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Short Note

| mage segmentation with bounds

Jesse Lomask and Biondo Biohdi

INTRODUCTION

Image segmentation (Shi and Malik, 2000; Hale and Eman0é3,22002) for tracking salt

boundaries (Lomask and Biondi, 2003; Lomask et al., 200éxis=mely memory intensive.

Memory saving measures must be implemented in order to @@napplying this technique

to 3D seismic cubes. If coarse bounds can be picked, eitheuatlg or using another au-

tomatic algorithm, this image segmentation algorithm dentbe used to partition between
the bounds. Unfortunately, the quality of the segmentatesult is strongly affected by the
shape of the image. For example, elongated images are rkehg 0 be partitioned along

their shortest dimension.

In this note, we present one such memory saving techniquelemdnstrate its ability to
pick a salt boundary on a 2D seismic section. By imposing beuwe significantly reduce
the size of the problem and, as a result, increase efficiemtyabustness. Also, errors created
by segmenting thin images can be rectified with novel boundanditions described here.

METHODOLOGY

Normalized cuts image segmentation partitions imagestimtogroups. To do this, it first
creates weights relating each sample to every other sargplg paths within local neighbor-
hoods. It then finds the cut that partitions the image intogwaups,A and B, by minimizing
the normalized cut:

_cut N cut
"~ totaly totak

cut )
where cut is the sum of the weights cut by the patrtition. fotalthe sum of all weights in
Group A, and totag is the sum of all weights in GrouB. Normalizing the cut by the sum
of all the weights in each group prevents the partition fr@iesting overly-small groups of
nodes.
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The minimum of Ny can be found by solving the generalized eigensystem:
(D —W)y = ADy, (2)

created from a weight matrix{) and a diagonal matriXY), with each value on the diagonal
being the sum of each column¥f. The eigenvectory) with the second smallest eigenvalue
(1) is used to partition the image by taking all values gredtantzero to be in one group, and
its complement to be in the other. For a more detailed desmnipplease see Shi and Malik
(2000).

For application to seismic salt interfaces, we merely apipdyalgorithm to instantaneous
amplitude. Several cost saving techniques are explorednmask et al. (2004).

By applying bounds we greatly reduce the size of the problEmese initial rough bounds
can be found by first running the algorithm with small searetghborhoods and coarse sam-

pling.

long

Figure 1: A cartoon of a masked salt
boundary. It is long and thin with a /\:\/\f\/\/
discontinuous salt boundary snaking

across it/ jesse3-pic2[NR]

Unfortunately, the normalized cut segmentation methoddea partition elongated im-
ages along their shortest dimension. For instance, Figiga tartoon of an elongated image
with a salt boundary snaking across it. If the segmentatigorghm were to function as
hoped, the minimum cut would be found along the salt bounddoyever, because the salt
boundary is discontinuous, it is likely that the minimum loé hormalized cut in equation (1)
will be found by cutting the image vertically where the imagéhin.

To correct this problem, we exploit the fact that the uppemutary will necessarily be in
Group A and the lower boundary will be in Group. In other words, we want to force the
segmentation algorithm to put the coarsely picked boundsferent groups.

We can enforce this constraint during the creation of theglteinatrix (V). Recall that
this matrix contains weights relating each sample to evéingrosample along paths within
a neighborhood. For any given sample, if its search neididmat happens to cross a coarse
boundary, it becomes weighted to every other sample ne&otinedary. This can be imagined
by wrapping the image on a globe so that both the upper and loawends collapse to points
at the poles (see Figure 2). When estimating the weight mavery time a path crosses the
north or south pole, it continues down the other side. In &3 space, this can be seen in
the cartoon in Figure 3.
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Figure 2: A cartoon illustrating
global bounds. The image is
stretched onto a sphere and the upper
and lower boundaries of the mask col-

lapse to pointsjesse3-pic[NR]

Figure 3: A cartoon illustrating ide-
alized global bounds. When the
search area for a node reaches out-
side the mask (as shown by the cir-
cle on the left), it becomes con-
nected to all points along the bound-

ary o553 PIBINR

This “Global” bounds approach is completely impracticatdgse it creates as many new
weights as are saved by the size reduction of the problem.

A more practical approach that is still essentially the saomecept is “Random” bounds.
This is illustrated in Figure 4. Every time a path crossesunboit jumps a random distance
along the boundary.

—_— RANDOM JUMP

Figure 4: A cartoon illustrating the /XN g \
more practical random bounds. When * \\/

the search area for a node reaches out-

side the mask (as shown by the circle \/
on the left), it is connected to a sin-
gle node a random distance along the

boundary,jesse3-pic4[NR]

We have implemented and tested this random bounds methddamdithat it works well
in our preliminary test cases.
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FIELD TEST CASE

We tested this method on a 2D section taken from a Gulf of Mexiata set provided by
WesternGeco.

Figure 5 shows a base of salt reflection. Although it is disoolwus, the human eye can
see how it should be picked without too much uncertainty.
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Figure 5: A 2D seismic section with a salt boundary from thelfGaf Mexico.
jesse3-gom.daféER]

We first ran the standard segmentation method on the entaganm Figure 5 with a short
search distance and coarse sampling. We then shifted thi upsand down 20 samples to
get the mask shown in Figure 6.

Now our image is thinner and defined by that mask. We ran thedatd segmentation
method on the masked area. The resulting eigenvegioised to partition the image is shown
in Figure 7. In principle, this eigenvector would be clipgedrack the salt. Unfortunately, it
is dominated by a low frequency trend and will create an ewas vertical cut.

The eigenvector result of applying the random bounds ajprsashown in Figure 8. It is
clear that the salt interface can be gleaned from this image.

The resulting tracked salt boundary is displayed in Figurdt @oes an excellent job of
tracking the salt boundary. The base salt tracking resalsis overlain on the full 2D section
in Figure 10.
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Figure 6: A binary mask defining the bounds of the salt boundahis was generated by
first running the image segmentation method on the entirgémwéth short search distances
and sparse sampling. In this case, the mask reduces thef sk roblem by a factor of 2.
jesse3-gom.mask_JfER]
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Figure 7: The eigenvector that is used to partition the imagjeg our old segmentation al-
gorithm after the mask in Figure 6 is applied. Hints of thd salundary can be seen but
is obscured by the overall low frequency trend from left ighti This will not produce a
satisfactory segmentation res¢jésse3-gom.eig_nra¢ﬂER]
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Figure 8: The eigenvector that is used to partition the imagjag our new approach with
random bounds. The salt boundary is conspicuous in thisenaag can be extracted easily.
jesse3-gom.eig_ranfER]
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Figure 9: The boundary is garnered from the image in Figuradaverlain on the original
base of salt data. It does a very good job of tracking the bal}nbesseS-gom.horiz\?[ER]
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Figure 10: The boundary is overlain on a larger 2D sectijmse?)-gom_horizz_fqI[ER]
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CONCLUSIONS

In this note, we presented a modification of image segmenttiat allows narrow bounds to
be introduced. We then demonstrated its effectiveness @nhfeell data set from the Gulf of
Mexico. Now, armed with this new tool, tackling the 3D prahblés one step closer.
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