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Orthogonal mesh generation for Riemannian wavefield
extrapolation

Jeff Shragge

ABSTRACT

This paper presents a general method for generating 2D ortBDgonal coordinate sys+
tems. Developed coordinate systems are triplication frekagpropriate for use in Rie;
mannian wavefield extrapolation. This method exploits props of potential function
solutions of Laplace’s equation. | show that certain spegtiions of a potential function’s
boundary conditions lead to a physical representation ofpegential surfaces where
there are equivalent to extrapolation steps. Potentiaitfon solutions, obtained through
conjugate gradient solvers, are used subsequently in @phgdracing procedure that
generates geometric rays orthogonal to the equipotentiices. These rays collectively
define an orthogonal coordinate system linked to the unithgriZartesian mesh through
definable one-to-one mappings. The utility of this appraaayenerating coordinate sys|
tems is tested on a 2D model of rugged topography from the diam# oothills, and on
3D topography of the San Francisco Bay area.

INTRODUCTION

Wave-equation imaging is computed almost exclusively ort&S&an meshes both for com-
putational simplicity and because imaged subsurface vetuare usually rectangular par-
allelepipeds. However, situations exist where performiraye-equation imaging on more
generalized coordinate system meshes is warranted. Forpdxaextrapolating wavefields
directly from an undulating topographic surface (Shragge Sava, 2004a), orienting the
extrapolation axis of lower-order operators in the dir@ctof wavefield propagation to im-
prove higher angle accuracy (Sava and Fomel, 2004), or mgagith overturning waves not
currently modeled by one-way extrapolation operators i(Sivad Biondi, 2004). Employing
non-Cartesian meshes, though, necessitates resolviag theee issues: which coordinate
system should be chosen? how is the preferred coordingtnsgenerated? and what are the
appropriate governing wavefield extrapolation equationsHis coordinate system choice?

Non-Cartesian wavefield extrapolation theory has advamtedcent years in the con-
text of both global and exploration seismology. All of thesethods locally transform the
coordinate system and the corresponding governing prépagaquations to a more appro-
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priate reference frame linked to an underlying Cartesiaah tirough one-to-one mappings.
For example, Bostock et al. (1993) formulate an orthogdvd), plane-wave-centric coordi-
nate system appropriate for propagating overturningeedesc wavefields. Etgen (2002) and
Shan and Biondi (2004) discuss the use of tilted coordingtems that enable propagation of
overturning waves with one-way extrapolation operatoranésberg-Dahl and Etgen (2003)
and Sava and Fomel (2004) present generalized curvilimesdmate and Riemannian metric
formulations of the governing wavefield propagation edredj respectively.

Emerging with these developments are two classes of caarlsystems: those confor-
mal with the propagating wavefield direction, and those conél with pre-existing topology.
Examples of the former include coordinate systems corstuisy plane-wave decomposi-
tion (Bostock et al., 1993), and those generated using Bikequation ray-tracing (Sava and
Fomel, 2004), whereas examples of the latter include a cordiomapping transform to in-
corporate surface topography (Shragge and Sava, 2004a&seThethods, though, neither
are universally applicable, nor always practical for 3D eféeld extrapolation. For example,
ray-based methods can generate semi-orthogonal, ttipliceoordinate systems that lead to
numerical instability when propagating wavefields throeglordinate system caustics. An-
other example is that the complex mathematics of confornaglpimg surface topography does
not extend easily to 3D. Hence, formulating a general agtrdar constructing 3D orthogo-
nal coordinate systems appropriate for non-Cartesianfiedsi@xtrapolation remains an open
research topic.

This paper examines how potential function (PF) solutiohkaplace’s equation, cou-
pled with phase-ray tracing (Shragge and Sava, 2004b), earséd to generate orthogonal
coordinate system meshes. Starting with appropriate PRdawy conditions, | generate a so-
lution to Laplace’s equation for any simply connected domeing conjugate gradient solvers
(Claerbout, 1999). Importantly, the PF equipotentialsraefurfaces equivalent to wavefield
extrapolation steps. The PF gradient field, by definitioh@gbnal to equipotentials, similarly
forms geometric rays originating from the acquisition aug that collective form a ray coordi-
nate system. The most obvious example is the Cartesianinatedystem, where each depth
step surface represents an equipotential surface, andvedatal line projecting downward
defines a coordinate system ray. Mathematical properti@sRi# also guarantee that the 3D
orthogonality of equipotential coordinate systems. Helflts approach constructs computa-
tional meshes conformal to 3D geometric boundaries, ineudndulating 2D topographic
surfaces or deviated wells found in vertical seismic pradli

| begin this paper by reviewing some important propertie®Bfsolutions of Laplace’s
equation, and then outline an approach for defining a Lajslapiation appropriate for in-
corporating generalized topology of a solution domain. segjoently, | show how modified
phase-ray tracing generates a suite of geometric raysdhettvely form a coordinate system
mesh. | then demonstrate the utility of the approach by dpwed a 2D coordinate system for
the Canadian Rocky Mountain Foothills model discussed ma&le and Sava (2004a) and a
3D coordinate system conformal to the 2D topography of theF3ancisco Bay area.
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THEORY

This section discusses some important characteristick ¢foutions of Laplace’s equation
(Kellogg, 1953), and outlines how these properties can Ipdoerd to generate orthogonal
coordinate systems. Using the scenario of 2D wave-equatignation from topography,
| present appropriate boundary conditions, detail a metboabtaining potential function
solutions, and outline a ray-tracing approach. These ttwegonents collectively define and
algorithm for computing a geometric coordinate system.

Laplace’s Equation

The scalar form of Laplace’s equation is the partial diffeie@ equation,
V3¢ =0 (1)

whereV? is the second-order spatial derivative operator, @rid the sought PF. Laplace’s
equation is a special case of the Helmholtz differentiabtign,

V2 +k%p =0, 2)

when wavenumbek = 0. A physical interpretation of this observation is that ks the
zero-frequency solution of the frequency-domain waveaéign, and is independent of the
velocity field and thereby solely a geometric construct. Anf@nic PF satisfying Laplace’s
equation has a number of important properties that are edtlictr on the boundary of, or
entirely within, the defining domain. Most relevant to thisalission are that a PF:

e isuniquely determined by either the values, or normal @¢ikres thereof, on the domain
boundary;

e has an average value over a spherical neighborhood equiaé teatue at its center;
hence, PFs do not have local maxima or minima in the domain;

e is curl-free (i.e.,V x ¢ = 0) ensuring non-overlapping, and at most simply connected,
equipotential surfaces;

e gradient field is uniquely defined, locally orthogonal to dwiipotential surfaces, and
related to the PF through,

d(b)—o(a) = /d¢ /( dx +—dy+—¢dz) (3)

Each of these properties make PF solutions of Laplace’stequan important tool for gener-
ating orthogonal coordinate systems.
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Generating Potential Functions

Generating orthogonal coordinate system meshes from Rjages ascribing a physical in-
terpretation to equipotentials: they are equivalent toegadlation steps. Similarly, the charac-
teristics of the PF gradient field are intrinsically relatedyeometric coordinate system rays.
Figure 1 illustrates these concepts for the example of 2Devesyuation migration from to-
pography. This scenario requires extrapolating a wavetietdprised ofM traces into the

Figure 1: Scenario of migration /1<
from topography. The upper and m
lower topographic surfaces are de-

noted tp(z,x) and tn(z,X), respec- T1(z)

tively. Connecting vertical lines are
denotedy1(z,x) (left) and ym(z, x)
(right). The upper and lower surfaces |Yi(z.x) Yiy@x)
have equipotential values ¢fzp) =1
and¢(zn) = 0, respectively, whereas
both side boundaries have zero nor-
{nal] derivatives. |jeff1-topocoord @) X
NR >

subsurface a total dfl steps, which ideally occurs directly from the topographidace. The
upper boundary of the computational domain, deneg€d x) in this figure, is the acquisition
surface. The lower boundary, denotag(z, x), is the desired flat subsurface datum. These
two bounding surfaces are connected by two curvgg, X) andyw(z, x), extending between
the first and last extrapolation levels.

Solving for a PF satisfying Laplace’s equation first regsispecifying appropriate bound-
ary conditions. Because distinct upper and lower equigiatisrare desired, these two surfaces
must have different constant values. Thus, | choose thewiigllg boundary conditions,

0 0
p)=1, ¢(m)=0, 2 2

on =0 @)

YM

Y1
where the derivative with respect to variahles in the direction outward normal to the surface
represented by; andyy.

The Laplace’s equation defined by the boundary conditio&sjuration (4) is representable
by a system of equations similar those commonly solved wathjupate gradient methods
(Claerbout, 1999),

WLmM ~0 (5)
subject to the following constraints,

(I = W) (m —mpng) =0, (6)
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where model vectom is the sought PF solutiomynq are the values on, and exterior to, the
domain boundary, . = V2 is a Laplacian operator matri¥y is a mask operator indicating
location of the boundary, arids the identity operator.

| use the following algorithm to obtain PF solutian;

1. Map the irregular topographic domain to a Cartesian megemnerate vectonpng;

2. Fix the PF values on the boundary of, and external to, thepeth domain using the
mask operatow,

3. Initialize the model vector with a starting guess (ingg) exploiting the smooth variation
of ¢ between the upper and lower surfaces (i.e., through limeéargolation oty on [1,0]
betweenro(zo, Xo) andTn (21, Xo));

4. Solve system of equations in Equation (5) using a congugetdient algorithm (Claer-
bout, 1999), by allowing the solver to iterate until conarge is reached.

The resulting model vectom, is the desired potential function that can be input to thesph
ray-tracing algorithm described below. Finally, as ilhaseéd by the example below, this ap-
proach is directly applicable to 3D computational domaiesause conjugate gradient solvers
still work in 3D after the geometry is unwrapped on to a heloerdinate system (Claerbout,
1999).

Potential function ray tracing

The next processing step involves tracing geometric coatdisystem rays from the gener-
ated PF. The goal here is to develop an orthogonal, ray-basedinate system related to an
underlying Cartesian mesh through one-to-one mappings,

= 1(2,X,Y)
y = y(z,X,Y) where J= % # 0, (7
n= H(Z,X’Y)

wherer is the wavefield extrapolation direction (equivalenktio Cartesian)y andn are the

two orthogonal directions (equivalent ¥oandy in Cartesian), and is the Jacobian of the
coordinate system transformation. Recorded wavefigldg, y,n), is extrapolated from the
acquisition surface defined hy into the subsurface along the rays coordinate system defined

by triplet[z,y,n].
Geometric rays are traced by solving a first-order ordinafferéntial equation through
integrating the PF gradient field along the gradient dicecti
b(z1,%1.y1) ¢ 1) d¢

3
S¢p = ||V¢||‘1[dz—+dx—+d —], 8
a(z0,%0,Yo) 0z aX yay ®
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wherea(zg, Xo, Yo) is a known lower integration bound at equipoteniiéh), andb(zy, X1, Y1)

is an unknown upper integration bound located on equipiatesurface¢(b), and||V¢|| is
the L2 norm of the gradient function. The only unknown parametes(ig, x1,y1); hence,
Equation (8) is an integral equation with an unknown intégrabound. This approach is
similar to phase-ray tracing method described in ShragdeSawva (2004b); however, in this
case the integration step lengths are now unknown. Notetlaégdhe equipotentials of the
upper and lower bounding surfaces in Equation (4) requirstBps off¢ = 1/N.

The following approach locates unknown integration bouman the next equipotential:

1. Numerically integrate Equation (8) on the intervald + éa] whereda is smaller than
the expected step size, and test to see whetter— ¢(a+sa) > d¢; if yes goto step
3;

2. Numerically integrate Equation (8) on next internvahf §a,a+ 25a] and test whether
¢(a) —p(a+25a) > 4¢; if yes goto step 3; if no, repeat stem2imes until true;

3. Linearly interpolate between poirdst (n— 1)§a anda -+ 8a to find theb corresponding
to ¢(b) = ¢(a) — d¢.

A geometric ray is initiated at a particulawgf o] on acquisition surface defined hy, and
computed by integrating through each succes&ivsetep until the lower bounding surfacg
is reached. This procedure is repeated fopaind», acquisition points.

NUMERICAL EXAMPLES

2D Example - Canadian Foothills

The first test of the approach is on a 2D synthetic model clkevizaed by rugged topogra-
phy. This model is a merger of common geologic features froen@anadian Foothills in
northeastern British Columbia, Canada (Gray and Marf@®5). The velocity model, shown
in Figure 2, consists of steep thrust fault planes and caxmigliels typical of a mountain-
ous thrust region. The topographic boundary of interesematcated by the velocity model

Distance (m)
(6] 4000 8000 12000 168000 20000 24000

Figure 2: Example of 2D topogra—o
phy from the Canadian Foothills. Te-g
pographic surface is the first break”
in gray tone from the surface.
jeff1-Foothills.vel [ER]
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discontinuity nearest to the surface. The total relief @& thodel's surface is approximately
1600 m.

Figure 3 shows the test results. The flat datum surface is aptnaf 10000 m. Left-
hand panels show the case where surface topography anegliard scaled down by 50%.
The top left panel shows the 2-D potential function obtaittedugh solution of Equation (5).
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Figure 3: Potential functions and coordinate systems geéeerfor the Canadian Foothills
velocity model. a) Potential function with topography schtlown by 50%; b) Potential func-
tion with correct topography; c) coordinate system devetbfstom the potential function of
a); and d) coordinate system developed from the potentigkion of b). Note that increasing
the amplitude of the topography tends to (de)focus the e¢oatel under topographic (lows)

highs.|jeff1-Plot2D| [ER]

The PF is rougher nearer the surface, but smooths out to lgegniform at the lower domain
boundary. The bottom left panel shows the coordinate sysagrtraced from the PF presented
in the top left panel. Note that the coordinate system fogbs@eath topographic maxima, and
defocuses under topographic minima. This demands thaattwbihn value in Equation (7)
diverge from unity.

The right-hand panels of Figure 3 show results similar tes¢him the left-hand panels,
except that the true topographic surface is restored. Theigbt panel shows a rougher PF,
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which is expected due to the increased topographic rugoB bottom right panel presents
the coordinate system ray-traced from the PF shown in therujight panel. Relative to that
the bottom left panel, this coordinate system exhibitsaased focusing and defocusing under
topographic maxima and minima, respectively.

3D Example - San Francisco Bay area Topography

Using the elevation map of the San Francisco Bay area ititesdrin Figure 4, a second test was
conducted to assess the applicability of the method in 3B.MAximum surface topographic
relief is approximately 800 m; however, the elevation geats and topographic wavelengths
are significantly smaller and longer than the 2D test iltgtd in Figure 2. The flat subsurface
datum is set a depth of 8000 m. Figure 5 presents the slicegghrthe 3D potential function
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Figure 4: Elevation map of the San
Francisco Bay area used in 3D test-
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results. The top panel shows a depth slice at approximagetyaevation, whereas the lower
two panels show slices along Easting (bottom left) and Sogtfbottom right) directions.
These profiles illustrate a PF that is smoother than the puevexample.

Figure 6 shows the coordinate system generated along the tsemrslices shown in the
panels b) and c) of Figure 5. The generated coordinate systecm smoother than in the
previous example, as expected from the smoothness of tHeédRfe 7 presents a perspective
view of the ray-traced coordinate system results. The d¢oate system rays are fairly straight,
except in the region beneath topographic highs. Anothertawaysualize the ray coordinate
system is to examine how the topography ’'heals itself’ aioverr steps. Figure 8 illustrates
this for thero (top left), zn/3 (top right), 7on 3 (bottom left) andry (bottom right) surfaces,
whereN is the total number of extrapolation steps. The sidebans she elevation difference
between the lowest and highest points of each equipotentiédce. The greyscale intensity
has been clipped according to the maximum elevation diffsgatrg.

DISCUSSION AND FUTURE WORK

These examples indicate that the procedure developedsipéper can generate coordinate
systems from potential function solutions of Laplace’'san. Tests were conducted on
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Figure 5: 3D potential function for San Francisco Bay argetwaphy. a) depth slice of the
potential function at approximately zero elevation; b)i\al slice along Southing 20 km; and
c) vertical slice along Easting 20 km. Note that the poteifitiaction is smoother than the

previous example indicating less coordinate system fogugeff1-Pot3D| [ER]

surfaces exhibiting moderate-to-rough topography; heoserdinate surfaces developed for
smoother surfaces (e.g., deviated VSP wells) should bessuty less focusing than these
examples. Thus, | assert that PF-derived smooth coordsyatems should be good for use in
RWE.

However, as the 2D rugged topography example indicatesgdowde systems under rough
topography generated by this approach probably are legssuitgd for RWE. In particular,
the 2D example probably reveals that coordinate systemrgestethrough the conformal
mapping approach of Shragge and Sava (2004a) are probaldy beited for RWE. This is
because wavefield extrapolation on severely focused auatelsystems requires high extrap-
olation operator accuracy. However, the real test of whetberdinate systems generated by
the above approach are appropriate for RWE ultimately hescicurcy of resulting extrapo-
lated wavefields and corresponding images.

CONCLUDING REMARKS

Generating 2D and 3D coordinate systems using geometritraiayng on potential function
solutions of Laplace’s equation is a viable approach. Beeadficertain properties of potential
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Figure 6: Cross-section of the 3-D coordinate system deeeldor the San Francisco Bay
area topography. Left-hand panel: vertical slice along@l8outhing 20 km; and right-hand
panel: vertical slice along Easting 20 kijeff1-Ray.slic¢ [ER]
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Figure 7: Perspective view of the ray-traced coordinateesysieveloped from potential func-

tion in Figure 5/jeff1-Rays30 [CR]
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Figure 8: lllustration of topographic coordinate systeralimg through examination of single-
extrapolation step elevation differences (in km). Top:lstepro; top right: stepry/s; bot-
tom left: steprons; and bottom right: stepy. Sidebar shows the elevation differences
(in km), where the greyscale has clipped according to thé péavation difference ato.
|jeff1-Rays3DZ[CR]
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functions, ray-traced coordinate systems are guarantele btrthogonal. Importantly, these
coordinate systems are appropriate for 3D Riemannian wesledixtrapolation, and can be
applied in numerous scenarios, including wave-equati@natipn directly from an undulating
2D topographic surface, and VSP imaging from deviated wells
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