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Using knowledge of microstructure to improve estimates and
bounds on elastic constants and transport coefficients in

heterogeneous media

James G. Berryman1

ABSTRACT

The most commonly discussed measures of microstructure in composite materials are the
spatial correlation functions, which in a porous medium measure either the grain-to-grain
correlations, or the pore-to-pore correlations in space. Improved bounds based on this in-
formation such as the Beran-Molyneux bounds for bulk modulus and the Beran bounds for
conductivity are well-known. It is first shown how to make direct use of bounds and spatial
correlation information to provide estimates that always lie between these upper and lower
bounds for any microstructure whenever the microgeometry parameters are known. Then
comparisons are made between these estimates, the bounds, and two new types of esti-
mates. One new estimate for elastic constants makes use of the Peselnick-Meister bounds
(based on Hashin-Shtrikman methods) for random polycrystals of laminates to generate
self-consistent values that always lie between the bounds.A second new type of estimate
for conductivity assumes that measurements of formation factors (of which there are at
least two distinct types in porous media, associated respectively with pores and grains for
either electrical and thermal conductivity) are available, and computes new bounds based
on this information. The paper compares and contrasts thesevarious methods in order to
clarify just what microstructural information — and how accurately that information —
needs to be known in order to be useful for estimating material constants in random and
heterogeneous media.

INTRODUCTION

A wide array of results is available for practical studies ofthe linear elastic constants of
composite solid and/or granular materials, fluid suspensions, and emulsions. These results
range from rigorous bounds such as the Voigt (1928), Reuss (1929), Hill (1952), and Hashin-
Shtrikman (1962; 1963) bounds to the fairly popular and mostly well-justified [for sufficiently
small concentrations of inclusions (Berryman and Berge, 1996)] approximate methods such
as the explicit approximations of Kuster and Toksöz (1974) and Mori and Tanaka (Benveniste,
1987; Ferrari and Filiponni, 1991) and the implicit methodssuch as the differential effective
medium (DEM) method (Clearyet al., 1980; Norris, 1985) and the self-consistent (Hill, 1965;
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Budiansky, 1965) or the coherent potential approximation for elastic composites (Gubernatis
and Krumhansl, 1975; Korringaet al., 1979; Berryman, 1980; 1982). Older reviews (Wattet
al., 1976) and both early (Beran, 1968; Christensen, 1979) and more recent textbooks and re-
search monographs (Nemat-Nasser and Hori, 1993; Cherkaev,2000; Milton, 2002; Torquato,
2002) survey the state of the art. So it might seem that there is little left to be done in this area
of research. However, continuing problems with applications of these methods have included
lack of sufficient information [such as the required spatialcorrelation functions (Torquato,
1980; Torquato and Stell, 1982; Berryman, 1985a)] needed tocompute the most accurate
bounds known and the failure of some of the explicit methods to satisfy the rigorous bounds in
some limiting cases such as three or more constituents (Norris, 1989) or extreme geometries
such as disk-like inclusions (Berryman, 1980). The best implicit schemes, even though they
are known to be realizable and therefore cannot ever violatethe bounds, are often criticized by
some workers (Christensen, 1990) because the microgeometry generated implicitly by these
methods does not represent the true microgeometry with any obvious fidelity. Nevertheless, it
has been shown (Bergeet al., 1993; 1995) that knowing general features of the microgeometry
such as whether one constituent can be classified as the host medium and others the inclusions,
or whether in fact there is no one constituent that serves as the host can be sufficient informa-
tion to decide on a model that can then be used successfully tostudy a class of appropriate
composites (Bergeet al., 1993; 1995; Garboczi and Berryman, 2000; 2001). Some critics also
point out that the iteration or integration schemes required to compute the estimates for im-
plicit schemes are sufficiently more difficult to implement than those of the explicit methods
that workers are often discouraged from trying these approaches for this reason alone.

Virtually all of the improved bounds (i.e., improved beyond the bounds of Hashin and
Shtrikman, which do not make direct use of microstructural information except for the vol-
ume fractions) require some information about the microstructure. But it has not been very
clear just how precisely this information needs to be known in order for it to be useful. The
present work will show for several examples how some generalknowledge of microstructure
can be used in more than one way to generate estimates. And since the predicted properties
(at least in some cases) do not seem to depend too strongly on details beyond those readily
incorporated, it gives some confidence that the methods can be successfully applied to real
materials. One comparison we can make is between predictions and bounds on elastic con-
stants for random polycrystals of laminates and the predictions of improved bounds based on
spatial correlation functions for disks. It is clear that these models should both apply at least
approximately to the same types of random composites, yet the microstructure is assumed
to be organized rather differently. The random polycrystalis an aggegrate of grains, each of
which is a laminate material. These laminated grains are then jumbled together with random
orientations so the overall composite is isotropic, even though the individual grains act like
crystals having hexagonal symmetry. The improved bounds for composites with disk-shaped
inclusions must have a microstructure that is at least crudely the same as the random poly-
crystal, since each layer of an individual grain could be seen as approximately disk-like. So
one quantitative question we can ask is: How closely do thesetwo models agree with each
other, and if they are indeed close in value, what do we learn about the sensitivity of elastic
constants to microstructure? Also, how does this information affect engineering efforts to de-
sign (Cherkaev, 2000; Torquato, 2002) new materials? Or, how does general knowledge of
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the geology of a given region help us to choose good models of the rocks when we need to
interpret our seismic data?

CANONICAL FUNCTIONS AND THE Y-TRANSFORM IN ELASTICITY

Canonical functions

To make progress towards our present goals, it will prove helpful to take advantage of some
observations made earlier about both rigorous bounds and many of the known estimates for
moduli of elastic composites (Berryman, 1982; 1995; Milton, 1987; 2002). In particular, it
is known (Berryman, 1982) that if we introduce certain functionals — similar in analytical
structure to Hill’s formula for the overall bulk modulusK ∗, which is

K ∗ =

[

J
∑

i=1

vi

K i +4µ/3

]−1

−4µ/3, (1)

valid when the shear modulusµ is a uniform constant throughout the medium. HereK i is
the bulk modulus of thei th constituent out ofJ constituents, andvi is the corresponding
volume fraction, with the constraint that

∑J
i=1vi = 1. This form is also similar to the form

of the Hashin-Shtrikman bounds (Hashin and Shtrikman, 1962; 1963) for both bulk and shear
moduli — many of the known formulas for composites can be expressed simply in terms of
these functionals. Specifically, for analysis of effectivebulk modulusK ∗, we introduce

3(β) ≡

[

J
∑

i=1

vi

K i +β

]−1

−β, (2)

while, for the effective shear modulusµ∗, we have

0(θ ) ≡

[

J
∑

i=1

vi

µi + θ

]−1

− θ . (3)

Hereµi is the shear modulus of thei th constituent out ofJ isotropic constituents. The argu-
mentsβ andθ have dimensions of GPa, and are always nonnegative. Both functions increase
monotonically as their arguments increase. Furthermore, when the argument of each func-
tional vanishes, the result is the volume weightedharmonic mean(or Reuss average) of the
corresponding physical property. Similarly, an analysis of the series expansion for each func-
tional at large arguments shows that, in the limit when the arguments go to infinity, the func-
tionals approach the volume weightedmean(or Voigt average) of the corresponding physical
property. We call these expressions the “canonical functions” for elasticity, as results express-
ible in these terms appear repeatedly in the literature — although published results are not
necessarily manipulated into these canonical forms by all authors. The argumentsβ andθ are
called the “transform parameters.”
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TABLE 1. Various bounds on bulk and shear modulus can be expressed in terms of the
canonical functions3(β) and0(θ ). Subscripts± for β and θ are for upper/lower (+/−)
bounds. Subscripts± for the elastic constants imply the highest/lowest (+/−) values of the
quantity present in the composite.2, X, 4, and the averages〈·〉 and〈·〉ζ are all defined in

the text. K R =
〈

K −1
〉−1

, µR =
〈

µ−1
〉−1

, KV = 〈K 〉, andµV = 〈µ〉 are the Reuss and Voigt
averages of the respective moduli.

Bound β− β+ θ− θ+

HS (HS, 1962; Walpole, 1969) 4
3µ−

4
3µ+ 2(K−,µ−) 2(K+,µ+)

BM (Beran and Molyneux, 1966) 4
3

〈

µ−1
〉−1
ζ

4
3 〈µ〉ζ

MS (McCoy, 1970) 1
6 X 1

64−1

MPT (Milton and Phan-Thien, 1982) 1
6 X̂ 1

64̂−1

Rigorous bounds

Some of the rigorous bounds that are expressible in terms of the canonical functions forJ = 2
are listed in TABLE 1. Functions and averages required as definitions for some ofthe more
complex terms in TABLE 1 are:

2(K ,µ) =
µ

6

(

9K +8µ

K +2µ

)

, (4)

and the expressions needed for the McCoy-Silnutzer (MS) bounds (McCoy, 1970; Silnutzer,
1972), which are

X =
[

10µ2
V 〈K 〉ζ +5µV (2KV +3µV ) 〈µ〉ζ

+ (3KV +µV )2 〈µ〉η
]

/(KV +2µV )2,
(5)

4 =
[

10K 2
V

〈

K −1
〉

ζ
+5µV (2KV +3µV )

〈

µ−1
〉

ζ

+ (3KV +µV )2
〈

µ−1
〉

η

]

/(9KV +8µV )2.
(6)

The averages〈M〉 = v1M1 + v2M2, 〈M〉η = η1M1 + η2M2, and 〈M〉ζ = ζ1M1 + ζ2M2 are
defined for any modulusM. The volume fractions arev1,v2, while ζ1,ζ2 andη1,η2 are the mi-
crogeometry parameters or Milton numbers (Milton, 1981; 1982), related to spatial correlation
functions of the composite microstructure. The Voigt averages of the moduli areKV = 〈K 〉
andµV = 〈µ〉. For symmetric cell materials:ζ1 = η1 = v1 for spherical cells,ζ1 = η1 = v2 for
disks, whileζ1 = (v2 +3v1)/4 andη1 = (v2 +5v1)/6 for needles.

Alternative bounds that are at least as tight as the McCoy-Silnutzer (MS) bounds for any
choice of microstructure were given by Milton and Phan-Thien (1982) as

X̂ =
< 3µ >η< 6K +7µ >ζ −5 < µ >2

ζ

< 2K −µ >ζ + < 5µ >η

(7)
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and

4̂ =
N

< 128/K +99/µ >ζ + < 45/µ >η

, (8)

where

N =< 5/µ >ζ < 6/K −1/µ >ζ +
< 1/µ >η< 2/K +21/µ >ζ .

(9)

It has been shown numerically that the two sets of bounds (MS and MPT) using the trans-
form parametersX,4 and X̂,4̂ are nearly indistiguishable for the penetrable sphere model
(Berryman, 1985).

Note that “improved bounds” are not necessarily improved for every choice of volume
fraction, constituent moduli, and microgeometry. It is possible in some cases that “improved
bounds” will actually be less restrictive, than say the Hashin-Shtrikman bounds, for some
range of the parameters. In such cases we obviously prefer touse the more restrictive bounds
when our parameters happen to fall in this range.

Milton (1987; 2002) has shown that, for the commonly discussed case of two-component
composites, the canonical functionals can be viewed as fractional linear transforms with the
argumentsβ and θ of the canonical functionals as the transform variables. Inlight of the
monotonicity properties of the functionals, this point of view is very useful because the prob-
lem of determining estimates of the moduli can then be reduced to that of finding estimates
of the parametersβ andθ . Furthermore, properties of the canonical functions also imply that
excellent estimates of the moduli can be obtained from fairly crude estimates of the transfor-
mation parametersβ andθ . (Recall, for example, that estimates of zero and infinity for these
parameters result in Reuss and Voigt bounds on the moduli.) Milton calls this transformation
procedure theY-transform, whereY stands for one of these transform parameters (i.e., β andθ

in elasticity, or another combination when electrical conductivity and/or other mathematically
analogous properties are being considered).

Estimation schemes based on bounds for elasticity

One very famous approximation scheme for elastic composites is due to Hill (1952). The idea
is to take the known Voigt and Reuss averages of the elastic system stiffnesses or compliances,
and then make direct use of this information by computing either the arithmetic or geometric
mean of these two limiting values. These formulas have been found to be very effective for
fitting real data in a wide variety of circumstances (Simmonsand Wang, 1971; Thomsen,
1972; Watt and Peselnick 1980). Clearly the same basic idea can be applied to any pairs of
bounds for scalars, such as the Hashin-Shtrikman bounds; or, for complex constants, a similar
idea based on finding the center-of-mass of a bounded region in the complex plane could be
pursued (but to date apparently has not been). The advantageof such approaches is that they
can provide the user with just one estimate per choice of volume fraction, while at the same
time requiring no additional information over that contained in the bounds themselves.
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Hill’s concept clearly works just as well, and possibly somewhat better, if we apply it in-
stead — whenever we have an analytical function at our disposal as we do here in the canonical
functions — to the transform variablesβ andθ rather than to the moduliK andµ directly. So
one set of estimates we might test in our examples takes the form

βH ≡
1

2
(β− +β+) and θH ≡

1

2
(θ− + θ+), (10)

where the bounds onβ andθ were already given in TABLE 1, and the averages are just the
arithmetic means. The subscriptH is intended to reference Hill’s contribution to this idea.

Another rather different approach (although still expected to give quite similar results) is
to examine the forms of theβ andθ transform variables in order to determine if some other
estimate that lies between the bounds might suggest itself.One useful tool we can introduce
here is the weighted geometric mean. For example, if we define

µ
ζ

G ≡ µ
ζ1
1 µ

ζ2
2 , (11)

it is well-known (Hardyet al., 1952) that this is a geometric mean and it always lies between
(or on) the corresponding mean〈µ〉ζ and harmonic mean

〈

µ−1
〉−1
ζ

:

〈

µ−1〉−1
ζ

≤ µ
ζ1
1 µ

ζ2
2 ≤ 〈µ〉ζ . (12)

SoβG = 4
3µ

ζ

G is one natural choice we could make for the bulk modulus transform parameter
estimate. This approach has one clear advantage over the usual self-consistent estimates in
that the microstructural information can easily be incorporated this way, whereas the means
of doing so for self-consistent methods usually involves more complicated calculations via
scattering theory (Gubernatis and Krumhansl, 1975; Berryman, 1980). This approach also
provides a formula, rather than an implicit equation requiring an iteration procedure for its
solution, thus eliminating another common criticism of implicit estimators.

Similar results are not as easy to find for the shear modulus bounds. The reason is that
there are either two or three averages that come into play forshear, always including〈·〉ζ and
〈·〉η, while the formulas (5) and (6) also depend on the usual volume averages〈·〉. Since it
is known that the McCoy-Silnutzer bounds are never tighter than those of Milton and Phan-
Thien (1982), we will consider only the Milton and Phan-Thien bounds from here on, since
they have only two types of averages present.

In generalζi andηi differ. But in some cases (spheres and disks, for example) they are the
same. Furthermore, it is easy to show that for any modulusM, we have the result (relevant in
particular to needles) that

〈M〉η −〈M〉ζ = 1
12

[

〈M〉−
〈

M̃
〉]

= 1
12(v1 −v2)(M1 − M2).

(13)

Thus, the differences always vanish for 50−50 concentrations, and furthermore the factor of
1
12 reduces the difference further by an order of magnitude. If we make the approximation that
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〈·〉η ' 〈·〉ζ , this is often a quite reasonable compromise. When this is so, we can then choose
to make the further approximations that

〈M〉ζ ' Mζ

G = Mζ1
1 Mζ2

2 , (14)

and also that

〈

M−1〉

ζ
' M−ζ

G . (15)

Substituting these approximations into the Milton and Phan-Thien bounds (7) and (8), we
find that both transform parameters for the upper and lower bounds are replaced by the same
effective transform parameter:

θ
ζ

G ≡ 2(K ζ

G,µζ

G). (16)

This result provides a unique estimate that will always lie between these bounds.

A somewhat better (i.e., more balanced) approximation is achieved forζi 6= ηi by defining
εi ≡ 1

2(ζi + ηi ). Then, all occurrences of〈µ〉ζ , 〈µ〉η, 〈µ−1〉−1
ζ , and〈µ−1〉−1

η are replaced by
µε

G. The errors introduced now through differencesηi − εi are half those in (13). But new
errors are introduced through the differencesζi − εi . The resulting geometric approximation
turns out to be

θ∗

G = 2(K ζ

G,µε
G), (17)

which still reduces to (16) wheneverηi = ζi . Also note that, ifηi +ζi = 1, thenµε
G = √

µ1µ2.

[Note: If ζi is known butηi is not known (either experimentally or theoretically), Berryman
and Milton (1988) discuss how to use knowledge ofζi to constrain estimates ofηi . However,
we will not pursue this option here.]

To maintain internal consistency of the approximation, we can choose to set

β∗
G =

4

3
µ

ζ

G, (18)

or we could choose instead to useβH from (10). However, we do not expect that these choices
will differ by very much for the bulk modulus estimates.

Elasticity for random polycrystals of laminates

In order to have a more precise model for comparison purposes, and to get a better feeling
for just how much difference it makes whether we model the microstructure very accurately
or not, we will now consider a model material called a “randompolycrystal of laminates.”
Suppose we construct a random polycrystal by packing small bits of a laminate material (i.e.,
a composite layered along a symmetry axis) into a large container in a way so that the axis
of symmetry of the grains appears randomly over all possibleorientations and also such that
no misfit of surfaces (and therefore porosity) is left in the resulting composite. If the ratio
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Figure 1: Schematic illustrating the model of random polycrystals of laminates. Grains
are assumed to fit tightly so there is no misfit porosity. But the shapes of the grains are
not necessarily the same, and the symmetry axes of the grains(three examples are shown
here) are randomly oriented so the overall polycrystal is equiaxed (statistically isotropic).
jim1-laminated_poly_l12[NR]
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of laminate grain size to overall composite is small enough so the usual implicit assumption
of scale separation applies to the composite — but not so small that we are violating the
continuum hypothesis — then we have an example of a random polycrystal of laminates. See
schematic in Figure 1.

The analytical advantage of this model is that the layers canbe composed of the two elastic
constituents in the composites discussed here previously.Furthermore, the elastic behavior of
the laminate material itself can be predicted using well-known exact methods (Backus, 1962).
We will not dwell on these details here, but just make use of the results to be found in many
publications (Berryman, 2004b). The only results needed inthe following are the Reuss and
Voigt averages for the grains, which are 1/K R = 2s11+2s12+4s13+s33 for Reuss in terms of
compliances, or

1

K R−c13
=

1

c11−c66−c13
+

1

c33−c13
, (19)

in terms of stiffness, and

KV = [2(c11+c12)+4c13+c33] /9 (20)

for the Voigt average of bulk modulus. Similarly, the Voigt average for shear of the stiffness
matrix may be written as

µV =
1

5

(

Gv
eff +2c44+2c66

)

. (21)

This expression can be taken as the definition ofGv
eff. Eq. (21) implies thatGv

eff = (c11 +
c33−2c13−c66)/3. In fact,Gv

eff is the energy per unit volume in a grain when a pure uniaxial
shear strain of unit magnitude is applied to the grain along its axis of symmetry (Berryman,
2004a,b). Then, the Reuss average for shear is

µR =
[

1

5

(

1

Gr
eff

+
2

c44
+

2

c66

)]−1

, (22)

which is also a rigorous lower bound on the overall shear modulus of the polycrystal (Hill,
1952). Each laminated grain thus has hexagonal symmetry, sothe product formulas 3K RGv

eff =
3KV Gr

eff =ω+ω−/2= c33(c11−c66)−c2
13 are valid (Berryman, 2004a). The symbolsω± stand

for the quasi-compressional and quasi-uniaxial shear eigenvalues for all the grains.

Once this notation has been established, then it is straightforward to express the Peselnick-
Meister bounds (Peselnick and Meister, 1965) for hexagonalsymmetry as

K ±

P M =
KV (Gr

eff +Y±)

(Gv
eff +Y±)

. (23)

for effective bulk modulusK ∗ of the polycrystal, where

Y± =
G±

6

(

9K± +8G±

K± +2G±

)

. (24)
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The precise values of the parametersG± and K± (being shear and bulk moduli of the HS
isotropic comparison material) were given algorithmically by Watt and Peselnick (1980.) Sim-
ilarly,

1

µ±

P M +Y±

=
1

5

[ 1− A±(KV − K±)

R±(KV − K±)+ Gv
eff +Y±

+
2

c44+Y±

+
2

c66+Y±

]

, (25)

for the effective shear modulusµ∗ of the polycrystal. The meaning ofY± is the same in (23)
and (25). HereA± = −1

K±+4G±/3, B± = 2A±

15 − 1
5G±

, and R± = A±/2B±. These bounds are
of Hashin-Shtrikman type, but were first obtained for hexagonal symmetry by Peselnick and
Meister (1965) with some corrections supplied later by Wattand Peselnick (1980).

Since we now have analytical forms for the bounds in (23)-(25), it seems it should be
possible to arrive at self-consistent formulas (estimatesrelated to the bounds) by making sub-
stitutionsK± → K ∗ andµ± → µ∗, as well asK ±

P M → K ∗ andµ±

P M → µ∗. This procedure
can be followed without difficulty for the bulk modulus bounds in (23). However, for the shear
modulus estimator, we need to take into account a step in the derivation of (25) that restricted
its applicability to a certain curve in the (G±, K±)-plane. Since the self-consistent estimate
will not normally lie on this curve, we need to back up in the analysis presented by Watt and
Peselnick (1980) and take into account a correction term that vanishes along the curve in ques-
tion but not in general. When we do this, and also make use of the self-consistent formula for
the bulk modulusK ∗, which is

K ∗ =
KV (Gr

eff +Y∗)

(Gv
eff +Y∗)

, (26)

we find that the self-consistent estimator for the shear modulusµ∗ is

1

µ∗ +Y∗
=

1

5

[

1− A∗(KV − K ∗)

Gv
eff +Y∗

+
2

c44+Y∗
+

2

c66+Y∗

]

. (27)

The transform variable for these two formulas is justY∗ = 2(K ∗,µ∗), with 2 defined as in
(4).

From the derivation, it is expected that these self-consistent estimates based on the poly-
crystal bounds will always lie between the bounds. In fact, this feature is observed in all the re-
sults from calculations done using these formulas. It can also be shown that the self-consistent
estimator obtained this way is the same as that found by Willis (1981) using different argu-
ments. Furthermore, the results are also in agreement with the self-consistent formulas of
Olson and Avellaneda (1992) for polycrystals composed of spherical grains when their results
for orthorhombic symmetry are specialized to hexagonal symmetry.

Examples

We will now provide some examples of elastic constant boundsand estimates.

Figures 2 and 3 provide some examples of elastic constant bounds and estimates for a sys-
tem having two constituents withK1 = 20, K2 = 50,µ1 = 4, µ2 = 40, all constants measured
in GPa.
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Figure 2: Comparison of (a) the (uncorrelated) bounds of Hashin and Shtrikman (HS±), (b) the
microstructure-based bounds (assuming disk inclusions) of Beran and Molyneaux (BM±) for
bulk modulus, and (c) the random polycrystal bounds of Peselnick and Meister (PM±) assum-
ing that the composite is an aggregate of randomly oriented laminated (hexagonal symmetry)
grains. A self-consistent (SC) estimate based on the Peselnick-Meister bounds lies between
the PM± bounds for both bulk and shear moduli. A new estimator (G) is based on the BM and
MPT bounds and uses a geometric mean approximation in order to incorporate information
contained in the microstructure constantsζi andηi . jim1-GSCblkmd [NR]
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Figure 3: As in Figure 1, but the Milton and Phan-Thien (MPT±) bounds are used instead for
shear modulus. jim1-GSCshrmd[NR]
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The Hashin-Shtrikman (uncorrelated) bounds (HS±) are the outer most bounds for both
bulk and shear modulus. The Beran-Molyneux (BM±) bounds for bulk modulus and the
Milton-Phan-Thien (MPT±) bounds for shear modulus — in both cases the shapes of the
inclusions are assumed to be disk-like — are the next bounds as we move inward. Then the
Peselnick-Meister (PM±) bounds for polycrystals of hexagonal grains are applied tograins
laminated so that their volume fractions of type-1 and type-2 are always the same as that of
the overall composite being considered here. These PM± bounds lie strictly inside the BM±

and MPT± bounds. Then the inner most curve is the SC curve generated asdescribed here
by using the analytical forms of the PM± bounds to construct self-consistent estimates for the
random polycrystal of laminates model. This SC curve is always inside the PM± bounds and
therefore inside all the bounds considered here. Finally, we have the geometric mean estimates
G, based on the improved bounds of BM± and MPT±. These estimates always lie between
these two bounds, but not always inside the PM± bounds. This result shows that the BM and
MPT bounds are allowing for a wider range of microstructuresthan are the PM bounds, which
is entirely reasonable under the circumstances. The main practical observation however is that
the PM±, SC, and G curves (both bounds and estimates) are in fact all very close to each other
(differing by less than 2% maximum for this high contrast example). This fact suggests that
any or all of these curves could be used when designing new composites having preassigned
elastic properties, or for analysis of seismic wave data forinterpretation purposes. The errors
in these predictions would likely be close to the experimental errors in the construction of such
composites and therefore negligible for many, though perhaps not all, practical purposes.

CONDUCTIVITY: CANONICAL FUNCTIONS AND ANALYTIC CONTINUAT ION

Canonical functions

Another topic of broad and continuing interest in the field ofcomposite materials is the study
of heterogeneous conductors, dielectrics, and — for porousmedia — fluid permeability (Be-
ran, 1968; Milton, 2002; Torquato, 2002). Because of the wide range of applications, includ-
ing both thermal and electrical conduction, and the theoretical interest in analysis of critical
phenomena such as percolation thresholds in resistor networks and localization (Kirkpatrick,
1971; 1973), this topic has surely been studied as much or more than any other in the field of
heterogeneous media.

Many results in this field of research can also be expressed interms of canonical functions.
First define

6(σ ) ≡

[

J
∑

i=1

vi

σi +2σ

]−1

−2σ , (28)

whereσi is the conductivity in thei th component, andvi is the corresponding volume fraction,
again having the space filling constraint that

∑J
i=1vi = 1. Hashin-Shtrikman bounds (Hashin

and Shtirkman, 1962) on conductivity for a multicomponent composite material can then be
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expressed as

σ±

H S = 6(σ±), (29)

whereσ± are the largest and smallest values of theJ isotropic conductivities present. These
bounds are generally improvements on the mean and harmonic mean bounds:

σM =
J

∑

i=1

vi σi and σH =

[

J
∑

i=1

vi

σi

]−1

. (30)

Beran (1965; 1968) used variational methods to arrive at improved bounds on conductivity
for two-component media, again based on information in spatial correlation functions. His
results are also expressible in terms of the canonical functions as

σ+

B = 6(〈σ 〉ζ ) (31)

and

σ−

B = 6(〈1/σ 〉−1
ζ ), (32)

whereσ+

B (σ−

B ) is the upper (lower) bound and theζ averages are the same ones we introduced
here previously [following Eq. (6)]. Since some of the same measures of microstructure (in
this case theζi ’s) can be used to bound both conductivity and elastic constants, it has been
noticed before that this fact and similar relations for other systems can be used to produce
various cross-property bounds (Berryman and Milton, 1988;Gibiansky and Torquato, 1995),
thereby measuring one physical property in order to bound another.

Estimation schemes based on bounds for conductivity

The fundamental ideas used earlier to obtain estimates of elastic constants by using the ana-
lytical structure of the bounds (by making informed approximations for the elastic constants)
can again be used for effective conductivity. The ideas are virtually the same, but somewhat
easier to apply since we have only one constant to estimate, not two. Since we are now dealing
with the Beran bounds on two-component media that depend specifically on the average〈·〉ζ ,
we want to define again the geometric mean

σ
ζ

G = σ
ζ1
1 σ

ζ2
2 . (33)

Then we will have an estimator for a new transform variable that lies between the transform
variables of the rigorous bounds according to

〈

σ−1〉−1

ζ
≤ σ

ζ

G ≤ 〈σ 〉ζ . (34)

The properties of the canonical function6 guarantee that

σ−

B ≤ σ ∗
G ≡ 6(σ ζ

G) ≤ σ+

B . (35)
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Conductivity for random polycrystals of laminates

For random polycrystals (see the earlier discussion of the basic model in the second section),
it is most convenient to define a new canonical function:

6X(s) =
[

1

3

(

1

σH +2s
+

2

σM +2s

)]−1

−2s, (36)

where the meanσM =
∑J

i=1vi σi and harmonic meanσH =
[

∑J
i=1

vi
σi

]−1
of the layer con-

stituents are the pertinent conductivities (off-axis and on-axis of symmetry, respectively) in
each layered grain. Then, the Hashin-Shtrikman bounds for the conductivity of the random
polycrystal are

σ±

H SX = 6X(σ±), (37)

whereσ+ = σM andσ− = σH . These bounds are known not to be the most general ones since
they rely on an implicit assumption that the grains are equiaxed. A more general lower bound
that is known to be optimal is due to Schulgasser (1983) and Avellanedaet al. (1988):

σ−

ACL M X = 6X(σ−

ACL M X/4). (38)

Helsing and Helte (1991) have reviewed the state of the art for conductivity bounds for poly-
crystals, and in particular have noted that the self-consistent [or CPA (i.e., coherent potential
approximation)] for the random polycrystal conductivity is given by

σ ∗
C P AX = 6X(σ ∗

C P AX). (39)

It is easy to show (39) always lies between the two rigorous boundsσ−

ACL M X andσ+

H SX, and
also betweenσ−

H SX andσ+

H SX. Note thatσ−

ACL M X andσ−

H SX cross whenσm/σH = 10, with
σ−

ACL M X becoming the superior lower bound for mean/harmonic-mean contrast ratios greater
than 10.

Comparisons of conductivity bounds and estimates

We will now provide some comparisons like those presented inthe previous section for elastic
constant bounds and estimates.

Figure 4 shows a comparison of (a) the correlated bounds of Hashin and Shtrikman (HSX±)
based on the random polycrystal microgeometry, (b) the microstructure-based bounds (assum-
ing disk inclusions) of Beran (B±), (c) the random polycrystal lower bounds of Avellanedaet
al. (1988) [ACLMX−] laminated (hexagonal symmetry) grains. A self-consistent (CPAX)
estimate is based on the random polycrystal microstructure. A new estimator (BG) is based on
the Beran bounds and uses a geometric mean approximation in order to incorporate informa-
tion contained in the microstructure constantsζi .



422 Berryman SEP–120

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

70

80

90

100

Volume Fraction

N
or

m
al

iz
ed

 C
on

du
ct

iv
ity

 (
σ* /σ

1)

BG

B−

B+

CPAX
ACLMX−

HSX−

HSX+

Figure 4: Conductivity comparisons.jim1-volsigmaall [NR]



SEP–120 Microstructure of heterogeneous media 423

Analytical continuation methods

There are other methods for conductivity/permittivity analysis. The Bergman-Milton (Bergman,
1978; 1980; 1982; Milton, 1980; 1981; Korringa and LaTorraca, 1986; Stroudet al., 1986;
Berryman, 1992) analytical approach to understanding somegeneral effective transport coef-
ficient or permittivity — which we take for example to beσ ∗ — of two-component inhomo-
geneous media shows that

σ ∗ = S(σ1,σ2) = σ1S(1,0)+σ2S(0,1)+
∫

∞

0

dyS(y)
1
σ1

+ y
σ2

, (40)

whereS(1,0) andS(0,1) are constants depending only on the geometry andS(y) ≥ 0 is a
resonance density functional also depending only on the geometry. The integral in (40) is
known as a Stieltjes integral (Baker, 1975). This formula istypically derived and used for
the case of complex constants:σ1, σ2, andσ ∗. But we will restrict consideration here – as
Bergman (1978) did in his early work – to pure conductors so that σ1, σ2, andσ ∗ are all real
and nonnegative.

A short derivation of (40) is instructive, so we will presentone now.

Following (for example) Korringa and LaTorraca (1986) we consider the defining equation
for the functionZ(s)

σ ∗ = σ1Z(s), (41)

where

s ≡ σ1/(σ1 −σ2). (42)

Then, Milton (1981) shows [also see Korringa and LaTorraca,1986] that

Z(s) = 1−
N

∑

n=0

An(1−sn)/(s−sn), (43)

where thesn’s are the locations of the poles, and are enumerated in increasing order. TheAn’s
are the residues. These real constants satisfy the following inequalties: 0< An < 1, 0≤ sn < 1,
and

∑

n An ≤ 1. Note thatN might be a very large number in practice, so that it may then be
more convenient to think of turning this sum into an integral. Define a density functional

A(s) ≡
N

∑

n=1

Anδ(s−sn), (44)

whereδ is the Dirac delta function. Then, (43) can be rewitten as

Z(s) = 1− A0/s−
∫ 1

0
dxA(x)(1− x)/(s− x), (45)
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which is so far just a restatement of (43), assuming only thatthere exists a finiteA0 for which
s0 ≡ 0. Substituting (42) into (45) and rearranging, we find

Z(s) = 1− A0 + A0
σ2

σ1
−

∫ 1

0
dxA(x)

(1− x)(σ1 −σ2)

(1− x)σ1 + xσ2
. (46)

We can then symmetrize this expression by adding and subtracting the termxσ2 in the nu-
merator of the displayed ratio inside the integral. Then we can pull out another constant and
finally have the form we want:

Z(s) = [1− A0 −
∫ 1

0
dxA(x)] + A0

σ2

σ1
+

∫ 1

0
dxA(x)

σ2

(1− x)σ1 + xσ2
. (47)

Substituting this back into the original definition (41), wefind the symmetrical result

σ ∗ =
σ1

F1
+

σ2

F2
+

∫ 1

0
dxA(x)

1

(1− x)/σ2 + x/σ1
, (48)

where 1≥ 1/F2 = A0 > 0 and 1> 1/F1 = 1− A0 −
∫ 1

0 dxA(x) ≥ 0, since
∑

∞

n=0 An = A0 +
∫ 1

0 dxA(x) ≤ 1. The Fi ’s are known as “formation factors” (Archie, 1942; Avellandea and
Torquato, 1991).

This equation is not yet in the same form as (40), but it is nevertheless worthwhile to pause
for a moment to consider this form on its own merits. In particular, the first two terms on the
right hand side are exactly what is expected when conductorsare connected in parallel inside
a complex conducting medium. And the remaining integral looks like some sort of weighted
average of conductors connected in series. The first physical analogy (conductors in parallel)
is entirely appropriate. The second one is no doubt an oversimplification of what is happening
in the medium, since the weights in the denominator (i.e., x and 1− x) are not really vol-
ume fractions (even though they do range from 0 to 1), and the density functionalA in the
numerator also contributes important numerical weights depending on the local shapes and in-
terconnectedness of the microstructure of the conductors.This dependence on microstructure
would correspond approximately to the network connectivity in a resistor network, but usually
does not have a perfect analog for most 3D conducting composites.

To complete the derivation of (40), we now need only to make the further substitutions
x = 1/(1+ y) wherey ranges from 0 to∞, and defineS(y) ≡ A(x)/(1+ x). Then, we arrive
finally at precisely (40), having found thatS(1,0)= 1/F1 andS(0,1)= 1/F2. Furthermore,
taking the limitσ1 = σ2 = 1 = σ ∗, we find the useful sumrule

1

F1
+

1

F2
+

∫

∞

0
dy

S(y)

1+ y
= 1. (49)

Clearly, other choices of the integral transform in (48) mayalso be useful. In particular,
taking insteadx = 1/(1− y) is a good choice in preparation for analysis of the resonance
densityS(y) itself, as this transform places it most appropriately on the negative real axis. But
for present purposes either (40) or (48) is a satisfactory choice for study.
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Formation factor bounds

In a porous medium, whenσ2 = const andσ1 varies [as would be expected in a series of electri-
cal conductivity experiments with different conducting fluids — such as brines (Wildenschild
et al., 2000) — in the same pores], then general bounds can be derived from the form of (40).
These bounds [see Berryman (2005a) for the full derivation]are given by

min(L1,L2) ≤ σ ∗(σ1,σ2) ≤ max(L1,L2), (50)

whereL1 andL2 are defined, respectively, by

L1(σ1,σ2) ≡ σ2 +
σ1 −σ2

F1
, (51)

and

L2(σ1,σ2) ≡ σ1 +
σ2 −σ1

F2
. (52)

If one of theσi ’s varies while the other remains constant,L1 and L2 are both straight lines,
crossing whenσ1 = σ2. We call (50) the formation factor bounds. One of them (always
the lower bound for conductivities) often provides nontrivial improvements over the Hashin-
Shtrikman and Beran bounds as we shall demonstrate by example.

The bounds obtained this way are in fact special cases of someearlier bounds by Prager
(1969) and Bergman (1976), as discusssed recently by Milton(2002, pp. 580–581). The ap-
proach as described by Milton is based on Padé approximationmethods (Torquato, 1985a;
Milton, 2002), although the original papers did not couch the analysis in these terms. Besides
the much simpler derivation permitted by direct analysis ofthe Bergman-Milton analytic for-
mulas (Berryman, 2005a). the main technical difference between the results here and those of
Prager and Bergman is that we have implicitly assumed that two distinct (possibly idealized)
formation factors have actually been carefully measured. To do so in practice requires either
extremely high or extremely low conductivities of one or theother conducting component, or it
requires a careful extrapolation process based on multiplemeasurements (Berryman, 2005b).
These assumed direct measurements (or an extrapolation process) are perfectly reasonable
when one or the other component is actually (or nearly) an insulator (electrical or thermal)
[see Guéguen and Palciauskas (1994) for a discussion]. On the other hand, Prager’s approach
differs from this by providing bounds directly from any and all measurements on the same
system as the constituents or choices of physical constantsto be measured are allowed to vary.
Bergman’s method is very similar in this regard to Prager’s.In both cases, these methods were
applied to real constants just as we have done, but generalization to complex constants is also
possible (Milton, 2002).

In our present notation, Prager’s bounds can also be writtenin terms of the canonical
function6. Assuming that two measurements have been made of the formation factors, we
have four bounds from Prager’s results. Two of these are the same as the Wiener (1912)
bounds,i.e., the mean and harmonic mean based on volume fractions. The other two bounds
are given by

σ ∗
P1 = 6(x1σ1) and σ ∗

P2 = 6(x2σ2), (53)
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where

x1 =
v2

2(v1F1 −1)
and x2 =

v1

2(v2F2 −1)
. (54)

Using Hashin-Shtrikman bounds, it is not difficult to show that x1 andx2 are both nonnegative
and bounded above by unity. Also, sinceσ±

H S = 6(σ±), one of Prager’s bounds is always
lower than the lower HS bound, and therefore not an improved bound, so not of interest to us.
Furthermore, the other Prager bound is always lower than theupper HS bound. We show in
the examples that for the case considered here this bound is in fact a useful lower bound on
σ ∗ that has the right asymptotic behavior —i.e., approaching the formation factor bounds for
large ratios of the constituent conductivities.

Similarly, two of the Bergman bounds can be written as

σ ∗

B1 = 6(x1σ1 + (1− x1)σ2) and σ ∗

B2 = 6((1− x2)σ1 + x2σ2), (55)

where x1 and x2 were defined previously in (54). There are two other Bergman bounds,
but these reduce exactly to the HS bounds for the case under consideration here. It is also
clear from the monotonicity of the canonical function6 and the facts 0≤ x1,x2 ≤ 1 that the
Bergman bounds given in (55) must always lie between or on theHS bounds. Furthermore, it
is easy to see also thatσ ∗

P1 ≤ σ ∗
B1 and thatσ ∗

P2 ≤ σ ∗
B2, so Bergman’s lower bound will always

be superior to Prager’s lower bound.

Asaad (1955) performed a series of thermal conductivity measurements on three different
sandstones. He also measured the electrical formation factor of each sample. This data set
is therefore most interesting to us for testing the theory. When the pores are filled with an
electrically conducting fluid, current flows (in saturated sandstone) mostly through the pore
fluid because sand grains are generally poor electrical conductors (Guéguen and Palciauskas,
1994). When the pores are filled instead with air, heat flows mostly through the sand grains
because air is a poor thermal conductor. So the thermal conductivity properties of samples is
quite different from those of electrical conductivity. Butthe microgeometry is still the same
and, therefore, the structure of the equations for thermal conductivity is exactly the same as
in (40). For Asaad’s sandstone sample D, we find thatF D

2 = 3.72 (from thermal conductivity
measurements) andF D

1 = 33.0 (from electrical conductivity measurements). The porosity
of this sample wasφD = 0.126, sox1 ' 0.138 andx2 ' 0.028. With these values known,
we can make comparisons between and among the various theoretical results available to
us. In particular note that sincex2 is quite small,σ ∗

B2 will clearly be very close to (nearly
indistinguishable from) the Hashin-Shtrikman upper boundwhenσ1/σ2 > 1.

The uncorrelated Hashin-Shtrikman bounds (29) apply to this problem, as do the Beran
bounds (31) and (32). To apply the Hashin-Shtrikman bounds we need only the volume frac-
tions, but to apply the Beran bounds we also need some estimate of the microstructure param-
eters (theζi ’s). Sandstones having a low porosity like 0.126 might have fairly round grains,
but the pores themselves will surely not be well-approximated by spheres. So the common
choiceζi = vi is probably not adequate for this problem. A better choice isavailable however,
since the values ofζi andηi have been computed numerically for the penetrable sphere model
(Berryman, 1985b; Torquato, 1985b; 2002). This model microstructure is very much like that
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of a sandstone and, therefore, should prove adequate for ourpresent comparisons. For poros-
ity v1 = 0.126, the penetrable sphere model has the valueζ1 ' 0.472. Since both formation
factors are known for these experimental data, the formation factor (FF±) bounds can also be
applied without difficulty. Figure 3 shows the results. (Note that the units of the conductivity
have been normalized so all the curves cross at unity on this plot in order to make the Figure
universal.)

We will limit this discussion to the regionσ1/σ2 ≥ 1. We find that the formation factor
upper bound is well above the Hashin-Shtrikman upper bound,which is above the Beran bound
as expected. All the bounds cross atσ1/σ2 = 1, as is necessary. The lower bounds have more
complicated behavior. The Beran lower bound is always superior to the Hashin-Shtrikman
lower bound, but they are both quite close together for all values of the ratioσ1/σ2 > 1.
Both bounds are also superior to the lower formation factor bound for values ofσ1/σ2 ratio
close to unity. But, for higher values of contrast in the range σ1/σ2 > 12, these two bounds
become inferior to the formation factor lower bound. This result is expected since it is for
the asymptotic regimes (very high or very low ratios of the conductivities) that one of the FF
bounds tends to become an exact estimate. Neither the Hashin-Shtrikman lower bounds nor the
Beran lower bounds can compete in this regime because they must allow for the possibility that
the more poorly conducting component plays host to the more strongly conducting component.
Measured formation factor values provide new information that largely determines the status
of this important long-range spatial correlation feature (due to the presence or absence of such
a host/inclusion arrangement) throughout the microstructure.

Bergman lower bounds are best for moderate to high values of the contrast ratio, and
they asymptote to the formation factor lower bounds (as do the Prager lower bounds) in the
very high contrast regime. Note that Beran lower bounds can be superior to the Bergman
lower bounds for small contrast ratios, since they use different measures of microstructure (ζi

instead ofFi ).

Figure 5 shows comparisons of (a) the uncorrelated bounds ofHashin and Shtrikman
(HS±), (b) the microstructure-based bounds (assuming penetrable spheres) of Beran (Beran±),
(c) the Padé approximant bounds of Bergman (B±) and Prager (P−), and (d) the new forma-
tion factor (FF±) bounds. Beran upper bounds are always the best ones shown here. Bergman
lower bounds are best for moderate to high values of the contrast ratio, and they asymptote to
the formation factor lower bounds (as do the Prager lower bounds) in the very high contrast
regime. Beran lower bounds can be superior to the Bergman lower bounds for small contrast
ratios. For the sake of universality, units of conductivityhave been normalized so the curves
all cross at unity.

So at high contrast (σ1/σ2 � 1), the Beran upper bound and the Bergman lower bound are
the best (tightest) bounds for this sample sandstone D. For contrast ratios up to 300, we obtain
bounds confining the conductivity to variations less than about a factor of 2, which will often
be quite satisfactory for such difficult, but nevertheless fairly typical, estimation problems.
The use of the formation factor lower bounds together with some of the earlier bounds like
the Hashin-Shtrikman and Beran bounds therefore seems to beone satisfactory solution to
some of the problems of high contrast conductivity estimation noted in the previous section.
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Otherwise, improvements can be made when desired using Prager, Bergman, and also Milton
bounds (Milton, 1981b) [not discussed here]. Although the formation factor lower bounds
are not the best known bounds, they are nevertheless very easy to use and give remarkably
accurate estimates at very high contrasts.

ASSESSMENT AND CONCLUSIONS

The point of the paper has been to study how microstructure, and especially any special knowl-
edge we may have of either quantitative measures or qualitative features of that microstructure,
affects estimates of material constants.

For elasticity, we considered various improvements on the Hashin-Shtrikman bounds such
as the Beran-Molyneux bounds, the McCoy-Silnutzer bounds,and the Milton-Phan-Thien
bounds. We found that knowledge of microstructure can be used very effectively in these
improved bounds. New estimates (not themselves rigorous bounds) can also be formulated
based on the analytical structure of the bounds, and the microstructure parameters can then
be incorporated directly into these estimates in a way so theresulting estimates always satisfy
the bounds. When making comparisons between models based ondisk-like inclusions in a
host medium, and the random polycrystals of laminates model, we found that these models
predict very similar results when there is a relatively small volume fraction of disks present.
But when the volume fraction of disks is large, the bounds do not constrain the results as well,
and so there is still more work to be done relating constants to microstructure in the mid-range
of volume fractions, and generally for high contrast problems.

For electrical conductivity and other related physical constants such as thermal conductiv-
ity and dielectric constant (and in some cases fluid permeability), the microstructure can be
introduced not only through the volume fractions and microstructural parameters as was done
in the case of elasticity, but also through the use of more global measures of microstructure
such as the formation factors. Global measures like theFi ’s that determine the long-range
spatial correlations and connectivity (within our material object of study) — by means of
two fairly common and relatively simple measurements — are very advantageous and clearly
more information of this type is desirable. The case of high contrast composites is always very
important for all types of conductivity estimation and so formation factor bounds and Padé ap-
proximant schemes both provide convenient means of addressing this problem. The formation
factor bounds are elementary in mathematical structure, but nevertheless provide very useful
lower bounds on conductivity and permittivity for high contrast problems.

One general observation is that behavior of high contrast mixtures and composites remains
poorly constrained by most of the methods presented, and more work in that direction is there-
fore still needed. A typical example that always generates high contrast situations is porous
and/or granular media, where the pores may be filled with air;then, both the mechanical and
the transport properties can have a very wide range of variation depending on the details of the
microstructure. Some of the same types of information (suchas formation factors) used here
for studies of transport properties can also be applied to elasticity estimates in porous media
as has been pointed out previously in studies of “cross-property” relationships and bounding
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methods (Berryman and Milton, 1988; Gibiansky and Torquato, 1995) –i.e., estimating one
physical quantity after measuring another. So, one possibility for future progress that has
yet to be explored in very great detail is how the formation factor bounds as well as other
improved bounds on electrical or thermal conductivity may provide useful information about
microstructure that can then be used to constrain further the elastic behavior of the same sys-
tem.
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