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Geomechanical constants of heterogeneous reservoirs: gofluid
effects on shear modulus

James G. Berryman

ABSTRACT

To provide quantitative measures of the importance of fldidces on shear waves i
the heterogeneous reservoirs, a model material calledraléra polycrystal of porous
laminates” is introduced. This model poroelastic matdrad constituent grains that ar,
layered (or laminated), and each layer is an isotropic, shiimogeneous porous mediun
All grains are composed of exactly the same porous constigyand have the same relg
tive volume fractions. But the order of lamination is not ioniant because the up-scaling
method used to determine the transversely isotropic (fenalpproperties of the grains is
Backus averaging, which — for quasi-static or long-wavgtarbehavior — depends only
on the volume fractions and layer properties. Grains ane jfin@bled together totally at
random, filling the reservoir, and producing an overallngpic poroelastic medium. The
poroelastic behavior of this medium is then analyzed udegReselnick-Meister-Watt
bounds (of Hashin-Shtrikman type). We study the dependehtige shear modulus on
pore fluid properties and determine the expected range @Moah In particular we com-
pare and contrast these results with those anticipated @assmann’s fluid substitution
formulas, and to the predictions of Mavko and Jizba for vewy porosity rocks with flat
cracks. This approach also permits the study of arbitramgbers of constituents, but for
simplicity the numerical examples are restricted heregoto constituents. This restrict
tion also permits the use of some special exact resultsadkaifor computing the overal
effective stress coefficient in any two-component porousliiore. The bounds making
use of polycrystalline microstructure are very tight. Resstor shear modulus demont
strate that the ratio of compliance differendeé.e., shear compliance changes over bulk
compliance changes) is usually nonzero and can take a wide af values, both above
and below the valu® = 4/15 for low porosity, very low aspect ratio flat cracks. Result
show the overall shear modulus in this model can dependvelastrongly on mechani-
cal properties of the pore fluids, sometimes (but rarely)astrongly than the dependence
of the overall bulk modulus on the fluids.
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INTRODUCTION

Heterogeneity of the earth plays a significant role in deteirng geophysical and geomechan-
ical constants such as the bulk and shear moduli and thécedasifor poroelastic wave speeds.
The heterogeneities of importance may be due to fine lay¢Hogtma, 1955; Backus, 1962)
[layers being thin compared to seismic wavelength], dueattig or patchy saturation of pore
fluids (White, 1975; Knight and Nolen-Hoeksema, 1990; Duog al., 1999; Johnson, 2001,

Li etal, 2001), due to random positioning of joints and fracturesr(fdnan and Wang, 1995;
Pride and Berryman, 2003; Prideal., 2004), due to anisotropic stress distribution, etc. There
have been many attempts to attack all of these problemshangtscaling methods employed
have ranged fromd hocto mathematically rigorous, and have had varying degressafess

in modeling field and laboratory data.

One of the main purposes of the present paper is to introdsemaanalytical model of the
earth, and especially of fluid-bearing earth reservoirst piovides well-controlled estimates
of the properties of most interest such as elastic/porbelesnstants, fluid permeability, etc.
The concept is based on “random polycrystals of porous latesy’ Locally layered regions
are treated as laminates and the poroelastic and otheractosistan be computed essentially
exactly {.e., within the assumed long wavelength limit and perfect laygenf the laminate
model) using Backus (1962) averaging for poroelastic @rist(and similar methods for other
parameters), in the long-wavelength or quasi-static §miihen, since such layered materials
are typically anisotropic (having hexagonal symmetry wtinenlayers are isotropic), | assume
that the earth is composed of a statistically isotropic jlevdd such layered regions. The
locally layered, anisotropic regions may be termed “graors‘crystals.” Then, the overall
behavior of this system can be determined/estimated usiotpar method from the theory of
composites: the well-known Hashin-Shtrikman bounds (leahd Shtrikman, 1962). In this
case the bounds of interest for the types of crystal symntleaityarise are those first obtained
by Peselnick and Meister (1965) and later refined by Watt aseRick (1980). These bounds
have been refined further recently by the author (Berrym@®48; 2005). In particular, these
recent refinements provide sufficient insight into the r@sglequations that self-consistent
estimates (lying between the rigorous bounds) of the elaststants can be formulated and
very easily computed. | find that the Peselnick-MeistertWaiper and lower bounds are
already quite close together for this model material, sad¢isalting self-consistent estimates
are very well constrained. The bounds then serve as errerdmthe self-consistent model
estimates.

The method being introduced can be applied to a wide varfetyffocult technical issues
concerning geomechanical constants of earth reservdies.ome issue that will be addressed
at length here is the question of how shear moduli in fullpssted, partially saturated, and/or
patchy saturated porous earth may or may not depend on nmieahproperties of the pore
fluids. The well-known fluid substitution formulas of Gassmg1951) [also see Berryman
(1999)] show that — for isotropic, microhomogeneous (®rsgilid constituent) porous media
— the undrained bulk modulus depends strongly on a poredsbulk modulus, but the
undrained shear modulus is not at all affected by changdeipaore-liquid modulus. Since
the system we are considering violates Gassmann’s microgeneity constraint as well as
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the the isotropy constraint in the vicinity of layer intexéss, | expect that the shear modulus
will in fact depend on the fluid properties in this model (Mav&nd Jizba, 1991; Berryman
and Wang, 2001; Berrymaet al., 2002b). The semi-analytical model presented here allows
me to explore this issue in some detail, to show that ovehalhs modulus does depend on
pore-fluid mechanics, and to quantify these effects.

The next section introduces the basic tools used later idayer analysis. The third
section reviews the Peselnick-Meister-Watt bounds ansigmts the new formulation of them.
The fourth section summarizes the results needed from |amtieanalysis. The fifth section
presents the main new results of the paper, including fatindit scenarios that help elucidate
the behavior of the overall shear modulus and compare ittoottthe bulk modulus. The final
section summarizes our conclusions. Appendix A providesed proof of one of the results
used in the text concerning the behavior of the effectivesstroefficient for patchy saturation.
Appendix B shows that Hill's equation should be used caustipin analysis of heterogeneous
reservoirs.

ELASTICITY OF LAYERED MATERIALS

We assume that a typical building block of the random systia $small grain of laminate
material whose elastic response for such a transverselpso (hexagonal) system can be
described locally by:

011 Ci1 Ci2 C13 €11

022 Ci2 Ci1 Ci3 €22

033 | _ C13 Ci13 Caz3 €33 (1)
023 2C44 €3 |’

031 2C44 €31

012 2Cq6 €12

whereoij are the usual stress componentsifgr= 1— 3 in Cartesian coordinates, with 3 (or
z) being the axis of symmetry (the lamination direction foclsa layered material). Displace-
mentu; is then related to strain componest by e = (9u;i /90X 4+ du;/dX;)/2. This choice
of definition introduces some convenient factors of two it 44,55,66 components of the
stiffness matrix shown in (1).

For definiteness we also assume that this stiffness mat(iy) iarises from the lamination
of N isotropic constituents having bulk and shear mo#lj i, in theN > 1 layers present
in each building block. It is important that the thicknesdgalways be in the same proportion
in each of these laminated blocks, so that& dn/ Y, dy. But the order in which layers were
added to the blocks in unimportant, as Backus’s formulaskBs, 1962) for the constants
show. For the overall behavior for the quasistatic (long elength) behavior of the system
we are studying, Backus’s results [also see Postma (19%5)yman (1998,2004a,b), Milton
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(2002)] state that

1
[ 1 o [K—2u/3
Caz= <K+4u/3> , C13= C33<K+4u/3>’

Caq = <%>_1 : Ce6 = (1), (2)

c2 2
Ci1= ﬁ +4Cee—4<ﬁws>, C12 = C11 — 2Cg6.

This bracket notation can be correctly viewed: (a) as a velanerage, (b) as a line integral
along the symmetry axiss, or (c) as a weighted summatio®) =), f,Qn over any relevant
physical quantityQ taking a constant valu®, in then-th layer.

The bulk modulus for each laminated grain is that given bycibrmpressional Reuss av-
erageKr of the corresponding compliance matgx [the inverse of the usual stiffness ma-
trix ¢jj, whose nonzero components are shown in (1)]. The well-knmgalt is given by
e=en+exn+e33=0/Kefr, Where Y Ker = 1/Kr = 2811+ 2812+ 4513+ Sz3. Whenun =
is constant in a layered grain, the definitionkog implies Hill's equation (Hill, 1963, 1964;
Milton, 2002), which is given by

N -1
fn
K*= _ —4u/3. 3
L; Kn+4u/3i| w ®)
Here the bulk modulus of the-th constituent i, the shear modulus takes the same value
un=pu foralln=1,...,N, and the overall effective bulk modulusks*. The volume frac-
tions f, are all nonnegative, and sum to unity.

Even thoughKef = KRr is the same for every grain, since the grains themselvesare n
isotropic, the overall bulk modulus * of the random polycrystal does not necessarily have the
same value aKR for the individual grains (Hill, 1952). Hashin-Shtrikmaounds onK * for
random polycrystals whose grains have hexagonal symme#agelnick and Meister, 1965;
Watt and Peselnick, 1980) show in fact that tkeg value lies outside the bounds in many
situations (Berryman, 2004b).

BOUNDS ON ELASTIC CONSTANTS FOR RANDOM POLYCRYSTALS

Voigt and Reuss Bounds
For hexagonal symmetry, the nonzero stiffness consta@isar ci2, C13 = C»3, C33, C44 = Css,
andcge = (C11— C12)/2.

The Voigt average (Moigt, 1928) for bulk modulus of hexad@ystems is well-known to
be

Kv = [2(C11+ C12) +4C13+C33] /9. (4)
Similarly, for the shear modulus we have
1 v

nwv = — (Geff +2Ca4+ 2066) , (5)

5
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where the new term appearing here is essentially defined)an(bgiven explicitly by
Geg = (C11+ C33— 2C13— Cs6) /3. (6)

The quantityG is the energy per unit volume in a grain when a pure uniaxiehstrain of
unit magnitudeife., (e11, &2, €33) = (1,1,—2)/+/6], whose main compressive strain is applied
to the grain along its axis of symmetry (Berryman, 2004a,b).

The Reuss average (Reuss, 1989 for bulk modulus can also be written in terms of
stiffness coefficients as

1 1 1
Kr—Ci3 Ci1—Ce—Ciz C3z—Ci3

(7)

The Reuss average for shear is

11 2 2\]*
e [H( s 22 )] ;
R |:5( eff Caa  Cop ©)

which again may be taken as the definitionG@ff; — i.e., the energy per unit volume in a
grain when a pure uniaxial shestressof unit magnitudeile., (611,022, 033) = (1,1,—2)//6],
whose main compressive pressure is applied to a grain al®agis of symmetry.

For each grain having hexagonal symmetry, two product ftamioold (Berryman, 2004a):
3KRrGYy = 3Ky Gy = wyw_ /2 = C33(C11 — Cep) — cfs. The symbolsv, stand for the quasi-
compressional and quasi-uniaxial-shear eigenvalueséoerystalline grains. Thus, it follows
that

Gert = KrGerr/ Kv (9)

is a general formula, valid for hexagonal symmetry. We caoosk to treat (5) and (8) as the
fundamental defining equations f@; and G, respectively. Equivalently, we can use (9)
as the definition oG .

Hashin-Shtrikman Bounds

It has been shown elsewhere (Berryman, 2004a,b) that thelrRgsMeister-Watt bounds
for bulk modulus of a random polycrystal composed of hexa§(or transversely isotropic)
grains are given by

_ Kv(Gggt¢s)  KrGggt+Kvis

K, = = , 10
PM (Gl + 1) SR (10)

whereG, (Gg¢) is the uniaxial shear energy per unit volume for a unit aggpBhear strain
(stress). The second equality follows directly from thequat formula (9). Parametets are
defined by

(11)

Gy <9K:|:+8G:|:>
+t=— )

6 Ki+2G4
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In (11), values ofG. (shear moduli of isotropic comparison materials) are deiteed by
inequalities

0 < G_ < min(Ca4, Gz, Ce6), (12)
and
max(Caa, Ggg, Ces) < G4 < 00. (13)

The values ofK. (bulk moduli of isotropic comparison materials) are thetedained by
equalities
~ Kv(Ggr—Gy)

= Gy-e o

given by Peselnick and Meister (1965) and Watt and Pese(d@R0). Also see Berryman,
2004b).

Bounds on the shear moduli are then given by

= 1[ ; 1-y+(Kv—Ki)
Mhexté+ 5 Gef‘f+2§i+5:t(KV2—K:t) (15)
+C44+Ci + Cea+§i]’
wherey. ands. are given by
-1 4 2 -1
=0 and = | ———— | . 16
V= Ki+4G./3 + [15 5G:|:V:|::| (16)

Ky is the Voigt average of the bulk modulus as defined previously

POROELASTICITY ESTIMATES AND BOUNDS

My main focus here will be the extension of earlier work instiity to the case of locally
layered poroelastic media (Wang, 2000; Coussy, 2004), evter laminated grains (or crys-
tals) are formed by sequential layering Mfporous isotropic layers. Although these grains
each have the same quasi-static anisotropic elastic eh#wey do not necessarily have the
same shapes or the same orientations of their crystal symarets. Specifically, we want to
study the case of isotropic random polycrystals, wherenritividuals can and do take on all
possible orientations of their symmetry axes (equiaxedissically isotropic polycrystals) so
that the overall composite polycrystal has isotropic béraat the macroscopic level. Further-
more, in some applications, the pores of some grain layeyshadilled with different fluids
(heterogeneous saturation conditions) than those in tdigers. This model may or may not
be a realistic one for any given fluid-bearing reservoir véhgsomechanics we need to model.
My first goal is arrive at a model for which many of the avaiabiodern tools of elastic and
poroelastic analysis apply, including Hashin-Shtrikmauards for a reservoir having isotropic
constituents (Hashin and Shtrikman, 1962a,b,c; 1963Bdgelnick-Meister-Watt bounds for
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random polycrystals (Peselnick and Meister, 1965; WattResklnick, 1980), certain exact
relationships known for two-component poroelastic meBrerfyman and Milton, 1991), and
— whenever appropriate — self-consistent or other effeatredium estimates of both elastic
constants and conductivities (electrical, thermal, ardtdwylic). By constructing such a model
material, we expect to be able to make estimates of the bahaivihe system and at the same
time be able to predict the range of variation likely to beeskied around these estimates,
as well as identifying what material and microgeometry prtips control those variations.
My further goal is to be able to make fairly precise statemmeatout this model that are then
useful to our (both mine and the reader’s) intuition and targify how much is really known
about these complex systems. In particular, the hope isstatiig assumptions currently and
commonly used in the literature without much apparentflgstiion and to provide a means of
either verifying or falsifying these assumptions in the teaih of this model — if that proves
to be possible.

Two distinct results that will be required from poroelagjicheory are: (a) Gassmann’s
equations and (b) certain relationships that determineoteeall effective stress coefficient
of a composite poroelastic medium when it is composed of taroys materials satisfying
Gassmann’s assumptions. Gassmann’s results (Gassmasi, B&rryman, 1999; Wang,
2000) for the undrained bulkk() and shear ) moduli of microhomogeneous (one solid
constituent) porous media are:

o? Kg
Ky = K _ 17
S = @) Kmt9/K; ~ 1—aB an
and
Hu = HUd- (18)

Here, K, and u, are the undrained (pore fluid trapped) constants, Wwkijeand g4 are the
drained (pore fluid untrapped) constants. Porosity (voldme fraction) isp. Grain bulk and
shear moduli of the sole mineral constituent &g and um. The bulk modulus of the pore
fluid is K. The factorx is the Biot-Willis (Biot and Willis, 1957) or volume effeet stress
coefficient (Nur and Byerlee, 1971; Berryman, 1992; Guievg004), related t&, andKg
within each layer by

o™ =1-KM/KD, (19)
Skempton’s coefficient (Skempton, 1954 Hsn (17).

Although my presentation is based on quasi-static resmiysultimate interest is often
applications to seismic wave propagation. In such circants a slightly different terminol-
ogy is used by some authors (Mavko and Jizba, 1991). In péatidor high frequency wave
propagation, fluid may be effectively trapped in the poreis isunable to equilibrate through
pore-pressure diffusion on the time scale of wave passadhisicase, the term “unrelaxed” is
sometimes used instead of “undrained.” We will not make anthér issue of this distinction
here and stick to the single term “undrained” for both typespplications.

For a porous medium composed of only two constituent poroedian each of which
is microhomogeneous and obeys Gassmann’s equations, dloé rexation (Berryman and
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Milton, 1991) that determines the overall effective stressfficienta™ — assuming only that
the constituents are in welded contact (volume fractiomisspatial distribution of constituents
do not directly affect the result) — is:

a* —a® _ Ki— Kél)
@@~ K@D _KD

(20)

HereK is the overall drained bulk modulus of the composite systard,the superscripts (1)
and (2) reference the two distinct components in the congpsirous medium.

FOUR SCENARIOS

We now consider four scenarios of progressively greatembexity. For the first pair we as-
sume the mineraK, and drainedq bulk moduli of all layers are uniform, and therefore that
the effective stress coefficient & 1 — Kq/Kyy) is the same in each layer. Furthermore, the
overall volume effective stress coefficient is also the sgarfact that follows from (20)]. Al-
though specific in many respects, this model still permitsesdexibility in the choice of pore
fluids and their spatial distribution. The other main fremdee have leftis to assume that each
layer's shear modulus is as sensitive or more sensitiveitdulk modulus to irregularities
in the pore space (Maks# al, 1999). So, the shear modulus can vary significantly froraday
to layer, which will be important to our main discussion. ®&zond pair of scenarios allow
the bulk modulus to vary in the layers, and again study boiform and patchy pore-fluid
saturation.

Constant Drained Bulk Modulus, Uniform Fluid Saturation

For assumed constant isotropic drained bulk modulus, we Kgv= Kc(,”) = Kq for all N
layers as well as the overall medium, and whr= 2 we can prove easily using (20) that
a* =M = a®. When the fluid is uniform throughout the medium, the undedibulk moduli
also satisfyK;: = K = Ky, since Gassmann’s equation depends only on constantsr¢ghat a
uniform throughout this model material. Now it has been ghpveviously (Berryman, 2004b)
that when the drained bulk modulus is uniform, a generallrésuGl; = G iS

v - fn N
Gd = |:Z MnTKd/‘]':| —3Kd/4, (21)

n=1
fn being the volume fraction of the layers. This result folleesily from the Backus averages
presented in (2) and the formula fG%4 in (6). In the presence of pore fluid and since each
layer is a Gassmann material, the shear moduli of the indalidorous layers do not change.
So, a second result of the same type is available for the unedtainiaxial shear energy per
unit volumeG¢ in this medium:

v - fn N
G, = |:Z ,U«n+—3Ku/4:| —3Ky/4, (22)

n=1
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fn again being the volume fraction of the layers.

Neither of these two shear contributions is the overall nhagluT hey are just contributions
of the uniaxial shear component (within each laminatednyras defined earlier. However,
they can be substituted for the tei@i; in the Peselnick-Meister-Watt bounds defined by
(15). Note that it is easy to show from the forms of (21) and) (d2tcss < Gj < cs6, and
similarly thatcss < G}, < cge. [Furthermore, sinc&y < Ky and the functionals in (21) and
(22) vary monotonically with their argumerity andKy, it is easy to see th&j < G;,.] Thus,
from (12) and (13), the best choices for shear moduli of thegarison materials are always
given byG_ = c4q and G = cgp for this particular model material. Sg. = (G+/6)(9K +
8G41)/(K+2G.) in (15), whereK takes the valueK = Ky for the drained case aril = K,
for the undrained case. In both cas&s; = Ky = K since the drained bulk modulus is
uniform, so the form of the shear modulus bounds in (15) alspldies to

1 1 1 2 2
< =—|= -+ -+ . (23)
u=+ex S| Ggg+l+  Cas+lr  Cept+lx
We now have upper and lower bounds on the shear modulus indoaithed and undrained
circumstances by using the appropriate valugsfands.. for each case. Itis also possible to
generate self-consistent estimates (Berryman, 2004thése moduli directly from the form
of these bounds by instead making the substitutjofis> ©* and¢y — ¢* = (u*/6)(9K +
81*)/(K +2u*). The results of all these formulas are illustrated in Feglr

Another important concept in these analyses will be the rafticompliance differences
defined by

/g — 1/

R=_d ~Pu
1/K: —1/K

(24)

This quantity has been defined and discussed previously iryrBanet al. (2002b). Itis most
useful for determining the extent to which an identity ded\by Mavko and Jizba (1991) for
very low porosity media containing randomly oriented ftaes is either satisfied or violated
by other types of porous media. For the case studied by Mawia)aba (1991)R = 4/15.
However, it has been shown that for penny-shaped cracksit& fhiorositiesR can be either
higher or lower than AL5, and furthermore that the fact® tends to zero when the pores
approach spherical shapes (aspect ratib) [see Goertz and Knight (1998) and Berryn&n
al. (2002b)]. So this ratio is a sensitive measure of the depeaef,., on the fluid content
of a porous medium, and also to some extent on the microgepwfahe pores.

Figure 1 shows that, for most choices of volume fractions,dtained and undrained val-
ues of shear modulus bounds do not overlap. Clearly, as tflhenedfractions approach zero
or unity, the system approaches a pure Gassmann systerapaytfrom these limiting cases,
the results are both qualitatively and quantitatively efiéint from Gassmann’s predictions.
Graphically speaking, it appears that the lower bound ofuthé@rained constant is always
greater than the upper bound on the drained constegig;; > ,uj. But, when this figure is
magnified, we find there are small regions of volume fractitvesg this inequality is violated
slightly. So there is still little doubt that shear modulssifected by pore fluids in these sys-
tems, and for some ranges of volume fraction there is no ddtiis result is a clear indication
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that Gassmann'’s results for shear are not generally valithi® model — as expected. Figure
2 shows that the maximum value Bffor this case occurs arounid ~ 0.2. Furthermore, the
magnitude of this value is about 0.32, and therefore greéhgar 4/15. This shows again [as
was shown previously by Berrymaet al. (2002b)] thatR = 4/15 is alsonotin general an
upper bound orR.

40 — T T T T
-~ Hy
35H - - - Kg -
+
—_ — - uc_j
30 — W, / i
/('-U\ * //
al - Hy A
250 — 4 1
9 7
> 44
3 20} /44 .
) 2
= %
o 15¢ //,/4‘ -
< =
0p] 4;4’
10_ ¢’¢¢¢ ]
5_ - ]
O 1 1 1 1
0 0.2 0.4 0.6 0.8 1

Volume Fraction

Figure 1: lllustrating the shear modulus results for thedoan polycrystals of porous lami-
nates model for homogeneous saturation when each graimigased of two constituents: (1)
K{" =35.0 GPau{ = 4.0 GPaand (2K P = 35.0 GPau?) = 40.0 GPa. Skempton's coef-
ficient is taken to b8 = 0.0 when the system is gas saturated, Bnd 1.0 when the system
is fully liquid saturated. The effective stress coefficgefdr the layers are botla = 0.75, and

a* = 0.75 also. The computed undrained bulk modulus js= 140 GPa. Volume fraction of

the layers varies from 0 to 100% of constituent numbefjin2-Figl|[NR]

Constant Drained Bulk Modulus, Patchy Fluid Saturation

To add one level of complication, consider next the sameysftamework as before, but
now suppose that the saturation is patchy (White, 1975;yB&anet al, 1998; Norris, 1993;
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Figure 2: Plot of the ratidR from equation (24), being the ratio of compliance differendue

to fluid saturation. These results are for the same modetidesidn Figure 1 for homogeneous
saturation. The values & should be compared to those predicted by Mavko and Jizbd {199
for very low porosity and flat cracks, wheR= 4/15~ 0.267. We find in contrast that the
random polycrystals of porous laminates model for the cassidered always haR < 0.32.

P2 INR
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Dvorkin et al,, 1999; Johnson, 2001; Berrymanal,, 2002a), rather than homogeneous. The
idea is that some of the layers in the grains will have a ligaitlirant havindg<s = K|, while
others will have a gas saturant havikg = K. In general | assume th#ty « K, so that for
most purposes the gas saturated parts of the system ddtjsfyKy, i.e., undrained moduli
are to a very good approximation the same as the drained nfodthese layers. If this were
not so, then | could treat the second saturant in exactlyaheesvay as | will treat the liquid
saturant; but there would be no new ideas required to doghikwill not stress this approach
here.

For this system, the drained constants are all the same &g ipréceding example. In
particular, the overall volume effective stress coeffitiehis the same.

The undrained constants differ for this system however lee#he undrained bulk mod-
ulus is not constant in the layers. Gassmann’s formula doepnovide an answer for this
overall bulk modulus because the system is not homogendtutsBackus averaging deter-
mines all the elastic constants in a straightforward waytfisrsystem [see Berryman (2004a)].
The correct results are obtained for all the constantseefat \Voigt and Reuss averages [EQs.
(4)-(9) for both bulk and shear moduli] as long as ks shown explicitly in (2) are properly
interpreted as the undrained consta{sfrom (17) for the fluids having bulk moduk,; or
Kg in the appropriate layers.

One explicit result found useful to quote from some earlierky(Berryman, 2004a) is

v 4053 AMZ 1
Getr = Co6 — 3° | ko123 )\ Ror a3
2
_(_An
<Ku+4M/3> :|’

wherecy,; = (1/(Ky+4u/3))~1 and the bracket notation has the same meaning as in the
Backus formulas (2). The differenceuw = 1« — Cg is the deviation of the layer shear modulus
locally from the overall average across all the layers. Hmmtin square brackets in (25) is
always non-negative. AKj, in the layers ranges (parametrlcally) from zero to infinthe
corrections from the square bracket term times the fa%ércan be shown to decrease from

Ce6 — C44 10 Zzero. ThusGg, in the layered model ranges for all possible layered postiela
systems fronty4 to Cge.

(25)

Figure 3 shows that the drained bulk modulus does not chaitger@lume fraction, since
all the layers have the same drained bulk modulus. The umebldulk modulus can have
some small variations, however, due to variations in theshedulus, as is shown by the
small spread in the bulk modulus bounds. Uncorrelated HaShtrikman bounds [computed
by evaluating (3) af.’s having the lowest and highest shear modulus values amibtigae
in the layers] are also shown here for comparison purpost=arl¢ the Peselnick-Meister-
Watt correlated bounds based on the polycrystals of lamé&maicrostructure are much tighter.
Figure 4 shows that the overall shear modulus has only velgtiveak dependence (though
stronger than that in Figure 3) on patchy saturation wherbtitle modulus itself is uniform.
Figure 5 shows that shear modulus changes with saturatioite small, are present and not
very tightly coupled to the bulk modulus changes (drainedridrained). This observation
is seen to be especially significant at the lowest volumeitias of liquid, as the changes in
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shear compliance are greater here (by a factor of about B)tkieacorresponding changes in
the bulk compliance.

Two Distinct Gassmann Materials, Uniform Fluid Saturation

This example and the next one will remove the restrictiott tha porous frame material is
uniform. To have as much control as possible, we limit thetogeneity to just two types of
drained bulk moduli,Kc(,l) and K((,z). These occur with a frequency measured by the volume
fractions f1 and f,, respectively. These porous materials fill the spacef;sp f, = 1. The
effective stress coefficient is known exactly for this moaiedl is given by (20). This result is
true both for homogeneously saturated two-component n{Beéiayman and Milton, 1991) as
treated in this example, or for the type of patchy saturatieated in the next example. Proof
of this statement is provided in Appendix A. For Gassmangisaions in each material, we
also need either the fluid bulk modulus together with the dgarositiesp™ and ¢, or
we just need the Skempton coefficieBt, For simplicity, we takeB = 0.0 for uniform gas
saturation, and = 1.0 for uniform liquid saturation. (AlthougB = 1 may not be exactly
correct for real liquid-saturated reservoirs, only thedu@ « B is important for the modeling
examples that follow. So desired differencedBiitan be introduced through differencesyn
In this way we hope to capture the essence of this probleng tisenminimum number of free
parameters.) This summarizes the part of the modeling shihiei same in this example and
the next.

We will now assume that the fluid saturation is uniform thrioowgt the stated model ma-
terial: (1,2). [Notation indicates first layer is liquid filledand second layer is also liquid
filled. The alternative is that some layers are gas filgd (

In Figure 6 there appear to be only two curves for bulk modutus in fact six curves
are plotted here. All three of the drained curves are so ¢twsach other that they cannot be
distinguished on the scale of this plot. Similarly, all thief the undrained curves are equally
indistinguishable.

Figure 7 appears to be both qualitatively and quantitatively similar to Figure 1. But
this time we find the inequality.; > r} is never violated. So there is no doubt that shear
modulus is affected by pore fluids in this system.

Figure 8 shows that the maximum valueR®f- 0.2 occurs around, >~ 0.3. For this case,
4/15 is an upper bound dR, but | know this is not a general result.

Two Distinct Gassmann Materials, Patchy Fluid Saturation

This final set of examples will use the same model framewotk@preceding example. How-
ever, two fluids will be present simultaneously in this cdkthe two fluids @,|) are assumed

to saturate only one or the other types of Gassmann mate¢halswe have a relatively simple
two component model: @, 2). On the other hand, the setup is now general enough to permit
a variety of other possibilities. For example, porous matérmight be saturated with either
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Figure 3: lllustrating the bulk modulus results for the ramdpolycrystals of porous laminates
model for patchy saturation when each grain is composedmtbmstituents: (19(51) =35.0
GPa,ugl) = 4.0 GPa and (2)(52) =35.0 GPa,ugz) = 40.0 GPa. Skempton’s coefficient is
taken to beB = 0.0 for constituent 1 (gas saturated), aéa= 1.0 for constituent 2 (liquid
saturated). The effective stress coefficients for the kgee both given by = 0.75, so

a* = 0.75 also. Porosity does not play a direct role in the catmravhen we are using

B as the fluid substitution parameter. Volume fraction of #@gels varies from 0 to 100%
of constituent number 2. To emphasize the tightness of thepstal (correlated) bounds,
uncorrelated Hashin-Shtrikman bourid§ ¢ on the undrained bulk modulus are also shown.
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Figure 4: lllustrating the shear modulus results for thedoan polycrystals of porous lami-

nates model. Model parameters are the same as in Figure 8tfdnpsaturation) jim2-Fig4
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Figure 5: Plot of the ratidR from equation (24), being the ratio of compliance differesic
due to fluid saturation. These results are for the same medelitbed in Figure 3 for patchy
saturation. The values & should be compared to those predicted by Mavko and Jizbd 199
for very low porosity and flat cracks, whdR= 4/15~ 0.267. We find in contrast that, for

partial and patchy saturatioR can take any positive value, or zergim2-Fig5| [NR]
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Figure 6: lllustrating the bulk modulus results for the ramdpolycrystals of porous laminates
model for homogeneous saturation when each grain is cordpafsevo constituents: (1)
K{ =20.0 GPayu’ = 4.0 GPa and (2K{? = 50.0 GPau!? = 40.0 GPa. Skempton's
coefficient is taken to b& = 0.0 when the system is gas saturated, 8ng 1.0 when the
system is fully liquid saturated. The effective stress fioehts for the layers are, respectively,
o = 0.85 andx® = 0.70. Porosity does not play a direct role in the calculatibren we
are usingB as the fluid substitution parameter. Volume fraction of tyeels varies from 0 to

100% of constituent number 2jim2-Fig6|[NR]
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Figure 7: lllustrating the shear modulus results for thedoan polycrystals of porous lam-
inates model. Model parameters are the same as in Figure lGofoogeneous saturation.
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Figure 8: Plot of the ratidR from equation (24), being the ratio of compliance differendue

to fluid saturation. These results are for the same modetidesidn Figure 6 for homogeneous
saturation. The values & should be compared to those predicted by Mavko and Jizbd {199
for very low porosity and flat cracks, wheR= 4/15~ 0.267. We find in contrast that the
random polycrystals of porous laminates model for the cassidered always haR < 0.20.
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gas or liquid, and the same for porous material 2j, i1, 2g, 21). We could also suppose that
some of the layers have homogeneously rhixed saturation of both liquid and gasg., a
partially rather than patchy saturated layerg,(h, 11, 2g, 2h,2). Although this additional
complication is not a problem for the numerical modeling, fdrge increase in the number of
possible cases needing enumeration becomes a bit too Isorderfor the short presentation
envisioned here. (There is an infinite number of ways thgsestpf materials having homoge-
neously mixed regions could be incorporated.) So we wiligad limit discussion to the two
cases mentioned before: (a) just two types of patchy sauifayers (4, 2), or (b) four types

of patchy saturated layersdll,2g,2). Since the case (b) is expected to be more complex
but not expected to contain any new ideas, we will limit threcdssion further to case (a).

In Figure 9 as in Figure 6, the three drained curves for bulkuhgs are so close together
that they cannot be distinguished on the scale of this plttqagh they can be distinguished
if the plot is magnified). In contrast to Figure 6, the thrednamed bulk modulus curves can
now be distinguished, but they are still quite close togetiiéne undrained curves start out
at the same values as the drained curves because at zerceviohation of constituent 2 the
only fluid in the system is air. Then, as the volume fractiocafistituent 2 increases, we add
liquid up to the point where the final values at full liquid wation are the same as in Fig-
ure 6. Again uncorrelated Hashin-Shtrikman bounds are sHowpurposes of comparison,
as in Figure 3. The Peselnick-Meister-Watt bounds on undchbulk modulus — making
use of the laminated grain/crystal substructure and thgcpgdtalline nature of the overall
reservoir model — clearly are much tighter. Together FigBeand 9 also show that the
polycrystalline-based bounding method produces a greatanwement over the uncorrelated
Hashin-Shtrikman bounds, whose microstructural inforomats limited to volume fraction
data. This result is accomplished without having very dietitknowledge of the spatial cor-
relations, just by using the fact that the local microsuetis layered. Knowledge of local
layering is therefore a very important piece of microstuuat information that has not been
used to greatest advantage in prior applications of bognaiethods for up-scaling purposes.

For Figure 10, the results are not so simple, as the six camnesasll very close to each other.
Undrained curves are always above the corresponding draumees, but in general there is
little separation to be seen here. Figure 11, like Figuré®ws that the shear modulus changes
with saturation are not really tightly coupled to the bulkdntus changes, and especially so
at the lowest volume fractions of liquid, as the changes @aslcompliance are again greater
in magnitude there than the changes in the bulk compliance.

CONCLUSIONS

The “random polycrystals of porous laminates” model introeld and studied here has been
shown to be a useful tool for studying some very difficult t@chl issues concerning how ge-
omechanical constants of reservoirs behave as a functicmarfges of pore fluid and varying
degrees of heterogeneity. This model has the advantageigbabus bounds [the Hashin-
Shtrikman bounds of Peselnick and Meister (1965) and WattReselnick (1980)] on the
geomechanical constants (bulk and shear moduli) are alail&urthermore, due to the re-
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Figure 9: lllustrating the bulk modulus results for the ramdpolycrystals of porous laminates
model for patchy saturation when each grain is composedmtbmstituents: (19(51) =20.0
GPa,ugl) = 4.0 GPa and (2)(52) =50.0 GPa,ugz) = 40.0 GPa. Skempton’s coefficient is
taken to beB = 0.0 for constituent 1 (gas saturated), aéa= 1.0 for constituent 2 (liquid
saturated). The effective stress coefficients for the kyee, respectivelyy® = 0.85 and
«® = 0.70. Porosity does not play a direct role in the calculatidren we are usindd
as the fluid substitution parameter. Volume fraction of @gels varies from 0 to 100% of
constituent number 2. To emphasize the accuracy of the paigd bounds and self-consistent
estimates, uncorrelated Hashin-Shtrikman bougs, on undrained bulk modulus are also

shown. INR]
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Figure 10: lllustrating the shear modulus results for thedoam polycrystals of porous lami-

nates model. Model parameters are the same as in Figure 8ttdrypsaturation| jim2-Fig10
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Figure 11: Plot of the ratid? from equation (24), being the ratio of compliance differesic
due to fluid saturation. These results are for the same meadelitbed in Figure 9 for patchy
saturation. The values & should be compared to those predicted by Mavko and Jizbd {199
for very low porosity and flat cracks, whdR= 4/15~ 0.267. We find in contrast that, for
partial and patchy saturatioR can take any positive value, or zero. Note that the magnitude
of this effect is smaller than in Figure 5, even though therelegf heterogeneity for bulk

modulus is greater herejim2-Figll| [NR]
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fined formulation of these bounds presented here, it is ajssiple to obtain self-consistent
estimates directly from these bounds (Berryman, 2004b5R0Dhis situation is particularly

beneficial as the rigorous bounds then provide immediaterétieal error bars for the self-
consistent estimates — a situation that is sometimes bualnatys true for other effective

medium theories (Berryman, 1995). The model should thezgioove useful for a range of
applications in geomechanics.

The results obtained for the specific application consdi@ere,i.e., pore fluid effects on
shear modulus, show that the pore fluid interaction with @vehear behavior is complicated.
The changes from drained to undrained behavior for sheaulmsdan range from being a
negligible effect (as it is according to Gassmann'’s regaltsnicronomogeneous and isotropic
media) to being a bigger effect than the changes in bulk nusduhder some circumstances
(see Figures 5 and 11 showing that the ratio of complianderdificesR > 1 in some cases).
Influences of pore geometry can also be studied in this médekired, but this complication
was avoided here by parameterizing the fluid effects thrabglise of Skempton’s coefficient
B. All the pore microgeometry effects were thereby hidderhanpresent analysis, but these
could be brought out in future studies of the same and/or ro#msr related systems.

Another related result of some importance to analysis ofigdgr and patchy saturated
systems was obtained in Appendix B. The results are illtestran Figure 12 and show that
deviations from a system satisfying Hill's equation (3) aeet be small if the shear modulus
heterogeneity is large. The analysis does show, howe\atrjftshear modulus variation is
small, then the observed deviations from predictions ofdHquation should also be corre-
spondingly small.

An implicit assumption made throughout the present papéhas the porosity and —
most importantly — the fluid permeability of the geomechahsystem under consideration is
relatively uniform. Then, the pore fluid pressures equaibron essentially the same timescale
throughout the whole system. If this is not true, as it woutd be in a double-porosity
dual-permeability system (Berryman and Wang, 1995), themptesent analysis needs to be
modified to account for the presence of more than one petttmeascale. One direction for
future work along these lines will therefore be focused asitiore complex, but nevertheless
important, problem commonly encountered in real earthrvegs. The random polycrystal
of porous laminates model is flexible enough to allow thio$@troblems to be studied within
a very similar framework.

APPENDIX A: EFFECTIVE STRESS COEFFICIENT AND PARTIAL SATUR ATION

Although Eqg. (20) for the overall volume effective stresefticienta™ is known to be true
for homogeneous pore saturation, we also need to have aspor@ing result here for patchy
saturation. It turns out that the same formula applies foiti@rily patchy saturated media, as
long as there are only two types of solid components. To sh@yd¢onsider

seM \ 1 1 —aM —8Pc -
—sc® )T @ o™ o0/gm —5p™ | (26)
d
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wherese™ ands¢(™ are the change in overall strain and the increment of fluideunin
componenn, wheren = 1,2. [There are also similar formulas for all the overallgedies
with (n) replaced by« for the corresponding effective properties. See Berrynrah\&ang
(1995) for more discussion.] Similarly, the change in olleranfining (external) pressure is
5pc, and the pore pressure change of componeistSpfc”). The porous material coefficients

are defined as in the main teKé”) is the drained bulk modulug,™ is the volume effective
stress coefficient, anB( is Skempton’s coefficient for the-th constituent.

Now the rest of the argument follows that given in Berrymad &hlton (1991) exactly,
since it is not important what fluid is in the pores when tryiagletermine the overall effective
stress coefficient at long times (when fluid pressure in tk&gesy has equilibrated). We simply
postulate the existence of any fixed ratie= sp{”/sp. = sp{?/sp such thate® = 5. If
there is such a ratio (valid at appropriately long timesgntbe* = se) = sel also follows
immediately and we have the condition that must be satisfied:

sp sp
Kc(i:) [1-aWr]= K((:Z:) [1—a®r], (27)

which is just a linear relation for ratio. The result shows that the postulated value dbes
exist unless the denominator of the following expressiamslzes:

_ YKP -1k
= a(l)/K((jl)_a(z)/K((jz)-

(28)

If the numerator of (28) vanishes, the results are triviadaose Gassmann’s microhomo-
geneity condition is then satisfied. Once the valua a8 known, it is easy to see that
se* = sel) = 5@ implies

OPe ] OPe &)
K—:;[l—Ol r]_@[l—a I‘]. (29)

This equation can be rearranged into the form (20), as hasdbesvn previously by Berryman
and Milton (1991).

Arguments similar to the one just given have also been useexample, in the context
of thermal expansion by Benveniste and Dvorak (1990) and@vand Benveniste (1997),
who call this approach “the theory of uniform fields.” It tgraut this method is not restricted
to isotropic constituents as one might infer from the argut®ig@resented here and also in
(Berryman and Milton, 1991).

A somewhat more difficult task than the one just accomplisingdlves deducing the
overall effective pore bulk modulus; as was also done previously by Berryman and Milton
(1991). However, this coefficient does not play any diret# o our present analysis, so we
will leave this exercise to the interested reader.
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APPENDIX B: HILL'S EQUATION AND HETEROGENEOUS POROUS MEDIA

One very common approximation made in studies of partiali¢ patchy saturated porous
media (Norris, 1993; Mavket al, 1998; Johnson, 2001) is based on an assumption that the
estimates are being made over a small enough region thateagonable to take the shear
modulus of the porous frame as constant, even though thenbatkilus over the same small
region may vary. Then, when Gassmann’s results apply ppdhiké shear modulus satisfies
d = Mu, and so remains constant throughout this same region fegardf the distribution

of fluids in the pores. When these assumptions are valid'skitjuation (3) may be used to
compute the effective bulk modulls*®, regardless of anisotropy or of how many constituents
might be present. Furthermore, Hill's equation will applyually to the drainedj and
undrainedK;: bulk moduli of such a poroelastic syste#; for the layers must be substituted
accordingly for the drained and undrained cases.

This approximation based on Hill's equation is very appegphior applications because
of its analytical beauty and overall simplicity, but its useheterogeneous media has never
been given a rigorous justification. In particular, the agstion of variable bulk modulus
in a heterogeneous system having constant shear modulusely ®ne worthy of careful
consideration. It seems more likely (at least to me) thatvér@ations in the bulk modulus
in an earth system will be mimicked by the shear modulus dretefore, that the proposed
method is in truth an oversimplification of this complex peob.

The model system presented hare.(the random polycrystal of porous laminates) offers
one means of checking whether this use of Hill's equationhiiig justified or not.

It turns out that, wheN = 2, Hill's equation (3) can be inverted to giyeas a functional
of K* (Milton, 1997). The result is given by

 3K4Kp (K* =K,
=72k, \k,Zk+ )

(30)

where

2 2 -1
f
Ky=) faKn and K= [2 K—”} . (31)
n=1 n

n=1

So | can do two calculations based on the results presenteddreneterogeneous systems.
We can compute effective shear moduﬁff and 8" by taking the self-consistent values to
be the true values of the drained and undraiked and layer values och(,”) and KS”) as the
values forK;1 andK». The volume fractions are those already used in these edilons. So
everything is known and the computations are straightfaiwd/e want to check whether the
resulting values of effective shear moduﬁ“f andu8™ computed this way are approximately
constant and/or approximately equal to each other. If tmeythen Hill's equation, although
not rigorously appropriate in these systems, neverthelesisl be capturing some of the ob-
served behavior. If this is not true, then the results woelgfowing that great care should be
exercised in using these formulas for analyzing real data.
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My results are illustrated in Figure 12. | find thﬂgﬁ ~ ™. However, except for the
volume fractions near 50%, the values of bptH’s are very different from the actual shear
moduli of the random polycrystals of porous laminates modéle 1.¢™'s are high when the
u*'s are low, and vice versa. This observation is a very stragmptive result, showing that
large errors in analysis can be introduced for systems suittiege that are very heterogeneous
in shear.

On the positive side, itis also clear from Figure 12 thatéf $pread of layer’s is nonzero
but small, then the use of Hill's equation can be well justifidhe error in shear estimates
will never be greater than the spread in the layer shear medidlues, so if this is a small
(though nonzero) number, then the errors will be finite butespondingly small.
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Figure 12: lllustrating computations of an effective sh@adulus obtained by inverting Hill’s
equation for drained;(gff) and for undrained patchy saturatignSf) conditions. Model pa-
rameters are the same as in Figure 9 for patchy saturationcdfoparison the curves for

self-consistent shear modul}; and; from Figure 10 are replotted hergiim2-Fig12| [NR]
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