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Orthogonal mesh generation for Riemannian wavefield
extrapolation

Jeff Shragge1

ABSTRACT

This paper presents a general method for generating 2D or 3D orthogonal coordinate sys-
tems. Developed coordinate systems are triplication free and appropriate for use in Rie-
mannian wavefield extrapolation. This method exploits properties of potential function
solutions of Laplace’s equation. I show that certain specifications of a potential function’s
boundary conditions lead to a physical representation of equipotential surfaces where
there are equivalent to extrapolation steps. Potential function solutions, obtained through
conjugate gradient solvers, are used subsequently in a phase-ray-tracing procedure that
generates geometric rays orthogonal to the equipotential surfaces. These rays collectively
define an orthogonal coordinate system linked to the underlying Cartesian mesh through
definable one-to-one mappings. The utility of this approachin generating coordinate sys-
tems is tested on a 2D model of rugged topography from the Canadian Foothills, and on
3D topography of the San Francisco Bay area.

INTRODUCTION

Wave-equation imaging is computed almost exclusively on Cartesian meshes both for com-
putational simplicity and because imaged subsurface volumes are usually rectangular par-
allelepipeds. However, situations exist where performingwave-equation imaging on more
generalized coordinate system meshes is warranted. For example, extrapolating wavefields
directly from an undulating topographic surface (Shragge and Sava, 2004a), orienting the
extrapolation axis of lower-order operators in the direction of wavefield propagation to im-
prove higher angle accuracy (Sava and Fomel, 2004), or imaging with overturning waves not
currently modeled by one-way extrapolation operators (Shan and Biondi, 2004). Employing
non-Cartesian meshes, though, necessitates resolving these three issues: which coordinate
system should be chosen? how is the preferred coordinate system generated? and what are the
appropriate governing wavefield extrapolation equations for this coordinate system choice?

Non-Cartesian wavefield extrapolation theory has advancedin recent years in the con-
text of both global and exploration seismology. All of thesemethods locally transform the
coordinate system and the corresponding governing propagation equations to a more appro-
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priate reference frame linked to an underlying Cartesian grid through one-to-one mappings.
For example, Bostock et al. (1993) formulate an orthogonal,2-D, plane-wave-centric coordi-
nate system appropriate for propagating overturning teleseismic wavefields. Etgen (2002) and
Shan and Biondi (2004) discuss the use of tilted coordinate systems that enable propagation of
overturning waves with one-way extrapolation operators. Brandsberg-Dahl and Etgen (2003)
and Sava and Fomel (2004) present generalized curvilinear coordinate and Riemannian metric
formulations of the governing wavefield propagation equations, respectively.

Emerging with these developments are two classes of coordinate systems: those confor-
mal with the propagating wavefield direction, and those conformal with pre-existing topology.
Examples of the former include coordinate systems constructed by plane-wave decomposi-
tion (Bostock et al., 1993), and those generated using Eikonal equation ray-tracing (Sava and
Fomel, 2004), whereas examples of the latter include a conformal mapping transform to in-
corporate surface topography (Shragge and Sava, 2004a). These methods, though, neither
are universally applicable, nor always practical for 3D wavefield extrapolation. For example,
ray-based methods can generate semi-orthogonal, triplicating coordinate systems that lead to
numerical instability when propagating wavefields throughcoordinate system caustics. An-
other example is that the complex mathematics of conformal mapping surface topography does
not extend easily to 3D. Hence, formulating a general approach for constructing 3D orthogo-
nal coordinate systems appropriate for non-Cartesian wavefield extrapolation remains an open
research topic.

This paper examines how potential function (PF) solutions of Laplace’s equation, cou-
pled with phase-ray tracing (Shragge and Sava, 2004b), can be used to generate orthogonal
coordinate system meshes. Starting with appropriate PF boundary conditions, I generate a so-
lution to Laplace’s equation for any simply connected domain using conjugate gradient solvers
(Claerbout, 1999). Importantly, the PF equipotentials define surfaces equivalent to wavefield
extrapolation steps. The PF gradient field, by definition orthogonal to equipotentials, similarly
forms geometric rays originating from the acquisition surface that collective form a ray coordi-
nate system. The most obvious example is the Cartesian coordinate system, where each depth
step surface represents an equipotential surface, and eachvertical line projecting downward
defines a coordinate system ray. Mathematical properties ofa PF also guarantee that the 3D
orthogonality of equipotential coordinate systems. Hence, this approach constructs computa-
tional meshes conformal to 3D geometric boundaries, including undulating 2D topographic
surfaces or deviated wells found in vertical seismic profiling.

I begin this paper by reviewing some important properties ofPF solutions of Laplace’s
equation, and then outline an approach for defining a Laplace’s equation appropriate for in-
corporating generalized topology of a solution domain. Subsequently, I show how modified
phase-ray tracing generates a suite of geometric rays that collectively form a coordinate system
mesh. I then demonstrate the utility of the approach by developing a 2D coordinate system for
the Canadian Rocky Mountain Foothills model discussed in Shragge and Sava (2004a) and a
3D coordinate system conformal to the 2D topography of the San Francisco Bay area.
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THEORY

This section discusses some important characteristics of PF solutions of Laplace’s equation
(Kellogg, 1953), and outlines how these properties can be exploited to generate orthogonal
coordinate systems. Using the scenario of 2D wave-equationmigration from topography,
I present appropriate boundary conditions, detail a methodfor obtaining potential function
solutions, and outline a ray-tracing approach. These threecomponents collectively define and
algorithm for computing a geometric coordinate system.

Laplace’s Equation

The scalar form of Laplace’s equation is the partial differential equation,

∇2φ = 0 (1)

where∇2 is the second-order spatial derivative operator, andφ is the sought PF. Laplace’s
equation is a special case of the Helmholtz differential equation,

∇2φ +k2φ = 0, (2)

when wavenumberk = 0. A physical interpretation of this observation is that PFφ is the
zero-frequency solution of the frequency-domain wave-equation, and is independent of the
velocity field and thereby solely a geometric construct. A harmonic PF satisfying Laplace’s
equation has a number of important properties that are valideither on the boundary of, or
entirely within, the defining domain. Most relevant to this discussion are that a PF:

• is uniquely determined by either the values, or normal derivatives thereof, on the domain
boundary;

• has an average value over a spherical neighborhood equal to the value at its center;
hence, PFs do not have local maxima or minima in the domain;

• is curl-free (i.e.,∇ ×φ = 0) ensuring non-overlapping, and at most simply connected,
equipotential surfaces;

• gradient field is uniquely defined, locally orthogonal to theequipotential surfaces, and
related to the PF through,

φ(b)−φ(a) =

∫ b

a
dφ =

∫ b

a

(

∂φ

∂x
dx +

∂φ

∂y
dy+

∂φ

∂z
dz

)

. (3)

Each of these properties make PF solutions of Laplace’s equation an important tool for gener-
ating orthogonal coordinate systems.
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Generating Potential Functions

Generating orthogonal coordinate system meshes from PFs requires ascribing a physical in-
terpretation to equipotentials: they are equivalent to extrapolation steps. Similarly, the charac-
teristics of the PF gradient field are intrinsically relatedto geometric coordinate system rays.
Figure 1 illustrates these concepts for the example of 2D wave-equation migration from to-
pography. This scenario requires extrapolating a wavefieldcomprised ofM traces into the

Figure 1: Scenario of migration
from topography. The upper and
lower topographic surfaces are de-
noted τ0(z,x) and τN(z,x), respec-
tively. Connecting vertical lines are
denotedγ1(z,x) (left) and γM (z,x)
(right). The upper and lower surfaces
have equipotential values ofφ(τ0) = 1
andφ(τN) = 0, respectively, whereas
both side boundaries have zero nor-
mal derivatives. jeff1-topocoord
[NR]
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subsurface a total ofN steps, which ideally occurs directly from the topographic surface. The
upper boundary of the computational domain, denotedτ0(z,x) in this figure, is the acquisition
surface. The lower boundary, denotedτN(z,x), is the desired flat subsurface datum. These
two bounding surfaces are connected by two curves,γ1(z,x) andγM (z,x), extending between
the first and last extrapolation levels.

Solving for a PF satisfying Laplace’s equation first requires specifying appropriate bound-
ary conditions. Because distinct upper and lower equipotentials are desired, these two surfaces
must have different constant values. Thus, I choose the following boundary conditions,

φ(τ0) = 1, φ(τN) = 0,
∂φ

∂n

∣

∣

∣

∣

γ1

= 0,
∂φ

∂n

∣

∣

∣

∣

γM

= 0, (4)

where the derivative with respect to variablen is in the direction outward normal to the surface
represented byγ1 andγM .

The Laplace’s equation defined by the boundary conditions inEquation (4) is representable
by a system of equations similar those commonly solved with conjugate gradient methods
(Claerbout, 1999),

WLm ≈ 0 (5)

subject to the following constraints,

(I −W) (m−mbnd) = 0, (6)
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where model vectorm is the sought PF solution,mbnd are the values on, and exterior to, the
domain boundary, ,L = ∇2 is a Laplacian operator matrix,W is a mask operator indicating
location of the boundary, andI is the identity operator.

I use the following algorithm to obtain PF solution,m:

1. Map the irregular topographic domain to a Cartesian mesh to generate vectormbnd;

2. Fix the PF values on the boundary of, and external to, the mapped domain using the
mask operatorW;

3. Initialize the model vector with a starting guess (i.e.,m0) exploiting the smooth variation
of φ between the upper and lower surfaces (i.e., through linear interpolation ofφ on [1,0]
betweenτ0(z0,x0) andτN(z1,x0));

4. Solve system of equations in Equation (5) using a conjugate gradient algorithm (Claer-
bout, 1999), by allowing the solver to iterate until convergence is reached.

The resulting model vector,m, is the desired potential function that can be input to the phase
ray-tracing algorithm described below. Finally, as illustrated by the example below, this ap-
proach is directly applicable to 3D computational domains because conjugate gradient solvers
still work in 3D after the geometry is unwrapped on to a helical coordinate system (Claerbout,
1999).

Potential function ray tracing

The next processing step involves tracing geometric coordinate system rays from the gener-
ated PF. The goal here is to develop an orthogonal, ray-basedcoordinate system related to an
underlying Cartesian mesh through one-to-one mappings,

τ = τ (z,x, y)

γ = γ (z,x, y) where J =
∂(τ ,γ ,η)

∂(z,x, y)
6= 0, (7)

η = η(z,x, y)

whereτ is the wavefield extrapolation direction (equivalent toz in Cartesian),γ andη are the
two orthogonal directions (equivalent tox and y in Cartesian), andJ is the Jacobian of the
coordinate system transformation. Recorded wavefield,U (τ0,γ ,η), is extrapolated from the
acquisition surface defined byτ0 into the subsurface along the rays coordinate system defined
by triplet

[

τ ,γ ,η
]

.

Geometric rays are traced by solving a first-order ordinary differential equation through
integrating the PF gradient field along the gradient direction,

δφ =

∫ b(z1,x1,y1)

a(z0,x0,y0)
||∇φ||−1

[

dz
∂φ

∂z
+dx

∂φ

∂x
+dy

∂φ

∂y

]

, (8)
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wherea(z0,x0, y0) is a known lower integration bound at equipotentialφ(a), andb(z1,x1, y1)
is an unknown upper integration bound located on equipotential surface,φ(b), and||∇φ|| is
the L2 norm of the gradient function. The only unknown parameter isb(z1,x1, y1); hence,
Equation (8) is an integral equation with an unknown integration bound. This approach is
similar to phase-ray tracing method described in Shragge and Sava (2004b); however, in this
case the integration step lengths are now unknown. Note alsothat the equipotentials of the
upper and lower bounding surfaces in Equation (4) require PFsteps ofδφ = 1/N.

The following approach locates unknown integration bound,b, on the next equipotential:

1. Numerically integrate Equation (8) on the interval [a,a+ δa] whereδa is smaller than
the expected step size, and test to see whetherφ(a) −φ(a+ δa) > δφ; if yes goto step
3;

2. Numerically integrate Equation (8) on next interval [a+ δa,a+ 2δa] and test whether
φ(a)−φ(a+2δa) > δφ; if yes goto step 3; if no, repeat step 2n times until true;

3. Linearly interpolate between pointsa+ (n−1)δa anda+δa to find theb corresponding
to φ(b) = φ(a)− δφ.

A geometric ray is initiated at a particular [γ0,η0] on acquisition surface defined byτ0, and
computed by integrating through each successiveδφ step until the lower bounding surfaceτN

is reached. This procedure is repeated for allγ andη acquisition points.

NUMERICAL EXAMPLES

2D Example - Canadian Foothills

The first test of the approach is on a 2D synthetic model characterized by rugged topogra-
phy. This model is a merger of common geologic features from the Canadian Foothills in
northeastern British Columbia, Canada (Gray and Marfurt, 1995). The velocity model, shown
in Figure 2, consists of steep thrust fault planes and complex folds typical of a mountain-
ous thrust region. The topographic boundary of interest is demarcated by the velocity model

Figure 2: Example of 2D topogra-
phy from the Canadian Foothills. To-
pographic surface is the first break
in gray tone from the surface.
jeff1-Foothills.vel [ER]
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discontinuity nearest to the surface. The total relief of the model’s surface is approximately
1600 m.

Figure 3 shows the test results. The flat datum surface is at a depth of 10000 m. Left-
hand panels show the case where surface topography amplitudes are scaled down by 50%.
The top left panel shows the 2-D potential function obtainedthrough solution of Equation (5).

Figure 3: Potential functions and coordinate systems generated for the Canadian Foothills
velocity model. a) Potential function with topography scaled down by 50%; b) Potential func-
tion with correct topography; c) coordinate system developed from the potential function of
a); and d) coordinate system developed from the potential function of b). Note that increasing
the amplitude of the topography tends to (de)focus the coordinate under topographic (lows)
highs. jeff1-Plot2D [ER]

The PF is rougher nearer the surface, but smooths out to become uniform at the lower domain
boundary. The bottom left panel shows the coordinate systemray-traced from the PF presented
in the top left panel. Note that the coordinate system focuses beneath topographic maxima, and
defocuses under topographic minima. This demands that the Jacobian value in Equation (7)
diverge from unity.

The right-hand panels of Figure 3 show results similar to those in the left-hand panels,
except that the true topographic surface is restored. The top right panel shows a rougher PF,
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which is expected due to the increased topographic rugosity. The bottom right panel presents
the coordinate system ray-traced from the PF shown in the upper right panel. Relative to that
the bottom left panel, this coordinate system exhibits increased focusing and defocusing under
topographic maxima and minima, respectively.

3D Example - San Francisco Bay area Topography

Using the elevation map of the San Francisco Bay area illustrated in Figure 4, a second test was
conducted to assess the applicability of the method in 3D. The maximum surface topographic
relief is approximately 800 m; however, the elevation gradients and topographic wavelengths
are significantly smaller and longer than the 2D test illustrated in Figure 2. The flat subsurface
datum is set a depth of 8000 m. Figure 5 presents the slices through the 3D potential function

Figure 4: Elevation map of the San
Francisco Bay area used in 3D test-
ing. jeff1-Bay.2D [ER]

results. The top panel shows a depth slice at approximately zero elevation, whereas the lower
two panels show slices along Easting (bottom left) and Southing (bottom right) directions.
These profiles illustrate a PF that is smoother than the previous example.

Figure 6 shows the coordinate system generated along the same two slices shown in the
panels b) and c) of Figure 5. The generated coordinate systemmuch smoother than in the
previous example, as expected from the smoothness of the PF.Figure 7 presents a perspective
view of the ray-traced coordinate system results. The coordinate system rays are fairly straight,
except in the region beneath topographic highs. Another wayto visualize the ray coordinate
system is to examine how the topography ’heals itself’ at variousτ steps. Figure 8 illustrates
this for theτ0 (top left), τN/3 (top right),τ2N/3 (bottom left) andτN (bottom right) surfaces,
whereN is the total number of extrapolation steps. The sidebars show the elevation difference
between the lowest and highest points of each equipotentialsurface. The greyscale intensity
has been clipped according to the maximum elevation difference atτ0.

DISCUSSION AND FUTURE WORK

These examples indicate that the procedure developed in this paper can generate coordinate
systems from potential function solutions of Laplace’s equation. Tests were conducted on
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Figure 5: 3D potential function for San Francisco Bay area topography. a) depth slice of the
potential function at approximately zero elevation; b) vertical slice along Southing 20 km; and
c) vertical slice along Easting 20 km. Note that the potential function is smoother than the
previous example indicating less coordinate system focusing. jeff1-Pot3D [ER]

surfaces exhibiting moderate-to-rough topography; hence, coordinate surfaces developed for
smoother surfaces (e.g., deviated VSP wells) should be subject to less focusing than these
examples. Thus, I assert that PF-derived smooth coordinatesystems should be good for use in
RWE.

However, as the 2D rugged topography example indicates, coordinate systems under rough
topography generated by this approach probably are less well-suited for RWE. In particular,
the 2D example probably reveals that coordinate system generated through the conformal
mapping approach of Shragge and Sava (2004a) are probably better suited for RWE. This is
because wavefield extrapolation on severely focused coordinate systems requires high extrap-
olation operator accuracy. However, the real test of whether coordinate systems generated by
the above approach are appropriate for RWE ultimately lies in accurcy of resulting extrapo-
lated wavefields and corresponding images.

CONCLUDING REMARKS

Generating 2D and 3D coordinate systems using geometric ray-tracing on potential function
solutions of Laplace’s equation is a viable approach. Because of certain properties of potential
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Figure 6: Cross-section of the 3-D coordinate system developed for the San Francisco Bay
area topography. Left-hand panel: vertical slice along along Southing 20 km; and right-hand
panel: vertical slice along Easting 20 km.jeff1-Ray.slice [ER]
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Figure 7: Perspective view of the ray-traced coordinate system developed from potential func-
tion in Figure 5. jeff1-Rays3D [CR]
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Figure 8: Illustration of topographic coordinate system healing through examination of single-
extrapolation step elevation differences (in km). Top left: stepτ0; top right: stepτN/3; bot-
tom left: stepτ2N/3; and bottom right: stepτN. Sidebar shows the elevation differences
(in km), where the greyscale has clipped according to the peak elevation difference atτ0.
jeff1-Rays3D2[CR]
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functions, ray-traced coordinate systems are guaranteed to be orthogonal. Importantly, these
coordinate systems are appropriate for 3D Riemannian wavefield extrapolation, and can be
applied in numerous scenarios, including wave-equation migration directly from an undulating
2D topographic surface, and VSP imaging from deviated wells.
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