturation when each grain is composed of two constituents: (1)
K (1)

d = 35.0 GPa,µ(1)
d = 4.0 GPa and (2)K (2)

d = 35.0 GPa,µ(2)
d = 40.0 GPa. Skempton’s coef-

ficient is taken to beB = 0.0 when the system is gas saturated, andB = 1.0 when the system
is fully liquid saturated. The effective stress coefficients for the layers are bothα = 0.75, and
α∗ = 0.75 also. The computed undrained bulk modulus isKu = 140 GPa. Volume fraction of
the layers varies from 0 to 100% of constituent number 2.jim2-Fig1 [NR]

Constant Drained Bulk Modulus, Patchy Fluid Saturation

To add one level of complication, consider next the same porous framework as before, but
now suppose that the saturation is patchy (White, 1975; Berrymanet al., 1998; Norris, 1993;
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Figure 2: Plot of the ratioR from equation (24), being the ratio of compliance differences due
to fluid saturation. These results are for the same model described in Figure 1 for homogeneous
saturation. The values ofR should be compared to those predicted by Mavko and Jizba (1991)
for very low porosity and flat cracks, whenR = 4/15 ' 0.267. We find in contrast that the
random polycrystals of porous laminates model for the case considered always hasR ≤ 0.32.
jim2-Fig2 [NR]
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Dvorkin et al., 1999; Johnson, 2001; Berrymanet al., 2002a), rather than homogeneous. The
idea is that some of the layers in the grains will have a liquidsaturant havingK f = K l , while
others will have a gas saturant havingK f = Kg. In general I assume thatKg � K l so that for
most purposes the gas saturated parts of the system satisfyKu ' Kd, i.e., undrained moduli
are to a very good approximation the same as the drained moduli for these layers. If this were
not so, then I could treat the second saturant in exactly the same way as I will treat the liquid
saturant; but there would be no new ideas required to do this,so I will not stress this approach
here.

For this system, the drained constants are all the same as in the preceding example. In
particular, the overall volume effective stress coefficient α∗ is the same.

The undrained constants differ for this system however because the undrained bulk mod-
ulus is not constant in the layers. Gassmann’s formula does not provide an answer for this
overall bulk modulus because the system is not homogeneous.But Backus averaging deter-
mines all the elastic constants in a straightforward way forthis system [see Berryman (2004a)].
The correct results are obtained for all the constants related to Voigt and Reuss averages [Eqs.
(4)-(9) for both bulk and shear moduli] as long as theK ’s shown explicitly in (2) are properly
interpreted as the undrained constantsKu from (17) for the fluids having bulk moduliK l or
Kg in the appropriate layers.

One explicit result found useful to quote from some earlier work (Berryman, 2004a) is

Gv
eff = c66− 4cu

33
3

[〈

1µ2

Ku+4µ/3

〉 〈

1
Ku+4µ/3

〉

−
〈

1µ

Ku+4µ/3

〉2]

,
(25)

wherecu
33 = 〈1/(Ku +4µ/3)〉−1 and the bracket notation has the same meaning as in the

Backus formulas (2). The difference1µ ≡ µ−c66 is the deviation of the layer shear modulus
locally from the overall average across all the layers. The term in square brackets in (25) is
always non-negative. AsKu in the layers ranges (parametrically) from zero to infinity,the

corrections from the square bracket term times the factor
4cu

33
3 can be shown to decrease from

c66− c44 to zero. Thus,Gv
eff in the layered model ranges for all possible layered poroelastic

systems fromc44 to c66.

Figure 3 shows that the drained bulk modulus does not change with volume fraction, since
all the layers have the same drained bulk modulus. The undrained bulk modulus can have
some small variations, however, due to variations in the shear modulus, as is shown by the
small spread in the bulk modulus bounds. Uncorrelated Hashin-Shtrikman bounds [computed
by evaluating (3) atµ’s having the lowest and highest shear modulus values among all those
in the layers] are also shown here for comparison purposes. Clearly, the Peselnick-Meister-
Watt correlated bounds based on the polycrystals of laminates microstructure are much tighter.
Figure 4 shows that the overall shear modulus has only relatively weak dependence (though
stronger than that in Figure 3) on patchy saturation when thebulk modulus itself is uniform.
Figure 5 shows that shear modulus changes with saturation, while small, are present and not
very tightly coupled to the bulk modulus changes (drained toundrained). This observation
is seen to be especially significant at the lowest volume fractions of liquid, as the changes in
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shear compliance are greater here (by a factor of about 3) than the corresponding changes in
the bulk compliance.

Two Distinct Gassmann Materials, Uniform Fluid Saturation

This example and the next one will remove the restriction that the porous frame material is
uniform. To have as much control as possible, we limit the heterogeneity to just two types of
drained bulk moduli,K (1)

d andK (2)
d . These occur with a frequency measured by the volume

fractions f1 and f2, respectively. These porous materials fill the space, sof1 + f2 = 1. The
effective stress coefficient is known exactly for this modeland is given by (20). This result is
true both for homogeneously saturated two-component media(Berryman and Milton, 1991) as
treated in this example, or for the type of patchy saturationtreated in the next example. Proof
of this statement is provided in Appendix A. For Gassmann’s equations in each material, we
also need either the fluid bulk modulus together with the layer porositiesφ(1) andφ(2), or
we just need the Skempton coefficient,B. For simplicity, we takeB = 0.0 for uniform gas
saturation, andB = 1.0 for uniform liquid saturation. (AlthoughB = 1 may not be exactly
correct for real liquid-saturated reservoirs, only the productαB is important for the modeling
examples that follow. So desired differences inB can be introduced through differences inα.
In this way we hope to capture the essence of this problem using the minimum number of free
parameters.) This summarizes the part of the modeling that is the same in this example and
the next.

We will now assume that the fluid saturation is uniform throughout the stated model ma-
terial: (1l ,2l ). [Notation indicates first layer is liquid filled (l ) and second layer is also liquid
filled. The alternative is that some layers are gas filled (g).]

In Figure 6 there appear to be only two curves for bulk modulus, but in fact six curves
are plotted here. All three of the drained curves are so closeto each other that they cannot be
distinguished on the scale of this plot. Similarly, all three of the undrained curves are equally
indistinguishable.

Figure 7 appears to be both qualitatively and quantitatively very similar to Figure 1. But
this time we find the inequalityµ−

u > µ+

d is never violated. So there is no doubt that shear
modulus is affected by pore fluids in this system.

Figure 8 shows that the maximum value ofR' 0.2 occurs aroundf2 ' 0.3. For this case,
4/15 is an upper bound onR, but I know this is not a general result.

Two Distinct Gassmann Materials, Patchy Fluid Saturation

This final set of examples will use the same model framework asthe preceding example. How-
ever, two fluids will be present simultaneously in this case.If the two fluids (g,l ) are assumed
to saturate only one or the other types of Gassmann materials, then we have a relatively simple
two component model: (1g,2l ). On the other hand, the setup is now general enough to permit
a variety of other possibilities. For example, porous material 1 might be saturated with either
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Figure 3: Illustrating the bulk modulus results for the random polycrystals of porous laminates
model for patchy saturation when each grain is composed of two constituents: (1)K (1)

d = 35.0
GPa,µ(1)

d = 4.0 GPa and (2)K (2)
d = 35.0 GPa,µ(2)

d = 40.0 GPa. Skempton’s coefficient is
taken to beB = 0.0 for constituent 1 (gas saturated), andB = 1.0 for constituent 2 (liquid
saturated). The effective stress coefficients for the layers are both given byα = 0.75, so
α∗ = 0.75 also. Porosity does not play a direct role in the calculation when we are using
B as the fluid substitution parameter. Volume fraction of the layers varies from 0 to 100%
of constituent number 2. To emphasize the tightness of the polycrystal (correlated) bounds,
uncorrelated Hashin-Shtrikman boundsK ±

H S on the undrained bulk modulus are also shown.
jim2-Fig3 [NR]
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Figure 4: Illustrating the shear modulus results for the random polycrystals of porous lami-
nates model. Model parameters are the same as in Figure 3 for patchy saturation. jim2-Fig4
[NR]
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Figure 5: Plot of the ratioR from equation (24), being the ratio of compliance differences
due to fluid saturation. These results are for the same model described in Figure 3 for patchy
saturation. The values ofR should be compared to those predicted by Mavko and Jizba (1991)
for very low porosity and flat cracks, whenR = 4/15' 0.267. We find in contrast that, for
partial and patchy saturation,R can take any positive value, or zero.jim2-Fig5 [NR]
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Figure 6: Illustrating the bulk modulus results for the random polycrystals of porous laminates
model for homogeneous saturation when each grain is composed of two constituents: (1)
K (1)

d = 20.0 GPa,µ(1)
d = 4.0 GPa and (2)K (2)

d = 50.0 GPa,µ(2)
d = 40.0 GPa. Skempton’s

coefficient is taken to beB = 0.0 when the system is gas saturated, andB = 1.0 when the
system is fully liquid saturated. The effective stress coefficients for the layers are, respectively,
α(1) = 0.85 andα(2) = 0.70. Porosity does not play a direct role in the calculationwhen we
are usingB as the fluid substitution parameter. Volume fraction of the layers varies from 0 to
100% of constituent number 2.jim2-Fig6 [NR]
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Figure 7: Illustrating the shear modulus results for the random polycrystals of porous lam-
inates model. Model parameters are the same as in Figure 6 forhomogeneous saturation.
jim2-Fig7 [NR]
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Figure 8: Plot of the ratioR from equation (24), being the ratio of compliance differences due
to fluid saturation. These results are for the same model described in Figure 6 for homogeneous
saturation. The values ofR should be compared to those predicted by Mavko and Jizba (1991)
for very low porosity and flat cracks, whenR = 4/15 ' 0.267. We find in contrast that the
random polycrystals of porous laminates model for the case considered always hasR ≤ 0.20.
jim2-Fig8 [NR]
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gas or liquid, and the same for porous material 2: (1g,1l ,2g,2l ). We could also suppose that
some of the layers have homogeneously (h) mixed saturation of both liquid and gas,i.e., a
partially rather than patchy saturated layer: (1g,1h,1l ,2g,2h,2l ). Although this additional
complication is not a problem for the numerical modeling, the large increase in the number of
possible cases needing enumeration becomes a bit too burdensome for the short presentation
envisioned here. (There is an infinite number of ways these types of materials having homoge-
neously mixed regions could be incorporated.) So we will instead limit discussion to the two
cases mentioned before: (a) just two types of patchy saturated layers (1g,2l ), or (b) four types
of patchy saturated layers (1g,1l ,2g,2l ). Since the case (b) is expected to be more complex
but not expected to contain any new ideas, we will limit the discussion further to case (a).

In Figure 9 as in Figure 6, the three drained curves for bulk modulus are so close together
that they cannot be distinguished on the scale of this plot (although they can be distinguished
if the plot is magnified). In contrast to Figure 6, the three undrained bulk modulus curves can
now be distinguished, but they are still quite close together. The undrained curves start out
at the same values as the drained curves because at zero volume fraction of constituent 2 the
only fluid in the system is air. Then, as the volume fraction ofconstituent 2 increases, we add
liquid up to the point where the final values at full liquid saturation are the same as in Fig-
ure 6. Again uncorrelated Hashin-Shtrikman bounds are shown for purposes of comparison,
as in Figure 3. The Peselnick-Meister-Watt bounds on undrained bulk modulus — making
use of the laminated grain/crystal substructure and the polycrystalline nature of the overall
reservoir model — clearly are much tighter. Together Figures 3 and 9 also show that the
polycrystalline-based bounding method produces a great improvement over the uncorrelated
Hashin-Shtrikman bounds, whose microstructural information is limited to volume fraction
data. This result is accomplished without having very detailed knowledge of the spatial cor-
relations, just by using the fact that the local microstructure is layered. Knowledge of local
layering is therefore a very important piece of microstructural information that has not been
used to greatest advantage in prior applications of bounding methods for up-scaling purposes.

For Figure 10, the results are not so simple, as the six curvesare all very close to each other.
Undrained curves are always above the corresponding drained curves, but in general there is
little separation to be seen here. Figure 11, like Figure 5, shows that the shear modulus changes
with saturation are not really tightly coupled to the bulk modulus changes, and especially so
at the lowest volume fractions of liquid, as the changes in shear compliance are again greater
in magnitude there than the changes in the bulk compliance.

CONCLUSIONS

The “random polycrystals of porous laminates” model introduced and studied here has been
shown to be a useful tool for studying some very difficult technical issues concerning how ge-
omechanical constants of reservoirs behave as a function ofchanges of pore fluid and varying
degrees of heterogeneity. This model has the advantage thatrigorous bounds [the Hashin-
Shtrikman bounds of Peselnick and Meister (1965) and Watt and Peselnick (1980)] on the
geomechanical constants (bulk and shear moduli) are available. Furthermore, due to the re-
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Figure 9: Illustrating the bulk modulus results for the random polycrystals of porous laminates
model for patchy saturation when each grain is composed of two constituents: (1)K (1)

d = 20.0
GPa,µ(1)

d = 4.0 GPa and (2)K (2)
d = 50.0 GPa,µ(2)

d = 40.0 GPa. Skempton’s coefficient is
taken to beB = 0.0 for constituent 1 (gas saturated), andB = 1.0 for constituent 2 (liquid
saturated). The effective stress coefficients for the layers are, respectively,α(1) = 0.85 and
α(2) = 0.70. Porosity does not play a direct role in the calculationwhen we are usingB
as the fluid substitution parameter. Volume fraction of the layers varies from 0 to 100% of
constituent number 2. To emphasize the accuracy of the polycrystal bounds and self-consistent
estimates, uncorrelated Hashin-Shtrikman boundsK ±

H S on undrained bulk modulus are also
shown. jim2-Fig9 [NR]
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Figure 10: Illustrating the shear modulus results for the random polycrystals of porous lami-
nates model. Model parameters are the same as in Figure 9 for patchy saturation. jim2-Fig10
[NR]
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Figure 11: Plot of the ratioR from equation (24), being the ratio of compliance differences
due to fluid saturation. These results are for the same model described in Figure 9 for patchy
saturation. The values ofR should be compared to those predicted by Mavko and Jizba (1991)
for very low porosity and flat cracks, whenR = 4/15' 0.267. We find in contrast that, for
partial and patchy saturation,R can take any positive value, or zero. Note that the magnitude
of this effect is smaller than in Figure 5, even though the degree of heterogeneity for bulk
modulus is greater here.jim2-Fig11 [NR]



460 Berryman SEP–120

fined formulation of these bounds presented here, it is also possible to obtain self-consistent
estimates directly from these bounds (Berryman, 2004b; 2005). This situation is particularly
beneficial as the rigorous bounds then provide immediate theoretical error bars for the self-
consistent estimates – a situation that is sometimes but notalways true for other effective
medium theories (Berryman, 1995). The model should therefore prove useful for a range of
applications in geomechanics.

The results obtained for the specific application considered here,i.e., pore fluid effects on
shear modulus, show that the pore fluid interaction with overall shear behavior is complicated.
The changes from drained to undrained behavior for shear modulus can range from being a
negligible effect (as it is according to Gassmann’s resultsfor microhomogeneous and isotropic
media) to being a bigger effect than the changes in bulk modulus under some circumstances
(see Figures 5 and 11 showing that the ratio of compliance differencesR > 1 in some cases).
Influences of pore geometry can also be studied in this model if desired, but this complication
was avoided here by parameterizing the fluid effects throughthe use of Skempton’s coefficient
B. All the pore microgeometry effects were thereby hidden in the present analysis, but these
could be brought out in future studies of the same and/or manyother related systems.

Another related result of some importance to analysis of partially and patchy saturated
systems was obtained in Appendix B. The results are illustrated in Figure 12 and show that
deviations from a system satisfying Hill’s equation (3) need not be small if the shear modulus
heterogeneity is large. The analysis does show, however, that if shear modulus variation is
small, then the observed deviations from predictions of Hill’s equation should also be corre-
spondingly small.

An implicit assumption made throughout the present paper isthat the porosity and —
most importantly — the fluid permeability of the geomechanical system under consideration is
relatively uniform. Then, the pore fluid pressures equilibrate on essentially the same timescale
throughout the whole system. If this is not true, as it would not be in a double-porosity
dual-permeability system (Berryman and Wang, 1995), then the present analysis needs to be
modified to account for the presence of more than one pertinent timescale. One direction for
future work along these lines will therefore be focused on this more complex, but nevertheless
important, problem commonly encountered in real earth reservoirs. The random polycrystal
of porous laminates model is flexible enough to allow this setof problems to be studied within
a very similar framework.

APPENDIX A: EFFECTIVE STRESS COEFFICIENT AND PARTIAL SATUR ATION

Although Eq. (20) for the overall volume effective stress coefficientα∗ is known to be true
for homogeneous pore saturation, we also need to have a corresponding result here for patchy
saturation. It turns out that the same formula applies for arbitrarily patchy saturated media, as
long as there are only two types of solid components. To show this, consider

(

δe(n)

−δζ (n)

)

=
1

K (n)
d

(

1 −α(n)

−α(n) α(n)/B(n)

)

(

−δpc

−δp(n)
f

)

, (26)
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whereδe(n) andδζ (n) are the change in overall strain and the increment of fluid content in
componentn, wheren = 1,2. [There are also similar formulas for all the overall properties
with (n) replaced by∗ for the corresponding effective properties. See Berryman and Wang
(1995) for more discussion.] Similarly, the change in overall confining (external) pressure is
δpc, and the pore pressure change of componentn is δp(n)

f . The porous material coefficients

are defined as in the main text,K (n)
d is the drained bulk modulus,α(n) is the volume effective

stress coefficient, andB(n) is Skempton’s coefficient for then-th constituent.

Now the rest of the argument follows that given in Berryman and Milton (1991) exactly,
since it is not important what fluid is in the pores when tryingto determine the overall effective
stress coefficient at long times (when fluid pressure in the system has equilibrated). We simply
postulate the existence of any fixed ratior = δp(1)

f /δpc = δp(2)
f /δpc such thatδe(1) = δe(2). If

there is such a ratio (valid at appropriately long times), thenδe∗ = δe(1) = δe(2) also follows
immediately and we have the condition that must be satisfied:

δpc

K (1)
d

[

1−α(1)r
]

=
δpc

K (2)
d

[

1−α(2)r
]

, (27)

which is just a linear relation for ratior . The result shows that the postulated value ofr does
exist unless the denominator of the following expression vanishes:

r =
1/K (1)

d −1/K (2)
d

α(1)/K (1)
d −α(2)/K (2)

d

. (28)

If the numerator of (28) vanishes, the results are trivial because Gassmann’s microhomo-
geneity condition is then satisfied. Once the value ofr is known, it is easy to see that
δe∗ = δe(1) = δe(2) implies

δpc

K ∗
d

[

1−α∗r
]

=
δpc

K (1)
d

[

1−α(1)r
]

. (29)

This equation can be rearranged into the form (20), as has been shown previously by Berryman
and Milton (1991).

Arguments similar to the one just given have also been used, for example, in the context
of thermal expansion by Benveniste and Dvorak (1990) and Dvorak and Benveniste (1997),
who call this approach “the theory of uniform fields.” It turns out this method is not restricted
to isotropic constituents as one might infer from the arguments presented here and also in
(Berryman and Milton, 1991).

A somewhat more difficult task than the one just accomplishedinvolves deducing the
overall effective pore bulk modulusK ∗

φ as was also done previously by Berryman and Milton
(1991). However, this coefficient does not play any direct role in our present analysis, so we
will leave this exercise to the interested reader.
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APPENDIX B: HILL’S EQUATION AND HETEROGENEOUS POROUS MEDIA

One very common approximation made in studies of partially and patchy saturated porous
media (Norris, 1993; Mavkoet al., 1998; Johnson, 2001) is based on an assumption that the
estimates are being made over a small enough region that it isreasonable to take the shear
modulus of the porous frame as constant, even though the bulkmodulus over the same small
region may vary. Then, when Gassmann’s results apply locally, the shear modulus satisfies
µd = µu, and so remains constant throughout this same region regardless of the distribution
of fluids in the pores. When these assumptions are valid, Hill’s equation (3) may be used to
compute the effective bulk modulusK ∗, regardless of anisotropy or of how many constituents
might be present. Furthermore, Hill’s equation will apply equally to the drainedK ∗

d and
undrainedK ∗

u bulk moduli of such a poroelastic system;Kn for the layers must be substituted
accordingly for the drained and undrained cases.

This approximation based on Hill’s equation is very appealing for applications because
of its analytical beauty and overall simplicity, but its usein heterogeneous media has never
been given a rigorous justification. In particular, the assumption of variable bulk modulus
in a heterogeneous system having constant shear modulus is surely one worthy of careful
consideration. It seems more likely (at least to me) that thevariations in the bulk modulus
in an earth system will be mimicked by the shear modulus and, therefore, that the proposed
method is in truth an oversimplification of this complex problem.

The model system presented here (i.e., the random polycrystal of porous laminates) offers
one means of checking whether this use of Hill’s equation might be justified or not.

It turns out that, whenN = 2, Hill’s equation (3) can be inverted to giveµ as a functional
of K ∗ (Milton, 1997). The result is given by

µ =
3K1K2

4Kr

(

K ∗ − Kr

Kv − K ∗

)

, (30)

where

Kv =
2
∑

n=1

fnKn and Kr =

[

2
∑

n=1

fn

Kn

]−1

. (31)

So I can do two calculations based on the results presented here for heterogeneous systems.
We can compute effective shear moduliµeff

d andµeff
u by taking the self-consistent values to

be the true values of the drained and undrainedK ∗, and layer values ofK (n)
d andK (n)

u as the
values forK1 andK2. The volume fractions are those already used in these calculations. So
everything is known and the computations are straightforward. We want to check whether the
resulting values of effective shear moduliµeff

d andµeff
u computed this way are approximately

constant and/or approximately equal to each other. If they are, then Hill’s equation, although
not rigorously appropriate in these systems, neverthelesscould be capturing some of the ob-
served behavior. If this is not true, then the results would be showing that great care should be
exercised in using these formulas for analyzing real data.
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My results are illustrated in Figure 12. I find thatµeff
d ' µeff

u . However, except for the
volume fractions near 50%, the values of bothµeff’s are very different from the actual shear
moduli of the random polycrystals of porous laminates model. Theµeff’s are high when the
µ∗’s are low, and vice versa. This observation is a very strong negative result, showing that
large errors in analysis can be introduced for systems such as these that are very heterogeneous
in shear.

On the positive side, it is also clear from Figure 12 that if the spread of layerµ’s is nonzero
but small, then the use of Hill’s equation can be well justified. The error in shear estimates
will never be greater than the spread in the layer shear modulus values, so if this is a small
(though nonzero) number, then the errors will be finite but correspondingly small.
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Figure 12: Illustrating computations of an effective shearmodulus obtained by inverting Hill’s
equation for drained (µeff

d ) and for undrained patchy saturation (µeff
u ) conditions. Model pa-

rameters are the same as in Figure 9 for patchy saturation. For comparison the curves for
self-consistent shear moduliµ∗

d andµ∗
u from Figure 10 are replotted here.jim2-Fig12 [NR]
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