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Using knowledge of microstructure to improve estimates and
bounds on elastic constants and transport coefficients in
heterogeneous media

James G. Berryman

ABSTRACT

The most commonly discussed measures of microstructuir@mpasite materials are the
spatial correlation functions, which in a porous medium sue@ either the grain-to-grair
correlations, or the pore-to-pore correlations in spacgroved bounds based on this in-
formation such as the Beran-Molyneux bounds for bulk moslahd the Beran bounds for
conductivity are well-known. Itis first shown how to makesatit use of bounds and spatial
correlation information to provide estimates that alwag$etween these upper and lower
bounds for any microstructure whenever the microgeometrsupeters are known. Then
comparisons are made between these estimates, the boanddsyanew types of esti-
mates. One new estimate for elastic constants makes use Béselnick-Meister bounds
(based on Hashin-Shtrikman methods) for random polyds/siialaminates to generate
self-consistent values that always lie between the boukdgcond new type of estimatg
for conductivity assumes that measurements of formatiotofa (of which there are at
least two distinct types in porous media, associated réispicwith pores and grains for
either electrical and thermal conductivity) are availabled computes new bounds bast
on this information. The paper compares and contrasts tfegais methods in order tg
clarify just what microstructural information — and how acately that information —
needs to be known in order to be useful for estimating mateoiastants in random ang
heterogeneous media.
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INTRODUCTION

A wide array of results is available for practical studiestiodé linear elastic constants of
composite solid and/or granular materials, fluid suspessiand emulsions. These results
range from rigorous bounds such as the Voigt (1928), Re @291 Hill (1952), and Hashin-
Shtrikman (1962; 1963) bounds to the fairly popular and fgagell-justified [for sufficiently
small concentrations of inclusions (Berryman and Berg®6)]9approximate methods such
as the explicit approximations of Kuster and Toksdz (197 ldori and Tanaka (Benveniste,
1987; Ferrari and Filiponni, 1991) and the implicit methaedsh as the differential effective
medium (DEM) method (Cleargt al., 1980; Norris, 1985) and the self-consistent (Hill, 1965;
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Budiansky, 1965) or the coherent potential approximatmrefastic composites (Gubernatis
and Krumhansl, 1975; Korringat al., 1979; Berryman, 1980; 1982). Older reviews (W\étt
al., 1976) and both early (Beran, 1968; Christensen, 1979) ad necent textbooks and re-
search monographs (Nemat-Nasser and Hori, 1993; Cherk@@®; Milton, 2002; Torquato,
2002) survey the state of the art. So it might seem that tisdrigle left to be done in this area
of research. However, continuing problems with appligaiof these methods have included
lack of sufficient information [such as the required spatiairelation functions (Torquato,
1980; Torquato and Stell, 1982; Berryman, 1985a)] needetbtopute the most accurate
bounds known and the failure of some of the explicit methodstisfy the rigorous bounds in
some limiting cases such as three or more constituentsi@N@889) or extreme geometries
such as disk-like inclusions (Berryman, 1980). The beslicitschemes, even though they
are known to be realizable and therefore cannot ever vithatbounds, are often criticized by
some workers (Christensen, 1990) because the microgepgesterated implicitly by these
methods does not represent the true microgeometry with lavipas fidelity. Nevertheless, it
has been shown (Berggal, 1993; 1995) that knowing general features of the microggom
such as whether one constituent can be classified as the datrmand others the inclusions,
or whether in fact there is no one constituent that servelseadst can be sufficient informa-
tion to decide on a model that can then be used successfulliytty a class of appropriate
composites (Berget al., 1993; 1995; Garboczi and Berryman, 2000; 2001). Somesiaiiso
point out that the iteration or integration schemes reguicecompute the estimates for im-
plicit schemes are sufficiently more difficult to implememan those of the explicit methods
that workers are often discouraged from trying these amhre@for this reason alone.

Virtually all of the improved boundsi.€., improved beyond the bounds of Hashin and
Shtrikman, which do not make direct use of microstructunédrimation except for the vol-
ume fractions) require some information about the micuz$tre. But it has not been very
clear just how precisely this information needs to be knoworder for it to be useful. The
present work will show for several examples how some gerkei@alvledge of microstructure
can be used in more than one way to generate estimates. Acelthi@ predicted properties
(at least in some cases) do not seem to depend too stronglgtaitscoeyond those readily
incorporated, it gives some confidence that the methods eaubcessfully applied to real
materials. One comparison we can make is between predcéiod bounds on elastic con-
stants for random polycrystals of laminates and the priedistof improved bounds based on
spatial correlation functions for disks. It is clear thatsh models should both apply at least
approximately to the same types of random composites, gemmilerostructure is assumed
to be organized rather differently. The random polycrysaln aggegrate of grains, each of
which is a laminate material. These laminated grains anm jinabled together with random
orientations so the overall composite is isotropic, everugiin the individual grains act like
crystals having hexagonal symmetry. The improved boundsdmposites with disk-shaped
inclusions must have a microstructure that is at least ¢yutie same as the random poly-
crystal, since each layer of an individual grain could benseeapproximately disk-like. So
one quantitative question we can ask is: How closely do thesemodels agree with each
other, and if they are indeed close in value, what do we lehauiathe sensitivity of elastic
constants to microstructure? Also, how does this inforamadiffect engineering efforts to de-
sign (Cherkaev, 2000; Torquato, 2002) new materials? Qw, dmes general knowledge of



SEP-120 Microstructure of heterogeneous media 409

the geology of a given region help us to choose good modelseofdcks when we need to
interpret our seismic data?

CANONICAL FUNCTIONS AND THE Y-TRANSFORM IN ELASTICITY

Canonical functions

To make progress towards our present goals, it will provefbkto take advantage of some
observations made earlier about both rigorous bounds amy wfahe known estimates for
moduli of elastic composites (Berryman, 1982; 1995; MijtéB87; 2002). In particular, it
is known (Berryman, 1982) that if we introduce certain fumcals — similar in analytical
structure to Hill's formula for the overall bulk modulds*, which is

* & Ui -
K= [Z Ki+4u/3} a3 @

i=1

valid when the shear modulys is a uniform constant throughout the medium. H&reis
the bulk modulus of theth constituent out of] constituents, and; is the corresponding
volume fraction, with the constraint thit:le vi = 1. This form is also similar to the form
of the Hashin-Shtrikman bounds (Hashin and Shtrikman, 198@&3) for both bulk and shear
moduli — many of the known formulas for composites can be esged simply in terms of
these functionals. Specifically, for analysis of effectivtk modulusK *, we introduce

J _ -1
A(B) = [Z Kivl ﬁ} -8, )

i=1

while, for the effective shear modulus’, we have

J s
r () = [ZMZ‘L@} —6. 3)

i=1

Herepu; is the shear modulus of théh constituent out of isotropic constituents. The argu-
mentsp andd have dimensions of GPa, and are always nonnegative. Botlidas increase
monotonically as their arguments increase. Furthermohemvthe argument of each func-
tional vanishes, the result is the volume weightedmonic mear{or Reuss average) of the
corresponding physical property. Similarly, an analy$ithe series expansion for each func-
tional at large arguments shows that, in the limit when tigeigents go to infinity, the func-
tionals approach the volume weighteean(or Voigt average) of the corresponding physical
property. We call these expressions the “canonical funstifor elasticity, as results express-
ible in these terms appear repeatedly in the literature -hoatih published results are not
necessarily manipulated into these canonical forms byuditiaas. The argumenggandd are
called the “transform parameters.”
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TABLE 1. Various bounds on bulk and shear modulus can be expresgedmns of the
canonical functionsA(8) andI'(9). Subscriptst for g andé are for upper/lower-£/—)
bounds. Subscript& for the elastic constants imply the highest/lowesy {) values of the
quantity present in the composit@, X, E, and the averages) and(-), are all defined in
the text. Kg = (K‘l)_l, UR = (M‘l)_l, Ky = (K), anduy = () are the Reuss and Voigt
averages of the respective moduli.

Bound B- B+ 0_ 0+

HS (HS, 1962; Walpole, 1969) T e OK_,uo) O(Ky,uy)
BM (Beran and Molyneux, 1966) g‘(u—l)zl 3 (1),
MS (McCoy, 1970)

MPT (Milton and Phan-Thien, 1982)

el oy
x> X
oo
o) o]
AR

Rigorous bounds

Some of the rigorous bounds that are expressible in ternteafanonical functions fai = 2
are listed in RBLE 1. Functions and averages required as definitions for sorntteeahore
complex terms in ABLE 1 are:

]

and the expressions needed for the McCoy-Silnutzer (MSht#®@McCoy, 1970; Silnutzer,
1972), which are

X =[104Z (K), +5uv (2Ky +3uv) (1),

+ (BKy 4 v)? (1), ] /(Ky 4 2v)?, ®)

E = [1OK\2, (K1), +5pv (2Ky +3uy) (171,

6
+ (3Kv +Mv)2(lfl)n] /(9Ky +8uy)?. ©
The averagegM) = viM1 +v2Mp, (M), = 1M1 +n2M2, and (M), = ;1M1 + oMy are
defined for any modulud. The volume fractions are, v2, while ¢1, ¢2 andn1, 2 are the mi-
crogeometry parameters or Milton numbers (Milton, 198 82)9related to spatial correlation
functions of the composite microstructure. The Voigt agesaof the moduli ar&y = (K)
anduy = (u). For symmetric cell materialgy = n1 = v for spherical cells;; = 1 = v, for
disks, while¢; = (v2 + 3v1)/4 andn1 = (v2 + 5v1)/6 for needles.

Alternative bounds that are at least as tight as the McCbw&ier (MS) bounds for any
choice of microstructure were given by Milton and Phan-TH{E982) as

2 <3u>,<bK+7u >, —5<M>§

7
<2K —p >+ <5u >, "



SEP-120 Microstructure of heterogeneous media 411

and
8= N ®)
T <128/K+99/u >, + <45/u >,
where
N=<5/u><6/K—-1/pu>;+ ©)
<1l/pn>,<2/K+21/u>,;.

It has been shown numerjcglly that the two sets of bounds (MBNMPT) using the trans-
form parameters<,E and X,E are nearly indistiguishable for the penetrable sphere mode
(Berryman, 1985).

Note that “improved bounds” are not necessarily improvadefeery choice of volume
fraction, constituent moduli, and microgeometry. It isgbke in some cases that “improved
bounds” will actually be less restrictive, than say the HaS$htrikman bounds, for some
range of the parameters. In such cases we obviously prefesetthe more restrictive bounds
when our parameters happen to fall in this range.

Milton (1987; 2002) has shown that, for the commonly disedssase of two-component
composites, the canonical functionals can be viewed asidrad linear transforms with the
arguments3 and 6 of the canonical functionals as the transform variablesligit of the
monotonicity properties of the functionals, this point @w is very useful because the prob-
lem of determining estimates of the moduli can then be redltcehat of finding estimates
of the parameterg andf. Furthermore, properties of the canonical functions aigaly that
excellent estimates of the moduli can be obtained fromyfainide estimates of the transfor-
mation parameterg andf. (Recall, for example, that estimates of zero and infinitytifiese
parameters result in Reuss and Voigt bounds on the moduiitprvcalls this transformation
procedure th& -transform, wher& stands for one of these transform parametezs g ando
in elasticity, or another combination when electrical asetd/ity and/or other mathematically
analogous properties are being considered).

Estimation schemes based on bounds for elasticity

One very famous approximation scheme for elastic compositéue to Hill (1952). The idea
is to take the known Voigt and Reuss averages of the elagtiersystiffnesses or compliances,
and then make direct use of this information by computinigezithe arithmetic or geometric
mean of these two limiting values. These formulas have beend to be very effective for
fitting real data in a wide variety of circumstances (Simmand Wang, 1971; Thomsen,
1972; Watt and Peselnick 1980). Clearly the same basic idede applied to any pairs of
bounds for scalars, such as the Hashin-Shtrikman boundsr@omplex constants, a similar
idea based on finding the center-of-mass of a bounded regitireicomplex plane could be
pursued (but to date apparently has not been). The advaotageh approaches is that they
can provide the user with just one estimate per choice ofmeliraction, while at the same
time requiring no additional information over that contadrin the bounds themselves.



412 Berryman SEP-120

Hill's concept clearly works just as well, and possibly sevhat better, if we apply it in-
stead — whenever we have an analytical function at our d&@sswe do here in the canonical
functions — to the transform variablgsandé rather than to the moduK andu directly. So
one set of estimates we might test in our examples takes tire fo

fu=36-+B,) and by =200 +0.), (10)

where the bounds of andé were already given in ABLE 1, and the averages are just the
arithmetic means. The subscrigdtis intended to reference Hill's contribution to this idea.

Another rather different approach (although still expddtegive quite similar results) is
to examine the forms of thg andé transform variables in order to determine if some other
estimate that lies between the bounds might suggest itSek. useful tool we can introduce
here is the weighted geometric mean. For example, if we define

ne = nitu, (12)

it is well-known (Hardyet al, 1952) that this is a geometric mean and it always lies batwee

(or on) the corresponding me#n), and harmonic mea(r/u—l);l:

_n—1
(WY, = pitug < (), (12)

So0fc = %,ug is one natural choice we could make for the bulk modulus foansparameter
estimate. This approach has one clear advantage over taéaeficonsistent estimates in
that the microstructural information can easily be incogbed this way, whereas the means
of doing so for self-consistent methods usually involvegenmomplicated calculations via
scattering theory (Gubernatis and Krumhansl, 1975; Bearyni980). This approach also
provides a formula, rather than an implicit equation reiggiran iteration procedure for its
solution, thus eliminating another common criticism of lrap estimators.

Similar results are not as easy to find for the shear moduluad® The reason is that
there are either two or three averages that come into plastiear, always including), and
(-)n, while the formulas (5) and (6) also depend on the usual velarerages:). Since it
is known that the McCoy-Silnutzer bounds are never tightantthose of Milton and Phan-
Thien (1982), we will consider only the Milton and Phan-Thigounds from here on, since
they have only two types of averages present.

In generak; andn; differ. But in some cases (spheres and disks, for examag)ale the
same. Furthermore, it is easy to show that for any modiMusve have the result (relevant in
particular to needles) that

(M), — (M), = 5 [(M) —(M)]

= & (01— v2)(M1 — My). (13)

Thus, the differences always vanish for-560 concentrations, and furthermore the factor of
%2 reduces the difference further by an order of magnitude elfivake the approximation that
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(-)n = ()¢, this is often a quite reasonable compromise. When this,isreacan then choose
to make the further approximations that

(M), ~ Mg = M{*MS?, (14)
and also that
(M7, ~Mg°. (15)

Substituting these approximations into the Milton and Rhharen bounds (7) and (8), we
find that both transform parameters for the upper and lowentd are replaced by the same
effective transform parameter:

0 = O(K&, 1) (16)
This result provides a unique estimate that will always 8eAeen these bounds.

A somewhat betteri.g., more balanced) approximation is achievedgog n; by defining
& = 3(&i +mi). Then, all occurrences dft);, (1), (M‘l);l, and(u~1); ! are replaced by
ug- The errors introduced now through differenegs- ¢; are half those in (13). But new
errors are introduced through the differen¢es ¢;. The resulting geometric approximation

turns out to be
05 = O(K&, 1), (17)

which still reduces to (16) whenevegr= ¢;. Also note that, ify + ¢ = 1, thenug = /iw1ii2.

[Note: If ¢ is known buty; is not known (either experimentally or theoretically), Benan
and Milton (1988) discuss how to use knowledgeiofo constrain estimates @f. However,
we will not pursue this option here.]

To maintain internal consistency of the approximation, &e choose to set

BE = ~11G, (18)

or we could choose instead to y$g from (10). However, we do not expect that these choices
will differ by very much for the bulk modulus estimates.

Elasticity for random polycrystals of laminates

In order to have a more precise model for comparison purp@sesto get a better feeling
for just how much difference it makes whether we model therosictucture very accurately
or not, we will now consider a model material called a “randpatycrystal of laminates.”
Suppose we construct a random polycrystal by packing smalbba laminate material.g.,

a composite layered along a symmetry axis) into a large awamtan a way so that the axis
of symmetry of the grains appears randomly over all possibEntations and also such that
no misfit of surfaces (and therefore porosity) is left in theulting composite. If the ratio
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7agl

Figure 1: Schematic illustrating the model of random pojgtals of laminates. Grains
are assumed to fit tightly so there is no misfit porosity. B #ihapes of the grains are
not necessarily the same, and the symmetry axes of the dthiree examples are shown
here) are randomly oriented so the overall polycrystal isigeged (statistically isotropic).

|jim1-laminated_poly_I1ZNR]
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of laminate grain size to overall composite is small enouglkhe usual implicit assumption
of scale separation applies to the composite — but not sol sh&lwe are violating the
continuum hypothesis — then we have an example of a randoyenystal of laminates. See
schematic in Figure 1.

The analytical advantage of this model is that the layerdeasomposed of the two elastic
constituents in the composites discussed here previdestyhermore, the elastic behavior of
the laminate material itself can be predicted using wetivkn exact methods (Backus, 1962).
We will not dwell on these details here, but just make use efré@sults to be found in many
publications (Berryman, 2004b). The only results needetienfollowing are the Reuss and
\oigt averages for the grains, which ar&lr = 2511 + 2512+ 4$13+ S33 for Reuss in terms of
compliances, or

1 1 1
= + , (19)
Kr—C13 C€11—Cge—C13 C33—C13
in terms of stiffness, and
Kv = [2(C11+ C12) +4C13+C33] /9 (20)

for the Voigt average of bulk modulus. Similarly, the Voigteaage for shear of the stiffness
matrix may be written as

1
w =g (Gt + 2Ca4+ 2Cg6) - (21)
This expression can be taken as the definitiorcgf. Eq. (21) implies thaGgy = (C11+
C33— 2C13— Cs6)/3. In fact, G is the energy per unit volume in a grain when a pure uniaxial
shear strain of unit magnitude is applied to the grain ales@xis of symmetry (Berryman,
2004a,b). Then, the Reuss average for shear is

11 2 2\]*
prR=|z —+—+—)] , 22
R |:5( eff Caa  Cop )

which is also a rigorous lower bound on the overall shear rusdof the polycrystal (Hill,
1952). Each laminated grain thus has hexagonal symmetityegwoduct formulasBrGg, =
3Ky GLyt = w w_/2=Cz3(C11— Cs6) — Ci5 are valid (Berryman, 2004a). The symbals stand
for the quasi-compressional and quasi-uniaxial sheaneajees for all the grains.

Once this notation has been established, then it is stfaig¥drd to express the Peselnick-
Meister bounds (Peselnick and Meister, 1965) for hexageyrametry as
_ Kv(Ggg+Ya)

Koy = —m o ———=, 23
M (Gg+Ya) )

for effective bulk moduluK * of the polycrystal, where

_ Gy <9K:|:+8G:|:>

Y1
6 Ki+2G4

(24)
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The precise values of the paramet&s and K. (being shear and bulk moduli of the HS

isotropic comparison material) were given algorithmigaly Watt and Peselnick (1980.) Sim-
ilarly,

1 1[ 1-— AL(Ky —Kyg) 2 4 2 ]

pem+Ye 5 Re(Kv—Ki)+Gl+Ye  CaatYe Cogt Y

for the effective shear modulus" of the polycrystal The meaning of; is the same in (23)

and (25). HereAy = —7=—7 +4Gi/3, By = 21A5i andRy = A, /2B.. These bounds are

SG '
of Hashin-Shtrikman type, but were first obtalned for hexageymmetry by Peselnick and

Meister (1965) with some corrections supplied later by \Watt Peselnick (1980).

(25)

Since we now have analytical forms for the bounds in (23);(#5seems it should be
possible to arrive at self-consistent formulas (estimegtged to the bounds) by making sub-
stitutionsK+ — K* andu+ — u*, as well ak 5,, — K* andui,, — u*. This procedure
can be followed without difficulty for the bulk modulus boumid (23). However, for the shear
modulus estimator, we need to take into account a step ingtieadion of (25) that restricted
its applicability to a certain curve in th&(., Ky )-plane. Since the self-consistent estimate
will not normally lie on this curve, we need to back up in thelysis presented by Watt and
Peselnick (1980) and take into account a correction tertrvirashes along the curve in ques-
tion but not in general. When we do this, and also make useeadeh-consistent formula for
the bulk moduluK*, which is

K Gir+ Y™
(Geff + Y )
we find that the self-consistent estimator for the shear hugdwi is
1 111- A*(Ky —K* 2 2
== [ v( v—KT) + ] (27)
w+Y* 5 Ggg+Y* Cas+Y* Cggt+Y*

The transform variable for these two formulas is jW$t= ©(K*, u*), with ® defined as in

(4).

From the derivation, it is expected that these self-coastststimates based on the poly-
crystal bounds will always lie between the bounds. In fdws fieature is observed in all the re-
sults from calculations done using these formulas. It can laé shown that the self-consistent
estimator obtained this way is the same as that found by 8\(ill881) using different argu-
ments. Furthermore, the results are also in agreement hétlself-consistent formulas of
Olson and Avellaneda (1992) for polycrystals composed bégpal grains when their results
for orthorhombic symmetry are specialized to hexagonalsgiry.

Examples

We will now provide some examples of elastic constant boamdsestimates.

Figures 2 and 3 provide some examples of elastic constandsand estimates for a sys-
tem having two constituents witk; = 20, Ko = 50, u1 = 4, u2 = 40, all constants measured
in GPa.
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Figure 2: Comparison of (a) the (uncorrelated) bounds ohiteand Shtrikman (HS), (b) the
microstructure-based bounds (assuming disk inclusicihnBemn and Molyneaux (BM) for
bulk modulus, and (c) the random polycrystal bounds of Péasleind Meister (PM) assum-

ing that the composite is an aggregate of randomly orierteuated (hexagonal symmetry)
grains. A self-consistent (SC) estimate based on the Rekeateister bounds lies between

the PM" bounds for both bulk and shear moduli. A new estimator (Gaisell on the BM and
MPT bounds and uses a geometric mean approximation in cvdacoérporate information
contained in the microstructure constantands;. |jim1-GSCblkmd [NR]
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The Hashin-Shtrikman (uncorrelated) bounds {H&re the outer most bounds for both
bulk and shear modulus. The Beran-Molyneux (BVbounds for bulk modulus and the
Milton-Phan-Thien (MPT) bounds for shear modulus — in both cases the shapes of the
inclusions are assumed to be disk-like — are the next bousidgeamove inward. Then the
Peselnick-Meister (PM) bounds for polycrystals of hexagonal grains are appliegréons
laminated so that their volume fractions of type-1 and t@p@e always the same as that of
the overall composite being considered here. Thes& Bdunds lie strictly inside the B¥
and MPT bounds. Then the inner most curve is the SC curve generatédsasibed here
by using the analytical forms of the PiMbounds to construct self-consistent estimates for the
random polycrystal of laminates model. This SC curve is génaside the PNt bounds and
therefore inside all the bounds considered here. Finathhawve the geometric mean estimates
G, based on the improved bounds of BMnd MPT:. These estimates always lie between
these two bounds, but not always inside the®Pounds. This result shows that the BM and
MPT bounds are allowing for a wider range of microstructuhes are the PM bounds, which
is entirely reasonable under the circumstances. The maatipal observation however is that
the PM", SC, and G curves (both bounds and estimates) are in factrgltlose to each other
(differing by less than 2% maximum for this high contrastrepée). This fact suggests that
any or all of these curves could be used when designing nevwpasites having preassigned
elastic properties, or for analysis of seismic wave datanfi@rpretation purposes. The errors
in these predictions would likely be close to the experiraksrtrors in the construction of such
composites and therefore negligible for many, though pesimet all, practical purposes.

CONDUCTIVITY: CANONICAL FUNCTIONS AND ANALYTIC CONTINUAT  ION

Canonical functions

Another topic of broad and continuing interest in the field&domposite materials is the study
of heterogeneous conductors, dielectrics, and — for ponoedia — fluid permeability (Be-
ran, 1968; Milton, 2002; Torquato, 2002). Because of theewahge of applications, includ-
ing both thermal and electrical conduction, and the themakinterest in analysis of critical
phenomena such as percolation thresholds in resistor netvaad localization (Kirkpatrick,
1971; 1973), this topic has surely been studied as much ce than any other in the field of
heterogeneous media.

Many results in this field of research can also be expresseedrrs of canonical functions.
First define

J _ -1
(o) = [Z - 1'26} 20, (28)

i=1

whereo; is the conductivity in théth component, ang is the corresponding volume fraction,
again having the space filling constraint t@le vi = 1. Hashin-Shtrikman bounds (Hashin
and Shtirkman, 1962) on conductivity for a multicomponemiposite material can then be
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expressed as
ois= Z(ow), (29)

whereo are the largest and smallest values of shisotropic conductivities present. These
bounds are generally improvements on the mean and harmeaic bounds:

J J -1
oM = Zvi o and OH = |:Z ﬂi| . (30)
i=1

n gj
i=1 "

Beran (1965; 1968) used variational methods to arrive atongal bounds on conductivity
for two-component media, again based on information iniagpedrrelation functions. His
results are also expressible in terms of the canonical inmets

og =2((0);) (31)
and
og = Z((1/0) ), (32)

whereog (o) is the upper (lower) bound and theaverages are the same ones we introduced
here previously [following Eg. (6)]. Since some of the sameasures of microstructure (in
this case the;’s) can be used to bound both conductivity and elastic coistat has been
noticed before that this fact and similar relations for otegstems can be used to produce
various cross-property bounds (Berryman and Milton, 1988jansky and Torquato, 1995),
thereby measuring one physical property in order to boudthen.

Estimation schemes based on bounds for conductivity

The fundamental ideas used earlier to obtain estimatessfielconstants by using the ana-
lytical structure of the bounds (by making informed appnoadions for the elastic constants)
can again be used for effective conductivity. The ideas ateally the same, but somewhat

easier to apply since we have only one constant to estimaitéyn. Since we are now dealing

with the Beran bounds on two-component media that deperuifiepdly on the averagé),,

we want to define again the geometric mean
og = 07los’. (33)

Then we will have an estimator for a new transform variabég ties between the transform
variables of the rigorous bounds according to

_1 -1
(0 1)§ < o*é <(o)¢- (34)
The properties of the canonical functi@hguarantee that

og <06 = E(Gé) <og. (35)
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Conductivity for random polycrystals of laminates

For random polycrystals (see the earlier discussion of #séclhmodel in the second section),
it is most convenient to define a new canonical function:

1 1 2 -1
Ex(9) = |:§ <GH +2$+0M +2$)] — 2 (36)

where the meaay = Y, vioi and harmonic meany = [Zleg—:} ' of the layer con-
stituents are the pertinent conductivities (off-axis andaais of symmetry, respectively) in
each layered grain. Then, the Hashin-Shtrikman boundshéconductivity of the random
polycrystal are

UI:—|ESX = Xx(o1), (37)

whereo, = oy ando_ = o. These bounds are known not to be the most general ones since
they rely on an implicit assumption that the grains are eq@daA more general lower bound
that is known to be optimal is due to Schulgasser (1983) ardl#vedeet al. (1988):

oacLmx = 2x(@acLmx/4)- (38)

Helsing and Helte (1991) have reviewed the state of the addnductivity bounds for poly-
crystals, and in particular have noted that the self-coesigor CPA {.e., coherent potential
approximation)] for the random polycrystal conductivisygiven by

ocpax = Zx(0¢pax)- (39)

It is easy to show (39) always lies between the two rigorousteo y| yx andoisy, a_nd
also betweemr,;_sx anda,jsx._ Note thato | yx andoy gy cross wherry /oy = 10, with

0 acLmx Pecoming the superior lower bound for mean/harmonic-meairast ratios greater
than 10.

Comparisons of conductivity bounds and estimates

We will now provide some comparisons like those presentelddrprevious section for elastic
constant bounds and estimates.

Figure 4 shows a comparison of (a) the correlated boundsstiiHand Shtrikman (HSX)
based on the random polycrystal microgeometry, (b) theastoncture-based bounds (assum-
ing disk inclusions) of Beran (B), (c) the random polycrystal lower bounds of Avellaneda
al. (1988) [ACLMX™] laminated (hexagonal symmetry) grains. A self-consis{@irAX)
estimate is based on the random polycrystal microstrucfurew estimator (8) is based on
the Beran bounds and uses a geometric mean approximatiedento incorporate informa-
tion contained in the microstructure constants
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Analytical continuation methods

There are other methods for conductivity/permittivity lses. The Bergman-Milton (Bergman,
1978; 1980; 1982; Milton, 1980; 1981; Korringa and LaToaat986; Stroudkt al., 1986;
Berryman, 1992) analytical approach to understanding sgpeneral effective transport coef-
ficient or permittivity — which we take for example to b& — of two-component inhomo-
geneous media shows that

o* = S(01,02) = 015(1,0)+ 0250, 1)+ f()oo di)’/s(yl), (40)

where §(1,0) andS(0, 1) are constants depending only on the geometry &yl > 0 is a
resonance density functional also depending only on thenggg. The integral in (40) is
known as a Stieltjes integral (Baker, 1975). This formuléyjsically derived and used for
the case of complex constantsi, o>, ando*. But we will restrict consideration here — as
Bergman (1978) did in his early work — to pure conductors sbdh, oo, ando* are all real
and nonnegative.

A short derivation of (40) is instructive, so we will presemie now.

Following (for example) Korringa and LaTorraca (1986) wesider the defining equation
for the functionZ(s)

o =01Z(S), (42)
where
SEOl/(Gl—Gz). (42)

Then, Milton (1981) shows [also see Korringa and LaTorra@86] that

N
Z()=1-) A(l-s)/(s—%), (43)
n=0

where thes,’s are the locations of the poles, and are enumerated inaetrg order. Thé\,'s

are the residues. These real constants satisfy the folgpwegualties: 6< A, <1,0<s, <1,
and)_, A, < 1. Note thatN might be a very large number in practice, so that it may then be
more convenient to think of turning this sum into an integixfine a density functional

N
AS) = And(s—sn), (44)

n=1

wheres is the Dirac delta function. Then, (43) can be rewitten as

Z(s)=1—- Ao/s—fo1 dxA(X)(1—x)/(s—Xx), (45)
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which is so far just a restatement of (43), assuming onlyttiere exists a finitéy for which
s = 0. Substituting (42) into (45) and rearranging, we find

(1—Xx)(01—02)
(1—x)o1+x02"

1

a$ﬂf%+mg—/dmn) (46)
o1 Jo

We can then symmetrize this expression by adding and stibgate termxos in the nu-

merator of the displayed ratio inside the integral. Then e jull out another constant and

finally have the form we want:

1 1
lop) 02

Z()=[1—Ao— | dxAX)]+ —+f dxA(X : 47
O =11—ro— [ deatol+ A%+ [Caxapoz B, @)

Substituting this back into the original definition (41), ¥ired the symmetrical result
—|— + / dXxA(X) ! (48)

of=—=
(1-x)/o2+x/o1’

where 1> 1/F, = Ap>0and 1> 1/F; =1— Ao—fol dx4(X) > 0, sinced o2 g An= Ao+
foldx,A(x) < 1. TheF’s are known as “formation factors” (Archie, 1942; Avellaaand
Torquato, 1991).

This equation is not yet in the same form as (40), but it is rteedess worthwhile to pause
for a moment to consider this form on its own merits. In pafac, the first two terms on the
right hand side are exactly what is expected when conduatersonnected in parallel inside
a complex conducting medium. And the remaining integraksoltke some sort of weighted
average of conductors connected in series. The first pHysiedogy (conductors in parallel)
is entirely appropriate. The second one is no doubt an avetdication of what is happening
in the medium, since the weights in the denominai@r., (x and 1— x) are not really vol-
ume fractions (even though they do range from 0 to 1), and é&msity functionalA in the
numerator also contributes important numerical weighpedding on the local shapes and in-
terconnectedness of the microstructure of the conducidns.dependence on microstructure
would correspond approximately to the network connegtivita resistor network, but usually
does not have a perfect analog for most 3D conducting congsosi

To complete the derivation of (40), we now need only to maleefthither substitutions
x =1/(1+y) wherey ranges from 0 teo, and define$(y) = A(x)/(1+ x). Then, we arrive
finally at precisely (40), having found th&1,0)= 1/F; and S(0,1)= 1/F,. Furthermore,
taking the limito; = 02 = 1 = o*, we find the useful sumrule

11 /mdﬂﬁ

==+
Fi R 1+y

=1. (49)
Clearly, other choices of the integral transform in (48) natégo be useful. In particular,
taking insteadx = 1/(1 —y) is a good choice in preparation for analysis of the resomanc
density4(y) itself, as this transform places it most appropriatelyl@riegative real axis. But

for present purposes either (40) or (48) is a satisfactooycetfor study.
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Formation factor bounds

In a porous medium, whe = const andr; varies [as would be expected in a series of electri-
cal conductivity experiments with different conductingdlsl— such as brines (Wildenschild
et al, 2000) — in the same pores], then general bounds can be ddrora the form of (40).
These bounds [see Berryman (2005a) for the full derivatma]given by

min(L1,L2) < o*(01,02) < max(L1,Ly), (50)
wherelL; andL, are defined, respectively, by
L]_(G]_,GQ) =02+ . 02, (51)
F1
and
LQ(G]_,GQ) EG]_—{-GZEZG:L (52)

If one of theo;’s varies while the other remains constant, and L, are both straight lines,
crossing whero; = 02. We call (50) the formation factor bounds. One of them (akvay
the lower bound for conductivities) often provides non#ivmprovements over the Hashin-
Shtrikman and Beran bounds as we shall demonstrate by egampl

The bounds obtained this way are in fact special cases of santier bounds by Prager
(1969) and Bergman (1976), as discusssed recently by Mig662, pp. 580-581). The ap-
proach as described by Milton is based on Padé approximat&thods (Torquato, 1985a;
Milton, 2002), although the original papers did not couah dnalysis in these terms. Besides
the much simpler derivation permitted by direct analysithef Bergman-Milton analytic for-
mulas (Berryman, 2005a). the main technical differencesben the results here and those of
Prager and Bergman is that we have implicitly assumed thatigtinct (possibly idealized)
formation factors have actually been carefully measureddd'so in practice requires either
extremely high or extremely low conductivities of one or tileer conducting component, or it
requires a careful extrapolation process based on muhiplesurements (Berryman, 2005b).
These assumed direct measurements (or an extrapolatioerggjoare perfectly reasonable
when one or the other component is actually (or nearly) anlatsr (electrical or thermal)
[see Guéguen and Palciauskas (1994) for a discussion]. éuthier hand, Prager’s approach
differs from this by providing bounds directly from any anillmeasurements on the same
system as the constituents or choices of physical congtabtsmeasured are allowed to vary.
Bergman’s method is very similar in this regard to Pragén$oth cases, these methods were
applied to real constants just as we have done, but geretiahzo complex constants is also
possible (Milton, 2002).

In our present notation, Prager's bounds can also be writtdarms of the canonical
function £. Assuming that two measurements have been made of the fomfattors, we
have four bounds from Prager’s results. Two of these are dheesas the Wiener (1912)
bounds,.e., the mean and harmonic mean based on volume fractions. Tibetwto bounds
are given by

0;1 = ¥(xy01) and 0;2 = X (x202), (53)
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where

- 2(w1F1-1)

U1

X —_—
! 2(02F5— 1)

and xp= (54)
Using Hashin-Shtrikman bounds, it is not difficult to showattky andx; are both nonnegative
and bounded above by unity. Also, simﬁs = ¥(o04), one of Prager’s bounds is always
lower than the lower HS bound, and therefore not an improwesht), so not of interest to us.
Furthermore, the other Prager bound is always lower thampper HS bound. We show in
the examples that for the case considered here this boundasti a useful lower bound on
o* that has the right asymptotic behavior i-e., approaching the formation factor bounds for

large ratios of the constituent conductivities.

Similarly, two of the Bergman bounds can be written as
0;1 = E(X]_G]_ + (1 — X]_)GQ) and 0;2 = E((l — X2)01 + X202), (55)

where x; and x, were defined previously in (54). There are two other Bergmaunts,
but these reduce exactly to the HS bounds for the case undsidesation here. It is also
clear from the monotonicity of the canonical functi@nand the facts G< x1,x> < 1 that the
Bergman bounds given in (55) must always lie between or otdi®ounds. Furthermore, it
is easy to see also that, < o3, and thabr 5, < o3,, SO Bergman’s lower bound will always
be superior to Prager’s lower bound.

Asaad (1955) performed a series of thermal conductivitysmesments on three different
sandstones. He also measured the electrical formatioarfatieach sample. This data set
is therefore most interesting to us for testing the theoryhewthe pores are filled with an
electrically conducting fluid, current flows (in saturateshdstone) mostly through the pore
fluid because sand grains are generally poor electricalumiocs (Guéguen and Palciauskas,
1994). When the pores are filled instead with air, heat flowstipohrough the sand grains
because air is a poor thermal conductor. So the thermal ctindy properties of samples is
quite different from those of electrical conductivity. Bise microgeometry is still the same
and, therefore, the structure of the equations for therrmadlactivity is exactly the same as
in (40). For Asaad’s sandstone sample D, we find #fat= 3.72 (from thermal conductivity
measurements) anléllD = 33.0 (from electrical conductivity measurements). Theopity
of this sample wagP = 0.126, sox; ~ 0.138 andx, ~ 0.028. With these values known,
we can make comparisons between and among the various tihabresults available to
us. In particular note that since is quite small,o3, will clearly be very close to (nearly
indistinguishable from) the Hashin-Shtrikman upper bowheno; /o> > 1.

The uncorrelated Hashin-Shtrikman bounds (29) apply ® phoblem, as do the Beran
bounds (31) and (32). To apply the Hashin-Shtrikman bourels&ed only the volume frac-
tions, but to apply the Beran bounds we also need some estoh#te microstructure param-
eters (the;;’s). Sandstones having a low porosity like 0.126 might hamyf round grains,
but the pores themselves will surely not be well-approxeddiy spheres. So the common
choiceg; = v; is probably not adequate for this problem. A better choi@v&lable however,
since the values af andn; have been computed numerically for the penetrable sphedelmo
(Berryman, 1985b; Torquato, 1985b; 2002). This model nsicteture is very much like that
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of a sandstone and, therefore, should prove adequate f@resent comparisons. For poros-
ity v1 = 0.126, the penetrable sphere model has the value0.472. Since both formation
factors are known for these experimental data, the formd#iotor (FF) bounds can also be
applied without difficulty. Figure 3 shows the results. (Bithat the units of the conductivity
have been normalized so all the curves cross at unity on kbisrporder to make the Figure
universal.)

We will limit this discussion to the regioa; /o2 > 1. We find that the formation factor
upper bound is well above the Hashin-Shtrikman upper bowvhath is above the Beran bound
as expected. All the bounds crossato, = 1, as is necessary. The lower bounds have more
complicated behavior. The Beran lower bound is always sop&y the Hashin-Shtrikman
lower bound, but they are both quite close together for dlies of the ratioo;/o> > 1.
Both bounds are also superior to the lower formation factamil for values o1 /0> ratio
close to unity. But, for higher values of contrast in the mag/o2 > 12, these two bounds
become inferior to the formation factor lower bound. Thisuleis expected since it is for
the asymptotic regimes (very high or very low ratios of thadwctivities) that one of the FF
bounds tends to become an exact estimate. Neither the H&bhilkman lower bounds nor the
Beran lower bounds can compete in this regime because th&tyahhaw for the possibility that
the more poorly conducting component plays host to the ntovagy conducting component.
Measured formation factor values provide new informatiuet targely determines the status
of this important long-range spatial correlation featuheg to the presence or absence of such
a host/inclusion arrangement) throughout the microstirect

Bergman lower bounds are best for moderate to high valueBeotontrast ratio, and
they asymptote to the formation factor lower bounds (as édPtager lower bounds) in the
very high contrast regime. Note that Beran lower bounds @superior to the Bergman
lower bounds for small contrast ratios, since they use m@diffemeasures of microstructurg (
instead off).

Figure 5 shows comparisons of (a) the uncorrelated bound$ashin and Shtrikman
(HS%), (b) the microstructure-based bounds (assuming penespheres) of Beran (Bera)
(c) the Padé approximant bounds of Bergma#)(Bnd Prager (P), and (d) the new forma-
tion factor (FF) bounds. Beran upper bounds are always the best ones shosvrBeegman
lower bounds are best for moderate to high values of the asintatio, and they asymptote to
the formation factor lower bounds (as do the Prager lowentshin the very high contrast
regime. Beran lower bounds can be superior to the BergmagrIbaunds for small contrast
ratios. For the sake of universality, units of conductingve been normalized so the curves
all cross at unity.

So at high contrasbf /o> > 1), the Beran upper bound and the Bergman lower bound are
the best (tightest) bounds for this sample sandstone D.dfrast ratios up to 300, we obtain
bounds confining the conductivity to variations less thapugla factor of 2, which will often
be quite satisfactory for such difficult, but neverthelesisgly typical, estimation problems.
The use of the formation factor lower bounds together witmes®f the earlier bounds like
the Hashin-Shtrikman and Beran bounds therefore seems ¢tmdaatisfactory solution to
some of the problems of high contrast conductivity estiorahoted in the previous section.
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Otherwise, improvements can be made when desired using?EBg&gman, and also Milton
bounds (Milton, 1981b) [not discussed here]. Although themiation factor lower bounds
are not the best known bounds, they are nevertheless veyytease and give remarkably
accurate estimates at very high contrasts.

ASSESSMENT AND CONCLUSIONS

The point of the paper has been to study how microstructaceeapecially any special knowl-
edge we may have of either quantitative measures or quedifatatures of that microstructure,
affects estimates of material constants.

For elasticity, we considered various improvements on thghth-Shtrikman bounds such
as the Beran-Molyneux bounds, the McCoy-Silnutzer bouadsl the Milton-Phan-Thien
bounds. We found that knowledge of microstructure can be usey effectively in these
improved bounds. New estimates (not themselves rigorouads) can also be formulated
based on the analytical structure of the bounds, and theostracture parameters can then
be incorporated directly into these estimates in a way soethd@ting estimates always satisfy
the bounds. When making comparisons between models baséidlehke inclusions in a
host medium, and the random polycrystals of laminates madeifound that these models
predict very similar results when there is a relatively dnaalume fraction of disks present.
But when the volume fraction of disks is large, the boundsataconstrain the results as well,
and so there is still more work to be done relating constantsitrostructure in the mid-range
of volume fractions, and generally for high contrast praide

For electrical conductivity and other related physicalstants such as thermal conductiv-
ity and dielectric constant (and in some cases fluid pernfisgbthe microstructure can be
introduced not only through the volume fractions and mittadural parameters as was done
in the case of elasticity, but also through the use of morealmeasures of microstructure
such as the formation factors. Global measures likeRfgethat determine the long-range
spatial correlations and connectivity (within our matkobject of study) — by means of
two fairly common and relatively simple measurements — any edvantageous and clearly
more information of this type is desirable. The case of hightiast composites is always very
important for all types of conductivity estimation and somf@ation factor bounds and Padé ap-
proximant schemes both provide convenient means of addgetsss problem. The formation
factor bounds are elementary in mathematical structurtendéertheless provide very useful
lower bounds on conductivity and permittivity for high coadt problems.

One general observation is that behavior of high contrastures and composites remains
poorly constrained by most of the methods presented, and wank in that direction is there-
fore still needed. A typical example that always generaigls bontrast situations is porous
and/or granular media, where the pores may be filled withtlagm, both the mechanical and
the transport properties can have a very wide range of vamidepending on the details of the
microstructure. Some of the same types of information (sscformation factors) used here
for studies of transport properties can also be applieddstieity estimates in porous media
as has been pointed out previously in studies of “crossetgprelationships and bounding
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methods (Berryman and Milton, 1988; Gibiansky and Torqua8®5) —i.e., estimating one
physical quantity after measuring another. So, one pdsgilior future progress that has
yet to be explored in very great detail is how the formatioctda bounds as well as other
improved bounds on electrical or thermal conductivity mayvpde useful information about
microstructure that can then be used to constrain furtreeelfistic behavior of the same sys-
tem.
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