Next: About this document ...
Up: Berryman: Using knowledge of
Previous: ASSESSMENT AND CONCLUSIONS
-
Archie, G. E., 1942, The electrical resistivity log as an aid in
determining some reservoir characteristics:
Trans.AIME, 146, 54-62.
-
Asaad, Y., 1955, A Study of the Thermal Conductivity of
Fluid-Bearing Porous Rocks,
Ph.D. thesis, University of California - Berkeley, Berkeley, CA.
-
Avellaneda, M., A. V. Cherkaev, K. A. Lurie, and G. W. Milton, 1988,
On the effective conductivity of polycrystals and a three-dimensional
phase-interchange inequality: J. Appl.Phys., 63,
4989-5003.
-
Avellaneda, M., and S. Torquato,1991, Rigorous link between fluid
permeability, electrical conductivity, and relaxation times for
transport in porous media: Phys.Fluids A, 3, 2529-2540.
-
Backus, G. E., 1962, Long-wave elastic anisotropy produced by horizontal
layering: J. Geophys.Res., 67, 4427-4440.
-
Baker, G. A., Jr., 1975,
Essentials of Padé Approximants, Academic Press, San Diego,
CA.
-
Benveniste, Y., 1987, A new approach to the application of
Mori-Tanaka's theory in composite materials:
Mech.Mat., 6, 147-157.
-
Beran, M. J., 1965, Use of the variational approach to determine bounds
for the effective permittivity in random media:
Nuovo Cimento, 38, 771-782.
-
Beran, M. J., 1968,
Statistical Continuum Theories, Wiley, New York, pp.181-256.
-
Beran, M. J., and J. Molyneux, 1966, Use of classical variational
principles to determine bounds for the effective bulk modulus in
heterogeneous media: Quart.Appl.Math., 24, 107-118.
-
Berge, P. A., J. G. Berryman, and B. P. Bonner, 1993, Influence of
microstructure on rock elastic properties:
Geophys.Res.Lett., 20, 2619-2622.
-
Berge, P. A., B. P. Bonner, and J. G. Berryman, 1995, Ultrasonic
velocity-porosity relationships for sandstone analogs made from
fused glass-beads: Geophysics, 60, 108-119.
-
Bergman, D. J., 1976, Calculation of bounds for some average bulk
properties of composite materials: Phys.Rev.B, 14, 4304-4312.
-
Bergman, D. J., 1978, The dielectric constant of a composite material --
A problem of classical physics: Phys.Repts., 43, 378-407.
-
Bergman, D. J., 1980, Exactly solvable microscopic geometries and rigorous
bounds for the complex dielectric constant of a two-component
composite material: Phys.Rev.Lett., 44, 1285-1287.
-
Bergman, D. J., 1982, Rigorous bounds for the complex dielectric constant
of a two-component composite: Ann.Phys., 138, 78-114.
-
Berryman, J. G., 1980a, Long-wavelength propagation in composite
elastic media I. Spherical inclusions:
J. Acoust.Soc.Am., 68, 1809-1819.
-
Berryman, J. G., 1980b, Long-wavelength propagation in composite elastic media
II. Ellipsoidal inclusions:
J. Acoust.Soc.Am., 68, 1820-1831.
-
Berryman, J. G., 1982, Effective medium theory for elastic
composites: in Elastic Wave Scattering and Propagation, edited
by V. K. Varadan and V. V. Varadan, Ann Arbor Science, Ann Arbor,
Michigan, pp.111-129.
-
Berryman, J. G., 1985a, Measurement of spatial correlations functions
using image processing techniques: J. Appl.Phys., 57,
2374-2384.
-
Berryman, J. G., 1985b, Variational bounds on elastic constants for the
penetrable sphere model: J. Phys.D: Appl.Phys., 18,
585-597.
-
Berryman, J. G., 1992, Effective stress for transport properties
of inhomogeneous porous rock: J. Geophys.Res., 97,
17409-17424.
-
Berryman, J. G., 1995, Mixture theories for rock properties:
in Rock Physics and Phase Relations: American Geophysical
Union Handbook of Physical Constants, edited by T. J. Ahrens,
AGU, New York, pp.205-228.
-
Berryman, J. G., 2004a, Poroelastic shear modulus dependence on
pore-fluid properties arising in a model of thin isotropic layers:
Geophys.J. Int., 157, 415-425.
-
Berryman, J. G., 2004b, Bounds on elastic constants of random
polycrystals of laminates: J. Appl.Phys., 96, 4281-4287.
-
Berryman, J. G., 2005a, Thermal conductivity of porous media:
Appl.Phys.Lett., 86, 032905-1-032905-3
(online: January 11, 2005).
-
Berryman, J. G., 2005b, Bounds and estimates for transport coefficients of
random and porous media with high contrasts: J. Appl.Phys.,
97, 063504-1-063504-11.
-
Berryman, J. G., 2005c, Bounds and estimates for elastic constants of random
polycrystals of laminates: Int.J. Solids Structures, 42,
3730-3743.
-
Berryman, J. G., and P. A. Berge, 1996, Critique of explicit schemes for
estimating elastic properties of multiphase composites:
Mech.Materials, 22, 149-164.
-
Berryman, J. G., and G. W. Milton, 1988,
Microgeometry of random composites and porous media:
J. Phys.D: Appl.Phys., 21, 87-94.
-
Bruggeman, D. A. G., 1935,
Berechnung verschiedener physikalischer Konstanten
von heterogenen Substanzen: I. Dielectrizitätskonstanen und
Leitfahigkeiten der Mischkörper aus Isotropen Substanzen:
Ann.Phys. (Leipzig), 24, 636-679.
-
Budiansky, B., 1965, On the elastic moduli of some heterogeneous materials:
J. Mech.Phys.Solids 13, 223-227.
-
Cherkaev, A. V., 2000, Variational Methods for Structural Optimization,
Springer-Verlag, New York, pp.171-212.
-
Christensen, R. M., 1979, Mechanics of Composite Materials,
Wiley Interscience, New York, pp.31-72.
-
Christensen, R. M., 1990,
A critical evaluation for a class of micromechanics models:
J. Mech.Phys.Solids 38, 379-404.
-
Cleary, M. P., I.-W. Chen, and S.-M. Lee, 1980,
Self-consistent techniques for heterogeneous media:
ASCE J. Eng.Mech., 106, 861-887.
-
Ferrari, M., and M. Filiponni, 1991, Appraisal of current
homogenizing techniques for the elastic response of porous and
reinforced glass: J. Am.Ceramic Soc., 74, 229-231.
-
Garboczi, E. J., and J. G. Berryman, 2000, New effective medium
theory for the diffusivity or conductivity of a multi-scale concrete
microstructure model: Concrete Science and Engineering 2,
88-96.
-
Garboczi, E. J., and J. G. Berryman, 2001, New differential effective
medium theory for the linear elastic moduli of a material containing
composite inclusions: Mech.Materials 33, 455-470.
-
Gibiansky, L. V., and G. W. Milton, 1993,
On the effective viscoelastic moduli of two-phase
media. I.Rigorous bounds on the complex bulk modulus:
Proc.Roy.Soc.London A, 440, 163-188.
-
Gibiansky, L. V., G. W. Milton, and J. G. Berryman, 1999,
On the effective viscoelastic moduli of two-phase
media. III.Rigorous bounds on the complex shear modulus in two
dimensions: Proc.Roy.Soc.London A, 455, 2117-2149.
-
Gibiansky, L. V., and S. Torquato, 1995, Rigorous link between the
conductivity and elastic moduli of fibre-reinforced composite
materials:
Phil.Trans.R. Soc.A: Physical Sciences and Engineeering,
353, 243-278.
-
Gubernatis, J. E., and J. A. Krumhansl, 1975, Macroscopic engineering
properties of polycrystalline materials: Elastic properties:
J. Appl.Phys., 46, 1875-1883.
-
Guéguen, Y., and V. Palciaukas, 1994, Introduction to the
Physics of Rocks, Princeton University Press, Princeton, New Jersey,
pp.193-199.
-
Hardy, G. H., J. E. Littlewood, and G. Pólya, 1952,
Inequalities, Cambridge University Press, Cambridge, UK, p.78.
-
Hashin, Z., 1962, The elastic moduli of heterogeneous materials:
J. Appl.Mech., 29, 143-150.
-
Hashin, Z., and S. Shtrikman, 1962, A variational approach to the
theory of the effective magnetic permeability of multiphase materials:
J. Appl.Phys., 33, 3125-3131.
-
Hashin, Z., and S. Shtrikman, 1963a, A variational approach to the
theory of the elastic behavior of multiphase materials:
J. Mech.Phys.Solids, 11, 127-140.
-
Hashin, Z., and S. Shtrikman, 1963b, Conductivity of polycrystals:
Phys.Rev., 130,129-133.
-
Helsing, J., and A. Helte, 1991, Effective conductivity of aggregates
of anisotropic grains: J. Appl.Phys., 69, 3583-3588.
-
Hill, R., 1952, Elastic properties of reinforced solids: Some
theoretical principles: Proc.Phys.Soc.London A, 65,
349-354.
-
Hill, R., 1965, A self-consistent mechanics of composite materials:
J. Mech.Phys.Solids, 13, 213-222.
-
Kirkpatrick, S., 1971, Classical transport in disordered media: Scaling and
effect medium theories: Phys.Rev.Lett., 27, 1722-1725.
-
Kirkpatrick, S., 1973, Percolation and conduction:
Rev.Mod.Phys., 45, 574-588.
-
Korringa, J., R. J. S. Brown, D. D. Thompson, and R. J. Runge,
1979, Self-consistent imbedding and the ellipsoidal model for
porous rocks: J. Geophys.Res., 84, 5591-5598.
-
Korringa, J., and G. A. LaTorraca, 1986, Application of the
Bergman-Milton theory of bounds to the permittivity of rocks:
J. Appl.Phys., 60, 2966-2976.
-
Kuster, G. and M. N. Toksöz, 1974,
Velocity and attenuation of seismic waves in two-phase media:
Part I. Theoretical formulations: Geophysics, 39, 587-606.
-
Landauer, R., 1952,
The electrical resistance of binary metallic mixtures:
J. Appl.Phys., 23, 779-784.
-
McCoy, J. J., 1970, On the displacement field in an elastic medium
with random variations of materials properties:
in Recent Advances in Engineering Science,
Proceedings of the Sixth Annual Meeting of the Society of
Engineering Science, Princeton University, Princeton, New Jersey,
November 11-13, 1968, edited by A. C. Eringen, Gordon and Breach, New
York, pp.235-254.
-
Milton, G. W., 1980, Bounds on the complex dielectric constant of a composite
material: Appl.Phys.Lett., 37, 300-303.
-
Milton, G. W., 1981a, Bounds on the complex permittivity of a two-component
composite material: J. Appl.Phys., 52, 5286-5293.
-
Milton, G. W., 1981b, Bounds on the transport and optical properties
of a two-component composite material:
J. Appl.Phys., 52, 5294-5304.
-
Milton, G. W., 1981c, Bounds on the electromagnetic, elastic, and other
properties of two-component composites: Phys.Rev.Lett.,
46, 542-545.
-
Milton, G. W., 1982, Bounds on the elastic and transport properties of
two-component composites: J. Mech.Phys.Solids, 30, 177-191.
-
Milton, G. W., 1987, Multicomponent composites, electrical networks, and new
types of continued fraction. I.:
Commun.Math.Phys., 111, 281-327.
-
Milton, G. W., 2002, The Theory of Composites,
Cambridge University Press, Cambridge, UK, pp.77-78, 163, 457-498,
580-581.
-
Milton, G. W., and J. G. Berryman, 1997,
On the effective viscoelastic moduli of two-phase
media. II.Rigorous bounds on the complex shear modulus in three
dimensions: Proc.Roy.Soc.London A, 453, 1849-1880.
-
Milton, G. W., and N. Phan-Thien, 1982, New bounds on effective
elastic moduli of two-component materials:
Proc.Roy.Soc.London A, 380, 305-331.
-
Mura, T., 1987, Micromechanics of Defects in Solids,
Kluwer Academic Publishers, Dordrecht, The Netherlands.
-
Nemat-Nasser, S., and M. Hori, 1993,
Micromechanics: Overall Properties of Heterogeneous Materials,
North-Holland, Amsterdam, pp.325-388.
-
Norris, A. N., 1985, A differential scheme for the effective moduli of
composites: Mech.Mater., 4, 1-16.
-
Norris, A. N., 1989, An examination of the Mori-Tanaka effective medium
approximation for multiphase composites:
ASME J. App.Mech., 56, 83-88.
-
Olson, T., and M. Avellaneda, 1992, Effective dielectric and elastic
constants of piezoelectric polycrystals: J. Appl.Phys., 71,
4455-4464.
-
Peselnick, L., and R. Meister, 1965, Variational method of determining
effective moduli of polycrystals: (A) Hexagonal symmetry,
(B) trigonal symmetry:
J. Appl.Phys., 36, 2879-2884.
-
Prager, S., 1969, Improved variational bounds on some bulk properties of a
two-phase random medium: J. Chem.Phys., 50, 4305-4312.
-
Reuss, A., 1929, Berechung der Fliessgrenze von Mischkristallenx
auf Grund der Plastizitätsbedingung für Einkristalle:
Z. Angew.Math.Mech., 9, 49-58.
-
Schulgasser, K., 1983, Sphere assemblage model for polycrystals and
symmetric materials: J. Appl.Phys., 54, 1380-1382.
-
Silnutzer, N. R., 1972,
Effective Constants of Statistically Homogeneous Materials,
Ph.D. thesis, University of Pennsylvania.
-
Simmons, G., and H. F. Wang, 1971,
Single Crystal Elastic Constants and Calculated Aggregate
Properties: A Handbook, MIT Press, Cambridge, Massachusetts, pp.1-300.
-
Stroud, D., G. W. Milton, and B. R. De, 1986, Analytical model for
the dielectric response of brine-saturated rocks:
Phys.Rev.B, 34, 5145-5153.
-
Thomsen, L., 1972, Elasticity of polycrystals and rocks:
J. Geophys.Res., 77, 315-327.
-
Torquato, S., 1980, Microscopic Approach to Transport in
Two-Phase Random Media, Ph.D. thesis, State University of New York
at Stony Brook.
-
Torquato, S., 1985a, Effective electrical conductivity of two-phase
disordered composite media: J. Appl.Phys., 58, 3790-3797.
-
Torquato, S., 1985b, Bulk properties of two-phase disordered media.
V. Effective conductivity of a dilute dispersion of penetrable
spheres: J. Chem.Phys., 83, 4776-4785.
-
Torquato, S., 2002, Random Heterogeneous Materials:
Microstructure and Macroscopic Properties, Springer, New York,
pp.422-423, 598.
-
Torquato, S., and G. Stell, 1982, Microstructure of two-phase
random media. I. The n-point probability functions:
J. Chem.Phys., 77, 2071-2077.
-
Torquato, S., S. Hyun, and A. Donev, 2003, Optimal design of
manufacturable three-dimensional composites with multifunctional
characteristics: J. Appl.Phys., 94, 5748-5755.
-
Voigt, W., 1928, Lehrbuch der Kristallphysik, Teubner, Leipzig.
-
Walpole, L. J., 1969, On the overall elastic moduli of composite
materials: J. Mech.Phys.Solids, 17, 235-251.
-
Watt, J. P., G. F. Davies, and R. J. O'Connell, 1976,
The elastic properties of composite materials:
Rev.Geophys.Space Phys., 14, 541-563.
-
Watt, J. P., and L. Peselnick, 1980, Clarification of the
Hashin-Shtrikman bounds on the effective elastic moduli of
polycrystals with hexagonal, trigonal, and tetragonal symmetries:
J. Appl.Phys., 51, 1525-1531.
-
Wiener, O., 1912,
Die Theorie des Mischkörpers für das Feld
des stationären Strömung. Erste Abhandlung die
Mittelswertsätze für Kraft, Polarisation und Energie:
Abhandlungen der mathematischphysischen Klasse der
Königlich Sächisischen Gesellschaft der
Wissenschagten, 32, 509-604.
-
Wildenschild, D., J. J. Roberts, and E. D. Carlberg, 2000,
On the relationship between microstructure and electrical
and hydraulic properties of sand-clay mixtures:
Geophys.Res.Lett., 27, 3065-3068.
-
Willis, J. R., 1981, Variational and related methods for the overall
properties of composites: in Advances in Applied Mechanics, edited
by C.-S. Yih, Academic Press, New York, pp.1-78.
Next: About this document ...
Up: Berryman: Using knowledge of
Previous: ASSESSMENT AND CONCLUSIONS
Stanford Exploration Project
5/3/2005