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Flattening without picking faults

Jesse Lomask, Antoine Guitton, and Alejandro Valendiano

ABSTRACT

We show that iteratively re-weighted least squares (IRL&) ftatten data cubes with
vertically-oriented faults without having to pick the f&il One requirement is that th
faults need to have at least part of their tip-lines (faultni@ations) encased within the
3D cube. We demonstrate this method’s flattening ability éau#ted 3D field data-set.
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INTRODUCTION

Flattening algorithms (Lomask and Claerbout, 2002; Loma6ek3; Lomask et al., 2005) are
able to flatten seismic data cubes with faults by summing b idto time shifts around the

faults and ignoring the dips across the faults. In order mkwhich dips to ignore and which

dips to honor during inversion, we require a fault indicgtata residuals weight that throw
away bad dips). This indicator could be either manually @it&r automatically generated by
an automatic fault detector.

While the smoothness of the summed time shifts are ofteifigkde in non-faulted areas,
the time shifts can change abruptly across the faults. setbguations, we desire an inversion
technique that yields smooth time shifts in non-faultecdasghile preserving sharp time shifts
across the faults. In addition, no pre-defined fault indicahould be supplied.

In this paper, we present an automatic edge-preservingaadth flattening faulted data
without requiring an input fault model. The method usesaiige re-weighted least-squares
(IRLS). A Geman-McClure weight function (fault indicatar) data residuals is computed at
each non-linear iteration to allow outliers in the datadeals.

The only requirements are that part of the fault tip-linesexrcased in the data and that the
faults are oriented vertically. The resulting weight gexted by this IRLS method is a fault
indicator cube that best flattens the data. This is an impbdifference from many traditional
automatic fault detectors that are defined by local disooities.
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METHODOLOGY

We modify the flattening algorithm described in Lomask e{2005). The key regression is
this overdetermined system:

VT = p. (2)

This equation means that we need to find a time-shift figll y,z) such that its gradient
approximates the dip(x,y,t). It is overdetermined because we are finding a single summed
time shift field such that its two-dimensional gradient nhatthe dip in th& andy directions.

Imagine that after solving equation (1), the data residoaissist of spikes separated by
relatively large distances. Then the estimated time shiftould be piecewise smooth with
jumps at the spike locations (fault locations), which is twva desire. However, in solving
Equation (1), we use the least-squares criterion — minitiwizaf thef,; norm of the residual.
Large spikes in the residual tend to be attenuated. In theehspéce, the solver smooths the
time shifts across the spike location.

It is known that theZ; norm is less sensitive to spikes in the residual (Claerbodt\uir,
1973; Darche, 1989; Nichols, 1994). Minimization of thenorm makes the assumption that
the residuals are exponentially distributed and have ag4aiied” distribution relative to the
Gaussian function assumed by #enorm inversion.
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Here, we compute non-linear model residual weights whicbef@a Geman-McClure dis-
tribution, another long-tailed distribution which appmmates an exponential distribution. A
comparison of the loss functions for tiig Cauchy (Claerbout, 1999), and Geman-McClure
functions is shown in Figure 1. Notice that the Geman-Mc€larthe most robust in that it is
the least sensitive to outliers. Our weighted regressianisdhe following over-determined
system:

Wity

=Wi~p, )

whereWi—1 is the weight computed at the previous non-linear iteration
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Our method consists of recomputing the weights at eachineadliteration, solving small
piecewise Gauss-Newton linear problems. The IRLS algwmsticonverge if each minimiza-
tion reaches a minimum for a constant weight. We performahevfing non-linear iterations:
starting with the weightsv° = |, at thej!" iteration the algorithm solves

iterate {
r = W[Vr—p] )
At = (V'V)IVT (4)
Tky1 = Tkt+AT (5)
}

At every non-linear iteratioft" iteration we re-estimate our Geman-McClure weight functio

. 1
wi=t = di 6
|ag((1+(rj_1)2/r—2)2> ( )

wherer is an adjustable parameter. A comparison of weight funstfonthe¢;, Cauchy, and
Geman-McClure functions is shown in Figure 2. Notice that@eman-McClure creates the
tightest, most precise weight. This should have the adgantéhaving a surgical-like effect
of down-weighting spurious dips.

FIELD DATA EXAMPLE

We tested this method on the Chevron Shoal data shown ind-RyuAt first glance, the 2D
in-line section does not appear to have much faulting. Heweawere is actually a nearly
vertical fault near the center, and dip estimators will netacorrect estimates at faults.
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Figure 3: Faulted Chevron Gulf of Mexico data. Although itdificult to see, the 2D vertical
section shows fault with significant displacement, enowgteiuse our dip estimator to return

erroneous valuefjesse2-dgER]
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Figure 4: The result of flattening of Figurej@sse2-flat[ER]

We applied our IRLS flattening method to this data to get tiselteshown in Figure 4.
The position of the fault is more obvious in this image beedah& data on either side were
shifted by the flattening process.

The fault weight automatically created by this method isrgihn Figure 5. It is, however,
more insightful to overlay the fault weight on the originaflattened data as in Figure 6. Also,
it is interesting to note that the fault appears to be segaaent

CONCLUSION

We presented an IRLS flattening approach able to flatten datsan the presence of laterally
limited vertical faults. Our method uses iteratively reigiged least-squares with the Geman-
McClure function. The requirement that the faults terménaithin the data is necessary so
that dips can be summed around the faults in order to remevsttacture.

For faults that do not terminate within the data cube, thishoe still may indicate their
location. This is because dips estimated at faults tend tadre erratic than other dips away
from the fault and are usually treated as outliers.

There are still several weaknesses and areas for improveyh#ms method. If the fault
termination is close to the boundary of the data, this metragithe unfortunate side effect
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Figure 5: The fault weight automatically created by flattgrFigure 3jesse2-wt[ER]
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Figure 6: The input data with th§esse2-wt.dd{ER]



SEP-120 Flattening 165

of connecting the fault to the data boundary, creating ars¢p#ault block. It may also have
the tendency to create false faults if there is significamsaoLastly, we still may not have
determined the best weight function.
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