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Flattening without picking faults

Jesse Lomask, Antoine Guitton, and Alejandro Valenciano1

ABSTRACT

We show that iteratively re-weighted least squares (IRLS) can flatten data cubes with
vertically-oriented faults without having to pick the faults. One requirement is that the
faults need to have at least part of their tip-lines (fault terminations) encased within the
3D cube. We demonstrate this method’s flattening ability on afaulted 3D field data-set.

INTRODUCTION

Flattening algorithms (Lomask and Claerbout, 2002; Lomask, 2003; Lomask et al., 2005) are
able to flatten seismic data cubes with faults by summing the dips into time shifts around the
faults and ignoring the dips across the faults. In order to know which dips to ignore and which
dips to honor during inversion, we require a fault indicator(data residuals weight that throw
away bad dips). This indicator could be either manually picked or automatically generated by
an automatic fault detector.

While the smoothness of the summed time shifts are often justifiable in non-faulted areas,
the time shifts can change abruptly across the faults. In these situations, we desire an inversion
technique that yields smooth time shifts in non-faulted areas while preserving sharp time shifts
across the faults. In addition, no pre-defined fault indicator should be supplied.

In this paper, we present an automatic edge-preserving method for flattening faulted data
without requiring an input fault model. The method uses iterative re-weighted least-squares
(IRLS). A Geman-McClure weight function (fault indicator)of data residuals is computed at
each non-linear iteration to allow outliers in the data residuals.

The only requirements are that part of the fault tip-lines are encased in the data and that the
faults are oriented vertically. The resulting weight generated by this IRLS method is a fault
indicator cube that best flattens the data. This is an important difference from many traditional
automatic fault detectors that are defined by local discontinuities.
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METHODOLOGY

We modify the flattening algorithm described in Lomask et al.(2005). The key regression is
this overdetermined system:

∇τ = p. (1)

This equation means that we need to find a time-shift fieldτ (x, y,z) such that its gradient
approximates the dipp(x,y,τ ). It is overdetermined because we are finding a single summed
time shift field such that its two-dimensional gradient matches the dip in thex andy directions.

Imagine that after solving equation (1), the data residualsconsist of spikes separated by
relatively large distances. Then the estimated time shiftsτ would be piecewise smooth with
jumps at the spike locations (fault locations), which is what we desire. However, in solving
Equation (1), we use the least-squares criterion – minimization of the`2 norm of the residual.
Large spikes in the residual tend to be attenuated. In the model space, the solver smooths the
time shifts across the spike location.

It is known that thè 1 norm is less sensitive to spikes in the residual (Claerbout and Muir,
1973; Darche, 1989; Nichols, 1994). Minimization of the`1 norm makes the assumption that
the residuals are exponentially distributed and have a “long-tailed” distribution relative to the
Gaussian function assumed by the`2 norm inversion.

Figure 1: Comparison of the loss
functions for the`1, Cauchy, and
Geman-McClure functions. Notice
that the Geman-McClure is the most
robust. jesse2-2[CR]

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

residual

o
b

je
ct

iv
e

 f
u

n
ct

io
n

 v
a

lu
e

L1
Cauchy
Geman−McClure

Here, we compute non-linear model residual weights which force a Geman-McClure dis-
tribution, another long-tailed distribution which approximates an exponential distribution. A
comparison of the loss functions for the`1, Cauchy (Claerbout, 1999), and Geman-McClure
functions is shown in Figure 1. Notice that the Geman-McClure is the most robust in that it is
the least sensitive to outliers. Our weighted regression now is the following over-determined
system:

Wj−1
∇τ

j
= Wj−1p, (2)

whereWj−1 is the weight computed at the previous non-linear iteration.
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Figure 2: Comparison of weight
functions for the`1, Cauchy, and
Geman-McClure functions. The
Geman-McClure is most restrictive,
this may be desirable for weighting
faults. jesse2-3[CR]
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Our method consists of recomputing the weights at each non-linear iteration, solving small
piecewise Gauss-Newton linear problems. The IRLS algorithms converge if each minimiza-
tion reaches a minimum for a constant weight. We perform the following non-linear iterations:
starting with the weightsW0

= I, at the j th iteration the algorithm solves

iterate {

r = W[∇τk −p] (3)

1τ = (∇′
∇)−1

∇
′r (4)

τ k+1 = τ k +1τ (5)

}

At every non-linear iterationj th iteration we re-estimate our Geman-McClure weight function:

W j −1
= diag

(

1
(

1+ (r j −1)2/r̄ 2
)2

)

(6)

where ¯r is an adjustable parameter. A comparison of weight functions for the`1, Cauchy, and
Geman-McClure functions is shown in Figure 2. Notice that the Geman-McClure creates the
tightest, most precise weight. This should have the advantage of having a surgical-like effect
of down-weighting spurious dips.

FIELD DATA EXAMPLE

We tested this method on the Chevron Shoal data shown in Figure 3. At first glance, the 2D
in-line section does not appear to have much faulting. However, there is actually a nearly
vertical fault near the center, and dip estimators will return incorrect estimates at faults.
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Figure 3: Faulted Chevron Gulf of Mexico data. Although it isdifficult to see, the 2D vertical
section shows fault with significant displacement, enough to cause our dip estimator to return
erroneous values.jesse2-dat[ER]
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Figure 4: The result of flattening of Figure 3jesse2-flat[ER]

We applied our IRLS flattening method to this data to get the result shown in Figure 4.
The position of the fault is more obvious in this image because the data on either side were
shifted by the flattening process.

The fault weight automatically created by this method is shown in Figure 5. It is, however,
more insightful to overlay the fault weight on the original unflattened data as in Figure 6. Also,
it is interesting to note that the fault appears to be segmented.

CONCLUSION

We presented an IRLS flattening approach able to flatten data cubes in the presence of laterally
limited vertical faults. Our method uses iteratively re-weighted least-squares with the Geman-
McClure function. The requirement that the faults terminate within the data is necessary so
that dips can be summed around the faults in order to remove the structure.

For faults that do not terminate within the data cube, this method still may indicate their
location. This is because dips estimated at faults tend to bemore erratic than other dips away
from the fault and are usually treated as outliers.

There are still several weaknesses and areas for improvement of this method. If the fault
termination is close to the boundary of the data, this methodhas the unfortunate side effect
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Figure 5: The fault weight automatically created by flattening Figure 3 jesse2-wt[ER]

Figure 6: The input data with thejesse2-wt.dat[ER]
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of connecting the fault to the data boundary, creating a separate fault block. It may also have
the tendency to create false faults if there is significant noise. Lastly, we still may not have
determined the best weight function.
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