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Short Note

Image segmentation with bounds

Jesse Lomask and Biondo Biondi1

INTRODUCTION

Image segmentation (Shi and Malik, 2000; Hale and Emanuel, 2003, 2002) for tracking salt
boundaries (Lomask and Biondi, 2003; Lomask et al., 2004) isextremely memory intensive.
Memory saving measures must be implemented in order to consider applying this technique
to 3D seismic cubes. If coarse bounds can be picked, either manually or using another au-
tomatic algorithm, this image segmentation algorithm can then be used to partition between
the bounds. Unfortunately, the quality of the segmentationresult is strongly affected by the
shape of the image. For example, elongated images are more likely to be partitioned along
their shortest dimension.

In this note, we present one such memory saving technique anddemonstrate its ability to
pick a salt boundary on a 2D seismic section. By imposing bounds, we significantly reduce
the size of the problem and, as a result, increase efficiency and robustness. Also, errors created
by segmenting thin images can be rectified with novel boundary conditions described here.

METHODOLOGY

Normalized cuts image segmentation partitions images intotwo groups. To do this, it first
creates weights relating each sample to every other sample along paths within local neighbor-
hoods. It then finds the cut that partitions the image into twogroups,A andB, by minimizing
the normalized cut:

Ncut =
cut

totalA
+

cut

totalB
(1)

where cut is the sum of the weights cut by the partition. totalA is the sum of all weights in
Group A, and totalB is the sum of all weights in GroupB. Normalizing the cut by the sum
of all the weights in each group prevents the partition from selecting overly-small groups of
nodes.
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The minimum of Ncut can be found by solving the generalized eigensystem:

(D−W)y = λDy, (2)

created from a weight matrix (W) and a diagonal matrix (D), with each value on the diagonal
being the sum of each column ofW. The eigenvector (y) with the second smallest eigenvalue
(λ) is used to partition the image by taking all values greater than zero to be in one group, and
its complement to be in the other. For a more detailed description, please see Shi and Malik
(2000).

For application to seismic salt interfaces, we merely applythe algorithm to instantaneous
amplitude. Several cost saving techniques are explored in Lomask et al. (2004).

By applying bounds we greatly reduce the size of the problem.These initial rough bounds
can be found by first running the algorithm with small search neighborhoods and coarse sam-
pling.

Figure 1: A cartoon of a masked salt
boundary. It is long and thin with a
discontinuous salt boundary snaking
across it. jesse3-pic2[NR]

Unfortunately, the normalized cut segmentation method tends to partition elongated im-
ages along their shortest dimension. For instance, Figure 1is a cartoon of an elongated image
with a salt boundary snaking across it. If the segmentation algorithm were to function as
hoped, the minimum cut would be found along the salt boundary. However, because the salt
boundary is discontinuous, it is likely that the minimum of the normalized cut in equation (1)
will be found by cutting the image vertically where the imageis thin.

To correct this problem, we exploit the fact that the upper boundary will necessarily be in
Group A and the lower boundary will be in GroupB. In other words, we want to force the
segmentation algorithm to put the coarsely picked bounds indifferent groups.

We can enforce this constraint during the creation of the weight matrix (W). Recall that
this matrix contains weights relating each sample to every other sample along paths within
a neighborhood. For any given sample, if its search neighborhood happens to cross a coarse
boundary, it becomes weighted to every other sample near theboundary. This can be imagined
by wrapping the image on a globe so that both the upper and lower bounds collapse to points
at the poles (see Figure 2). When estimating the weight matrix, every time a path crosses the
north or south pole, it continues down the other side. In Cartesian space, this can be seen in
the cartoon in Figure 3.
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Figure 2: A cartoon illustrating
global bounds. The image is
stretched onto a sphere and the upper
and lower boundaries of the mask col-
lapse to points.jesse3-pic6[NR]

Figure 3: A cartoon illustrating ide-
alized global bounds. When the
search area for a node reaches out-
side the mask (as shown by the cir-
cle on the left), it becomes con-
nected to all points along the bound-
ary. jesse3-pic5[NR]

This “Global” bounds approach is completely impractical because it creates as many new
weights as are saved by the size reduction of the problem.

A more practical approach that is still essentially the sameconcept is “Random” bounds.
This is illustrated in Figure 4. Every time a path crosses a bound, it jumps a random distance
along the boundary.

Figure 4: A cartoon illustrating the
more practical random bounds. When
the search area for a node reaches out-
side the mask (as shown by the circle
on the left), it is connected to a sin-
gle node a random distance along the
boundary. jesse3-pic4[NR]

We have implemented and tested this random bounds method andfound that it works well
in our preliminary test cases.
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FIELD TEST CASE

We tested this method on a 2D section taken from a Gulf of Mexico data set provided by
WesternGeco.

Figure 5 shows a base of salt reflection. Although it is discontinuous, the human eye can
see how it should be picked without too much uncertainty.

Figure 5: A 2D seismic section with a salt boundary from the Gulf of Mexico.
jesse3-gom.data[ER]

We first ran the standard segmentation method on the entire image in Figure 5 with a short
search distance and coarse sampling. We then shifted the result up and down 20 samples to
get the mask shown in Figure 6.

Now our image is thinner and defined by that mask. We ran the standard segmentation
method on the masked area. The resulting eigenvector (y) used to partition the image is shown
in Figure 7. In principle, this eigenvector would be clippedto track the salt. Unfortunately, it
is dominated by a low frequency trend and will create an erroneous vertical cut.

The eigenvector result of applying the random bounds approach is shown in Figure 8. It is
clear that the salt interface can be gleaned from this image.

The resulting tracked salt boundary is displayed in Figure 9. It does an excellent job of
tracking the salt boundary. The base salt tracking result isalso overlain on the full 2D section
in Figure 10.
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Figure 6: A binary mask defining the bounds of the salt boundary. This was generated by
first running the image segmentation method on the entire image with short search distances
and sparse sampling. In this case, the mask reduces the size of the problem by a factor of 2.
jesse3-gom.mask_in[ER]
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Figure 7: The eigenvector that is used to partition the imageusing our old segmentation al-
gorithm after the mask in Figure 6 is applied. Hints of the salt boundary can be seen but
is obscured by the overall low frequency trend from left to right. This will not produce a
satisfactory segmentation result.jesse3-gom.eig_nrand[ER]

Figure 8: The eigenvector that is used to partition the imageusing our new approach with
random bounds. The salt boundary is conspicuous in this image and can be extracted easily.
jesse3-gom.eig_rand[ER]
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Figure 9: The boundary is garnered from the image in Figure 8 and overlain on the original
base of salt data. It does a very good job of tracking the boundary. jesse3-gom.horiz2[ER]

Figure 10: The boundary is overlain on a larger 2D section.jesse3-gom_horiz2_full[ER]
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CONCLUSIONS

In this note, we presented a modification of image segmentation that allows narrow bounds to
be introduced. We then demonstrated its effectiveness on a 2D field data set from the Gulf of
Mexico. Now, armed with this new tool, tackling the 3D problem is one step closer.
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