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Update on flattening without picking

Jesse Lomask, Antoine Guitton, Sergey Fomel, and Jon @agrb

ABSTRACT

We present a method for efficiently flattening 3D seismic datames. First local dips
are calculated over the entire seismic volume. The dipshene tesolved into time shifts
using a Gauss-Newton iterative approach that exploits thei& domain to maximize
efficiency. To handle faults (discontinuous reflectionsg apply a weight inversion
scheme. This approach successfully flattens a synthetiedaomodel, a field salt peirce-
ment dataset, a field dataset with an angular unconformg, aafaulted field dataset

INTRODUCTION

In spite of numerous advances in computational power inntegears, interpretation still
requires a lot of manual picking. One of the main goals ofrprtetation is to extract from the
seismic data geological and reservoir features. One corynused interpretation technique
that helps with this effort is to flatten data on horizons [elgee (2001)]. This procedure
removes structure and allows the interpreter to see gexbigiatures as they were emplaced.
For instance, after flattening seismic data, an interpiarsee in one image an entire flood
plain complete with meandering channels. However, in ci@é8atten seismic data, a horizon
needs to be identified and tracked throughout the data vollinige structure changes often
with depth, then many horizons need to be identified and &@cKhis picking process can be
time consuming and expensive.

Certain interpretation visualization products and autdgrs seek to make picking and
flattening processes as efficient as possible. However aftey suffer from weaknesses that
prevent them from being truly practical. For example, 3-Iumee interpretation packages al-
low interpreters to view their data with depth perceptiomgstereo glasses. These products
have an opacity ability (James et al., 2002) that allowsrpneters to make unwanted data
transparent. Unfortunately, unless the zone of interestahenown unique range of attribute
values, interpreters resort to picking on 2-D slices. Addlly, traditional amplitude-based
auto-pickers can fail if the horizon being tracked has sigaint amplitude variation, or worse,
polarity reversal. Other tracking techniques such as @eifneural networks are less sensi-
tive to amplitude variations but are still prone to errorhétseismic wavelet character varies
significantly from the training data (Leggett et al., 1996).
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In this document, we propose a method for automaticallyeffatig entire 3-D seismic
cubes without picking that we first presented in Lomask (2003 his is essentially an al-
gorithm that is efficient enough to perform dense picking otire 3D cubes at once. Our
method involves first calculating dips everywhere in theadeing a dip estimation technique
(Claerbout, 1992; Fomel, 2002). These dips are resolvedime shifts via a non-linear least-
squares problem. The data are subsequently shifted angawlihe time shifts to output a
flattened volume. Bienati et al. (1999a,b); Bienati and 8pégi (2001, 1998) use a similar
approach to resolve numerically the dips into time shiftslie purpose of auto-picking hori-
zons and flattening gathers, yet solving a linear versioh@ptroblem and without flattening
the full volume at once. Stark (2004) takes a full volume apph to achieve the same end yet
iS unwrapping instantaneous phase. Blinov and Petrou J20§8dynamic programming to
track horizons by summing local dips. Here, a version of the-imear problem of summing
local dips (Lomask, 2003b; Guitton et al., 2005) is solvedatively using a Gauss-Newton
approach. Each iteration utilizes the Fourier domain teitefficiently a linearized opera-
tor much like the approach of Ghiglia and Romero (1994) fontapping two-dimensional
phase. For faulted data, weights identifying the faultsagmglied within the iterative scheme,
allowing reconstruction of horizons for certain fault gesines. As with amplitude based
auto-pickers, amplitude variation also affects the quaditthe dip estimation and will, in
turn, impact the quality of this flattening method. Howevbke effect will be less significant
because this method can flatten the entire data cube at doballg in a least-squares sense,
minimizing the effect of questionable dip information. Agohally, flattening the entire cube
at once should make the method more robust in noisy data oplemated structures. Once a
seismic volume is flattened, automatic horizon trackingobees a trivial matter of reversing
the flattening process to unflatten flat surfaces. The presiaglications for this method are
numerous and can be easily incorporated into an automdacityepicking scheme (Guitton
et al., 2004).

In the following sections, we present an overview of thedlaittg methodology and a se-
ries of real world geological challenges for this methodides of increasing difficulty. The
first is a 3D synthetic that is flattened to demonstrate how avefiatten faulted, folded data.
Then we present a structurally simple salt peircement 3@ fiata from the Gulf of Mexico.
We consider it structurally simple because the dip doesImage much with depth. Increas-
ing complexity, we flatten 3D field data from the North Sea ttwttains an unconformity and
has significant folding. Lastly, we illustrate how this mathis used to flatten datasets with
faults on a field 3D Gulf of Mexico dataset.

FLATTENING THEORY

The basic idea is similar to phase unwrapping (Claerbou@9),%ut instead of summing
phase differences to get total phase, dips are summed totgktime shifts that are then used
to flatten the data. To apply the shifts, a reference is hetdtemt and all other traces are
shifted vertically to match it.

The first step is to calculate dips everywhere in the 3-D seisabe. Dip can be efficiently
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calculated using a plane-wave destructor as describedgri@ut (1992) or with an improved
dip estimator that is described in Fomel (2002). We prirgauge the latter. For each point
in the data cube, two components of djp, and py, are estimated in the direction andy
direction, respectively. These can be represented evemngadn the mesh as vectqg and

Py-

Our goal is to find a time-shift (or depth-shift) fietdx, y, z) such that its gradient approx-
imates the digp(x,y, 7). Our objective function is:

o= | [(px(r,x,y)— g—;)Z (pyu,x,y)—g—;ﬂ dxdy o)

The Euler-Lagrange equation is used in calculus of vanat{&arlow, 1993) to find a function
() that will minimize a functional J).

We apply the Euler-Lagrange equation to equation (1) to find:

%t 9%t 9 0 19(py2 + py2
px+ py+_ (Px py)_

= 2
NG + ay2  9ax 3y 2 ot @)
In our method, we ignore the last term of equation (2) ancitegly solve:
S L 3
v, 9T _dpx  Opy @)

ax2 + a2~ ax | ay
This equation can be rewritten using the gradiént&{ [% aiy]/) and the estimated dip (=
[Px pyl)
Vvt = Vp 4
Ultimately, the regression to be solved is:
vVt = p. (5)

This equation means that we need to find a time-shift figkl, y,z) such that its gradient
approximates the dip(x,y,t). Note that the estimated dip(x,y,7) field is a function of

the unknownz (X, y,t) field, making this problem non-linear and, therefore, diifi to solve

directly.

We solve this using a Gauss-Newton approach by iteratingexygations (6)-(8)
iterate {
r = [Voe—p] (6)

At (V'v) v’ 7)
k1 = Tk+AT (8)
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To dramatically improve efficiency, we solve equation (7)the Fourier domain. We
apply the divergence to the estimated dips and divide by {inarsform of the Laplacian in
the Fourier domain with:

(9)

AT =~ FFTZD_1|: FFTZD[V,r] :|

~Zt -z 4 4-24-2,

whereZ, = €A% and Zy= € w2y This amounts to calling both a forward and inverse FFT
in each iteration. The ability to invert the 2D Laplacian imecstep is the key to this method’s
exceptional performance.

Once we have converged the resulting time-shift fielg, y,t) contains all of the time-
shifts required to map the original unflattened data to fhettiedata. This is implemented by
applying the time-shifts relative to a reference trace. theowords, each trace is shifted to
match the reference trace.

In general, we operate on a one-time slice at a time. Afteatitgg until convergence, we
then select the next time slice and proceed down throughuibe. dn this way, each time slice
is solved independently.

The process of flattening tends to alter the spectrum of ttaelyestretching and compress-
ing in time. Even worse, it can disrupt its continuity. Touns a monotonic and continuous
result, it should be sufficient to first smooth the input dipgime (or depth). In some in-
stances, it may be necessary to enforce smoothness duengtégration of the dips. This
can easily be accomplished by defining a 3D gradient opevathran adjustable smoothing
parameter as:

g)_x Px
Vet = 8_3; A Py = p. (10)
€<t 0

Our new operatoV . has a scalar parameteused to control the amount of vertical smoothing.
This requires integrating the entire 3D volume of dips ateorather than slice by slice. The
2D FFT's in equation (9) are replaced with 3D FFT’s. Consedjyeeach iteration is slowed.

Weighted solution for faults

Local dips estimated at fault discontinuities can be ineateu We can, however, sum dips
around the faults and ignore the spurious dips across tlis tawget a flattened result.

We can add a weight to the residual to ignore fitting equatibasare affected by the bad
dips estimated at the faults. The regression to be solveal¥s n

WVz =Wp. (11)
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We iterate over the same equations as before, except eqyéjis now replaced with:
rr = W[Vtk—p] (12)

Because we cannot apply a non-stationary weight in the Eodomain, we use the same
Fourier method as shown in equation (9). This means thatdhedr method is not approx-

imating the inverse as well as before. The cost of this is niterations, but method is still

relatively efficient compared to other iterative methodsisTapproach is similar to Ghiglia

and Romero (1994) for phase unwrapping.

Computational cost

For a data cube with dimensioms= nl x n2 x n3, each iteration requires nl forward and
reverse 2D FFT’s. Therefore, number of operations pertiteras about 8(1+ log(4n2 x
n3)). The number of iterations is a function of the variapibf the structure and the degree of
weighting. For instance, if the structure is constant wesptth, then it will be flattened in one
iteration. On the other hand, if a weight is applied and th&cstire changes much with depth,
it may take as many as 100 iterations.

EXAMPLES OF 3D FLATTENING

Here we demonstrate this flattening method’s efficacy onhgfitt and field 3D datasets. We
start with a synthetic to illustrate how this method can harfaults with folds. Then we use
several 3D field datasets to demonstrate how this methoddwmfulds, angular unconformi-
ties, and faults.

Synthetic Data

Figure 1 is a 3D synthetic dataset that presents two geabgji@llenges. Firstly, the structure
is changing with depth, requiring multiple non-linear @&gons. Secondly, a significant fault
is present in the middle of the cube. Dips estimated at fasttahtinuities are, in general,
inaccurate and will compromise the quality of the flatteniagult. However, knowing the
position of the fault, we pass it as a weight to equation (18)this case, we used a binary
weight of O’s at the fault (and a few samples on each side) anelverywhere else.

The flattening result is shown in Figure 2. Notice the cubeeiyflat except in the area
of the fault itself. This method is able to flatten this cubedese we passed it a weight iden-
tifying the fault and the fault is limited laterally. That ighe tip-line of the fault is contained
within the data cube, enabling dips to be summed around tie fa

The estimated field used to flatten data can also be used to reverse the prodest is,
we can use the time-shifts to unflatten data that is alreatlyBlaunflattening flat surfaces and
overlaying them on the data, we are essentially picking arall@f the horizons in the data-
cube. Figure 3 displays every 20th horizon overlain on thehstic data shown in Figure 1.
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We could just as easily have displayed every horizon buttfage would appear too cluttered.
Notice that the horizons are well tracked even across a fault

Chevron Gulf of Mexico Salt Peircement Data

Figure 4 is a field 3D data cube from the Gulf of Mexico providgdChevron. It consists of
structurally simple horizons that have been warped up ar@usalt peircement. Numerous
channels can be seen in time slices. In the time slice at thefteigure 4, a channel can be
seen snaking across the south side. Figure 5 shows the ddtbertput of the data in Figure 4.
The seismic cube has been converted from a stack of timessbca stack of horizon slices.
Notice that the low frequency banding present in the unfietledata is no longer present in
the flattened data. This is because horizons are no longémgacross the image. Several
channels are now easily viewed on the horizon slice. Alsticadhe salt dome appears to be
more localized in Figure 5.

Figure 5 displays three horizons overlain on the originaghda Figure 4. The horizons
track the reflectors on the flanks of the salt well as expecWdhin the salt, the horizons
gradually get off their respective reflector events as thienased dip becomes very inaccurate.
The time slice at the top displays the swath of a tracked boriz

Elf North Sea Unconformity Data

Figure 7 shows a 3D EIf North Sea data set. Marked by congitiefalding and a sharp
angular unconformity, this data presents a formidablecitati challenge.

The flattening result is shown in Figure 8. In order to presehe continuity of the data,
we used a smoothing parameteof 1.0 in equation (10). Thus, it is no surprise that the
result is not completely flat. Had we usedeaf 0.0, the data would be flatter but would lose
its continuity. Consequently, the trade-off between aanty and flatness emerges in cases
of pinch-outs and unconformities. Notice that at the bottinthe section, there are some
discontinuities introduced by the flattening process.

When it comes to overlaying the picks on the datas ah0.0 is preferable. The results are
shown in Figure 9. The time slice at the top shows the swathsmdifferent horizons. Over-
all, the picked horizons track up to and along the unconftynirhe only significant errors
occur where the data quality is questionable and, as a réselestimated dip is inaccurate.

Chevron Gulf of Mexico Faulted Data

Figure 10 is an image of faulted Gulf of Mexico data. When aiicant discontinuity occurs

within a data-set, local dip estimators return incorretinestes. Faults with significant dis-
placement contaminate the dip estimation at the faultss, Thiturn, results in unsatisfactory
flattening results.
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Figure 1: A synthetic model with structure varying with defat necessitates multiple iter-
ations as well as a vertical discontinuity representingudt.féa) The time slice at time=.5l
(b) An in-line section at y=1.3&m. (c) A cross-line section at x=.66m. |jessel-down_lap
[ER]
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Figure 2: Result of flattening of Figure 1. Notice it is flat oot sides of the fault zone. (a)
The horizon slice at time=.5¢l (b) An in-line section at y=1.3km. (c) A cross-line section
at x=.66km. |jesse1-down_lap_flafER]
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Figure 3: Result of overlaying tracked horizons on the imiageigure 1. The gap between
reflections is where the weight was applied. It successfudigks the horizons. (a) The time
slice at time=.54. (b) An in-line section at y=1.3&km. (c) A cross-line section at x=.gan.
|jessel-down_lap.horizon_over[d§R]
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Figure 4: Chevron Gulf of Mexico data. Notice the beds hawenlferced up to steep angles
by the emplacement of a salt peircement. There is some aadeinchannels in the time
slice. (a) The time slice at time=.%1 (b) An in-line section at y=11436:h. (c) A cross-line
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Figure 5: Result of flattening of Figure 4. The top panel is reoWorizon slice displaying
several channels. The vertical sections illustrate thatdlbe is flat in both the andy
directions. (a) The horizon slice at time=.81(b) An in-line section at y=11436.1. (c) A
cross-line section at x=1291. | jesse1-chev.3DflafER]
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Figure 6: Result of overlaying tracked horizons on the imegEigure 4. It successfully
tracks the horizons even to the considerably steep dipsnigawto the salt peircement. (a)
The time slice at time=.5%. (b) An in-line section at y=11436.M. (c) A cross-line section
at x=12911m. jessel—chev.horizon_overIHjER]
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Figure 7: EIf North Sea data. Observe the angular unconfgrati 2425 meters. (a) The
depth slice at depth=23%4. (b) An in-line section at y=396fn. (c) A cross-line section at
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Figure 8: The result of flattening of Figure 7. This imagedthates the trade-off between data
continuity preservation and flatness. We used a smoothirepetere of 1.0 to make this
figure. Had we used a smallerthe output would be flatter but artifacts would be introdlice
into the data. (a) The horizon slice at depth=28T5b) An in-line section at y=3966. (c)

A cross-line section at x=10668. | jessel-elf_flat[ER]
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Figure 9: The result of overlaying tracked horizons on thagmin Figure 7. Because the
smoothing parameteris 0.0, horizons that lead to the angular unconformity aaekied. (a)
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We use the crude binary weight cube shown in Figure 11 to iijesuteas where the in-
version should ignore incorrect dips. This weight was @edty manual picking. It should be
noted that a suitable weight can also, in principle, be meate fin automatic fault detector.

The flattening results are shown in Figure 12. Notice thalhtrezons are flat, even directly
across from the fault. Also, notice the presence of a channéle horizon slice. Figure 13
shows the original data with one unflattened horizon ovegyt. It successfully tracks the
horizon even across the fault. The time slice at the top ofifeéid 3 shows a horizon that is
being partially cut by the fault at about x=2660

DISCUSSION

To be fair, it should be noted that the flattening method owlg & the vertical dimension.
This implicitly imposes several limitations. For instanoaly vertical faults and beds that are
not overturned can be properly restored. Also, the trugigteghic thickness will be lost and
replaced with the true vertical thickness at the refereramet

The potential prestack applications of this method are maos and many of the chal-
lenges that must be overcome for poststack data are alsenpiagprestack data.

The integrated time shift data has many potential uses.matiod can easily be adapted
to flatten data cubes on one or any particular combinationoozbns. This would assist
geologists in analyzing thicknesses for rates of depasdiad timing of structural events.

CONCLUSIONS

We have developed a method to efficiently and robustly fl&@8®@seismic cubes. This method
uses an efficient implementation of the Fast Fourier transf@ithin a non-linear iterative
scheme. We demonstrated its effectiveness on a seriestbisigrand field test cases.

Data cubes with vertical, laterally limited faults can betéaed by applying a residual
weight. This allows horizons to be tracked across thesé¢sfaul

We envision a tool that can be quickly and easily implemefgdnterpreters exploit-
ing its superior computational performance. This methadmavide an initial picking that
interpreters can then adjust.
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