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Unified seismic-wave imaging - from data space to model space

Huazhong Wang and Guojian Shan1

ABSTRACT

Under operator, matrix and inverse theory, seismic-wave imaging can be considered a uni-
fied process—mapping from data space to model space. The maintopics in seismic-wave
imaging include (1) seismic-data interpolation, regularization and redatuming, which
mainly decrease the imaging noise; (2) seismic-wave illumination analysis, which pre-
dicts whether a target reflector can be imaged and evaluates the suitability of an acquisi-
tion configuration in the case of rugged topography and severe lateral velocity variations;
and (3) seismic-wave migration/inversion imaging algorithms, which give an imaging re-
sult with the help of a wave propagator, known a macro-velocity model. The last and
most important thing is to build an accurate macro-velocitymodel. All of the processes
can be considered with the conjugate operator/matrix underleast-squares theory. In this
article, we review the following topics: (1) expression of data space and model space;
(2) affiliation between data space and model space; (3) seismic-data preprocessing; (4)
seismic-data illumination; (5) migration imaging and inversion imaging as least-squares
inverse problems; (6) amplitude-preserving migration imaging with wavefield extrapola-
tion; (7) migration velocity analysis and inversion and (8)some related topics. We express
the imaging process with the operator or matrix theory and give some directions for further
research.

INTRODUCTION

Seismic-wave imaging can be seen as a mapping from data spaceto model space. The ob-
jective is to position reflectors and to quantitatively estimate the physical parameters of the
medium (such as reflectivity, P-wave velocity, S-wave velocity and density).

From the view of the historical development of seismic wave imaging, there are two ways
to reach the goal. The first approach is seismic-wave migration technologies commonly used
in the oil industry at present, which includes estimating low-wavenumber macro-velocity (with
NMO+DMO velocity analysis, migration velocity analysis ortraveltime tomography), posi-
tioning the reflectors and qualitatively estimating the reflectivity. However, quantitatively es-
timating reflectivities (which is called amplitude-preserving imaging or true-amplitude imag-
ing) is currently much more actively pursued by the oil industry and academia. Seismic-wave
illumination analysis, migration convolution, least-squares migration, and amplitude analysis
of angle gathers are being given increased attention by manyauthors (Chavent and Plessix,
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1999; Gray, 1997; de Bruin et al., 1990; Black et al., 1993; Bleistein et al., 1999; Nemeth
et al., 2000; Brandsberg-Dahl et al., 2003). All of these endeavors aim for clearer imaging
and more quantitative reflectivity. The second approach is seismic-wave inversion, which di-
rectly and quantitatively estimates the physical contrastparameters of rocks (such as P-wave
impedance, S-wave impedance and density).

The advantages of the first approach are that reflectors can bepositioned step by step, and
that reflectivity estimation can take advantage of many signal/noise enhancement technologies,
macro-velocity analysis techniques and migration imagingmethods. The procedure can be
easily controlled and adjusted, and its calculation cost can be afforded by present computer
systems. The geological and lithological knowledge about asurvey area can be easily used for
adjusting the final imaging results. The disadvantage of this conventional approach is its lack
of a unified theoretical framework. Therefore, it is difficult to guarantee the reliability of the
quantitative estimation of reflectivities.

The second approach has two subcategories: direct inversion methods (Bleistein et al.,
1987; Wu and Toksoz, 1987; Miller et al., 1987), and iterative inversion methods (Taran-
tola, 1984; Mora, 1987, 1988; LeBras and Clayton, 1988; Chavent and Jacewitz, 1995; Pratt,
1999). Both have elegant theoretical expressions. However, the inverse problems are inher-
ently ill-posed and the solutions are unstable and nonunique if the observed data set has certain
flaws, including frequency band-limitation, aperture limitation, non-Gaussian noise, and/or an
unknown source function. An unsuitable modeling algorithmor non-linearity between the
observed data and geophysical parameters will also cause problems. In addition, the calcu-
lation costs of these methods often exceed the capacities ofpresent computer systems. Until
recently, only 2D inversion algorithms can be used in practice. The direct-inversion approach
requires an analytical expression, which can be given analytically only in the case of constant
background or slow background variance. Otherwise, the approach cannot produce a satisfac-
tory result. Iterative inversion problems deal with eithermaximum-probability solutions for a
Gaussian probability-density function or least-squares solutions of anl2-norm problem. These
kinds of inverse problems need huge numbers of iterative modeling calculations.

At present, some trends indicate that standard seismic-wave migration imaging and inver-
sion imaging are merging. The problem at the point of intersection is how to quantitatively
estimate the reflectivity. How the shot and receiver configurations affect the imaging reso-
lution and the amplitude of the estimated reflectivity is a question relevant to both imaging
approaches.

We think that it is worthwhile to investigate how to generateamplitude-preserving common-
image gathers with inversion imaging approaches, while also considering how to include
seismic-wave-illumination effects and irregular data sets.

In this research proposal, we review the following topics: (1) expression of data space
and model space; (2) relationship between data space and model space; (3) seismic-data pre-
processing; (4) seismic-data illumination; (5) migrationimaging and inversion imaging as a
least-squares inverse problem; (6) amplitude-preservingmigration imaging with wavefield ex-
trapolation; (7) migration-velocity analysis or macro-velocity inversion and (8) some other
related topics. We try to express the imaging process withinthe context of inverse theory and
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give some directions for further research.

EXPRESSION OF DATA SPACE AND MODEL SPACE

First, we give a general expression of the data space and model space for seismic-data imaging.

In general, seismic data acquired at the surface or in a well is presented asd
(

Em, Eh,ω
)

or

d (Es, Eg,ω). We can use the following special variables to depict data space: azimuth, offset,
and CMP coordinate, or azimuth, offset, shot-point coordinate and receiver-point coordinate
respectively. These special variables completely define a data space or a seismic data set.

Model space can be characterized with as many different approaches as there are different
applications. We define the model space as one which characterizes the interior of the earth,
such as a velocity field, an impedance field, a stacked imagingvolume, or common-image
gathers, etc.. Basically, the model space is expressed asm (i 4x, j4y,n4z), with evenly dis-
cretized intervals. We usually present the velocity model or stacked imaging data volume in
this form.

In some models, the subsurface floats in a velocity (or other physical parameter) field.
The subsurface is a very important component of a physical parameter model, which shows
the geometry of a geological structure. Reflectivities, forexample, are defined in the sub-
surface. Therefore, common-image gathers and AVO/AVA analysis have a close relation
to the subsurface. In fact, the subsurface plays a key role inmacro-velocity model build-
ing (Mora, 1989; Cao et al., 1990; Pratt and Hicks, 1998). Angle gathers are expressed as
m (i 4x, j4y,γ (α,ϕ) ,n4z), whereγ is an incident angle (between the incident ray and the
normal ray of a reflector) or an emerging angle (between the emerging ray and the normal
ray); ϕ is the azimuth angle; andα is the dipping angle of a reflector. In macro-velocity in-

version, the model space is commonly expressed asm
(

r k
xi

,r k
yj

,vk
f unc,r

k
zn

)

, wherevk
f unc is a

velocity function attached to a reflector, which is given a concrete formula for each specific
application;r k

xi
is the horizontal coordinate ofi th point on thekth reflector, andr k

xi
andr k

zn

have a meaning similar tor k
xi

.

How to evaluate data space and model space

What is a good observed data space? What is a good estimated model space?It is difficult
to answer these two questions, because the answers depend onthe practical applications. Up
to now, the acquisition systems basically can be divided into three classes: Cased1: Full-area
acquisition system. A 3D survey area is discretized into a regular grid, and each grid point
has a receiver point and a shot point. This is an ideal case, inwhich a data set has an even
azimuth interval, offset interval and CMP interval. Such a data set is a complete one. In prac-
tice, to minimize acquisition costs, a receiver is put at each grid point, and the shot points are
arranged depending on the on-site situations. Cased2: Wide-azimuth acquisition system with
partial sacrifice of cross-line aperture. The land acquisition system belongs to this category.
It is difficult to maintain even azimuth intervals and even offset intervals because of complex
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variations of the surface and near-surface, and the consideration of acquisition efficiency and
costs. Commonly, we have to move the shot point to an advantageous location, sacrificing
spatial regularization. Cased3: Narrow-azimuth acquisition system with complete sacrifice of
cross-line aperture. The present marine acquisition system belongs in this category. It is easy
to achieve an even azimuth and even offset, but the data set isincomplete because it lacks the
cross-line aperture. This acquisition system is not suitable in cases of complex structure vari-
ance along the cross-line direction. Similarly, we can divide the model space into three cate-
gories: Casem1, with a flat surface and some flat subsurfaces; Casem2, with a flat surface and
some complex subsurfaces; and Casem3, with a rough topography and some complex subsur-
faces. Table 1 gives the relationship between the data spaceand model space in different cases.

d_1 d_2 d_3
m_1 even azimuth interval,

even offset interval and
even CRP illumination;
a complete data set

uneven azimuth inter-
val, uneven offset inter-
val and basically even
CRP illumination;

even azimuth interval,
even offset interval and
even CRP illumination

m_2 even azimuth interval,
even offset interval and
uneven CRP illumina-
tion

uneven azimuth inter-
val, uneven offset inter-
val and uneven CRP il-
lumination

even azimuth interval,
even offset interval and
uneven CRP illumina-
tion

m_3 even azimuth interval,
uneven offset interval
and uneven CRP illumi-
nation

uneven azimuth inter-
val, uneven offset inter-
val and uneven CRP il-
lumination

even azimuth interval,
uneven offset interval
and uneven CRP illumi-
nation

From

the table, we know that wide-azimuth acquisition gives wider aperture in the cross-line direc-
tion. However, this also causes an uneven azimuth interval and uneven offset interval, which
will result in a noisy image. Narrow-azimuth acquisition can give an even azimuth interval
and even offset interval but sacrifices the cross-line aperture. Our conclusion can be summa-
rized with following statements: In Casem1, the regularization of the data space yields an
even sampling of the model space. In a geologically symple medium, a good data set is one
with an even azimuth interval, an even offset interval and aneven CMP interval. In Cases
m2 andm3, a good data set is one with an even azimuth interval, an even offset interval and
aneven CRP illumination. In practice, even CRP illumination commonly means that a data
set is irregular. There exists a trade-off between the even illumination and the regular data
set. Since an irregular acquisition configuration generally yields a noisy image, a field data
set should be preprocessed to be regular. On the other hand, bad illumination causes a vague
image or no image, or yields false amplitude; therefore, theillumination deficiency should be
compensated with other information from well-logging, rock physics or geology data. From
the perspective of prestack imaging, assuming the macro-velocity model is accurate enough,
a good model space can be defined asone which has an amplitude-preserving angle gather
on each point of a reflector at each azimuth, which is the main goal of seismic-wave imaging
(Shin and Min, 2001; Plessix and Mulder, 2004).
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RELATIONSHIP BETWEEN DATA SPACE AND MODEL SPACE

Data space can be related to model space with the following formula:

d
(

Em, Eh,ω
)

= Lm ( Em,γ (α,ϕ) ,n4z) , (1)

where the modeling operatorL is can be a Green’s function, a one-way or two-way wave
equation, or a more complex wave equation suitable for wavefield extrapolation or model-
ing. Wavefield extrapolation and modeling operators were exhaustively studied by many au-
thors (Hale, 1991c,a; Stoffa et al., 1990; Ristow and Ruhl, 1994; Huang et al., 1999; Biondi,
2002; Li, 1991; Docherty, 1991; Berkhout and Wapenaar, 1989; Wapenaar et al., 1989; Mar-
furt, 1984). However, prestack depth migration imaging is mostly implemented with one-way
acoustic wave equations, which is one of the reasons it cannot achieve true-amplitude images.
If a one-way wave equation is used for migration imaging, allwave phenomena except the pri-
mary reflection wave are processed as noise. In fact, if quantitative reflectivity is the objective
of imaging, a two-way acoustic, or even elastic, wave equation should be used (Mora, 1988;
Pratt, 1999; Pratt and Shipp, 1999).

SEISMIC DATA PREPROCESSING

As discussed above, seismic-wave imaging needs a suitable data set. In general cases, real
data sets have some drawbacks. For example, the spatial sampling of land data commonly is
too coarse and/or irregular; marine data sets commonly showfeathering. Therefore, seismic-
data preprocessing is necessary. Seismic-data preprocessing deals with the signal-to-noise en-
hancement, wavelet correction, seismic-data regularization and interpolation, and redatuming.
The latter three terms are closely related to seismic-wave imaging. Seismic data regularization,
interpolation and redatuming can be seen as a seismic-data mapping under the least-squares
theory. An irregular seismic-data set from on-site field acquisition can be expressed as follows:

dobs = Lm, (2)

whereL is an ideal seismic-wave propagator, andm is an ideal underground medium model.
From the irregular observed seismic-data, an underground medium model can be estimated:

m̂inv =
[

(

L̂∗
)T

L̂
]−1

(

L̂∗
)T

dobs (3)

whereL̂ is the practical seismic wave propagator, which can be written as a complex matrix.
(

L̂∗
)T

is a conjugate transpose matrix of the matrixL̂ . Substituting the estimated model into
equation (3), the estimated and regular data set can be found:

d̂reg = L
[

(

L̂∗
)T

L̂
]−1

(

L̂∗
)T

dobs. (4)

In equation (4), the ideal wave propagatorL is unknown, but it can be replaced with the
practical wave propagator̂L . Therefore, equation (4) can be rewritten as

d̂reg = L̂
[

(

L̂∗
)T

L̂
]−1

(

L̂∗
)T

dobs = L̂ H−1(L̂∗
)T

dobs, (5)
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whereH =
(

L̂∗
)T

L̂ is a Hessian matrix which acts as a filter. If we choose the filter as an ideal
full-pass one, that is,H = I, equation (5) can be rewritten as

d̂reg = L̂
(

L̂∗
)T

dobs, (6)

which is a general seismic data mapping frame. Up to now, the seismic data mapping can be
implemented withDMO + DMO−1 or PSTM + PSTM−1(Biondi et al., 1998; Canning and
Gardner, 1996; Ronen, 1987; Bleistein et al., 1999).

Redatuming also can be carried out with equation (5). The formula for redatuming should
be modified as follows:

d̂datum= L̂2

[

(

L̂∗
1

)T
L̂1

]−1
(

L̂∗
1

)T
dobs = L̂2H−1(L̂∗

1

)T
dobs, (7)

whered̂datum is a new and regular data set extrapolated from a topographicsurface to another
surface which may be a horizontal or non-horizontal datum.L̂T

1 is the propagator correspond-
ing to the topographic surface, and̂L2 is the propagator to a horizontal datum. Now the
Hessian matrixH has a relation to the topography and the acquisition configuration. Similarly,
if the Hessian matrix is an ideal full-pass filter, equation (7) can be rewritten as

d̂datum= L̂2
(

L̂∗
1

)T
dobs. (8)

However, if a suitable Hessian filter is chosen, the quality of data mapping will be improved
further. Next, we discuss data regularization with common-offset prestack time migration and
the necessity of anti-aliasing for processing land data sets.

Common-offset prestack time migration and data regularization

The time-distance relation for a shot-receiver pair is

√

(x −hx)2 +
(

y−hy
)2

+ z2 +

√

(x +hx)2 +
(

y+hy
)2

+ z2 = vth, (9)

whereth is the two-way traveltime of a non-zero-offset shot-receiver pair,hx is the in-line com-
ponent of the half-offset, andhy is the cross-line component of the half-offset. For simplicity,
the connection line of the shot and receiver points is parallel to thex-axis of the Cartesian
coordinate system. Therefore, we have the following simpleequation which delineates the
isochron surface of the prestack migration:

(

x́

ax́

)2

+

(

ý

aý

)2

+

(

z

az

)2

= 1, (10)

whereax́,aýandaz are the half-lengths of the axes of the rotary isochron ellipse in the case of

constant velocity. If ´y = z= 0, thenax́ = x́ = vth
2 ; If x́ = z= 0, thenaý = ý =

√

(

vth
2

)2
−h2 =
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vtn
2 ; If x́ = ý = 0, thenaz = z =

√

(

vth
2

)2
−h2 = vtn

2 . The variabletn is the two-way traveltime
after NMO. Equation (10) can be rewritten as

(

x́
vth
2

)2

+

(

ý
vtn
2

)2

+

(

z
vtn
2

)2

= 1. (11)

Further, equation (11) can be changed into

x́2

1+
(

2h
vtn

)2 + ý2 + z2 =

(

vtn
2

)2

. (12)

Defining X́2 = x́
√

1+

(

2h
vtn

)2
yields:

X́2 + ý2 + z2 =

(

vtn
2

)2

. (13)

Equation (13) is in the form of a poststack migration. Therefore, prestack migration can be
explained as a poststack migration on a post-NMO data set. Weknow that

kX́ = kx́

√

1+

(

2h

vtn

)2

. (14)

Therefore, the dispersion relation of equation (13) is

(v

2

)2[

k2
X́

+k2
ý +k2

z

]

= ω2
n. (15)

Substituting (14) into the above formula yields

(v

2

)2
[

k2
x́

(

1+

(

2h

vtn

)2
)

+k2
ý +k2

z

]

= ω2
n, (16)

which can be rewritten as follows:

kz = −sgn(ωn)

√

√

√

√

(

2ωn

v

)2

−

(

1+

(

2h

vtn

)2
)

k2
x −k2

y. (17)

This is the dispersion relation of the common-offset prestack migration equation. In the time
domain, the dispersion relation is

kτ = −sgn(ωn)

√

√

√

√ω2
n −

(

v (τ )

2

)2
[(

1+

(

2h

v (τ ) tn

)2
)

k2
x +k2

y

]

. (18)
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Therefore, common-offset prestack time migration (PSTM) can be implemented with the fol-
lowing relation:

m
(

ωτ ,kx,ky
)

=

∫

dtn J
{

e−iωτ Atnd
(

tn,kx,ky,h
)}

. (19)

The term in the braces represents the wave-field extrapolation, and the integral attn = 0 serves
to extract the imaging values. Then, the common-offset inverse PSTM is

d
(

tn,kx,ky,h
)

=

∫

dωτ

1

A

{

eiωτ Atnm
(

ωτ ,kx,ky
)}

. (20)

Similarly, the term in the braces represents the wave-field extrapolation, which is an inverse
migration. The integral is an inverse Fourier transform.

In the presence of moderate lateral velocity variations, prestack time migration can be
expressed as follows:

m
(

τ ,mx,my
)

=

∫

dxs

∫

dxgW1e−iω[ t−(ts+tg)]d
(

t ,xs,xg,h
)

,

=

∫

dxs

∫

dxgW1d
(

t ,xs,xg,h
)

δ
(

t = ts + tg
)

, (21)

wheret = ts + tg =

√

(

mx−hx
vrms

)2
+
(

my−hy
vrms

)2
+
(

τ

2

)2
+

√

(

mx+hx
vrms

)2
+
(

my+hy
vrms

)2
+
(

τ

2

)2
. W1 is

the amplitude weight, andτ is the two way traveltime along the imaging ray.

The inverse PSTM is

d
(

t ,xs,xg,h
)

=

∫

dmx

∫

dmyW2e−iω[ t+(ts+tg)]m
(

τ ,mx,my
)

,

=

∫

dmx

∫

dmyW2m
(

τ ,mx,my
)

δ
(

t = −
(

ts + tg
))

. (22)

Bleistein and Stockwell (2000) give a general theory of datamapping. From here, we will
develop some practical approaches for data mapping.

Aliasing and anti-aliasing

From the discretized data space, the discretized model space, and their relation formula,

d
(

mxi ,myj ,hxk,hxl ,zn,ω
)

= Lm
(

mxi ,myj ,n4z
)

, (23)

some causes of aliasing can be clearly seen. The sources of aliasing can be divided into the
following three types:

(1) Overly coarse sampling intervals. For example,4Es and/or4Eg, 4 Em and/or4Eh are too
coarse, where4Es and4Eg are the shot-point and receiver-point intervals respectively, and4 Em
and4Eh are the CMP and half-offset intervals, respectively.
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(2) Unsuitable modeling or imaging operators, such as the integrated DMO operator (Hale,
1991b), or the Kirchhoff integral operator (Zhang et al., 2003; Biondi, 2001; Abma et al., 1999;
Druzhinin, 1999).

(3) Insufficient output resolution, where the output spatial intervals, such as4 Emand4zare
too coarse. We can analyze the aliasing in the cases of shot-gather migration, receiver-gather
migration, common-offset gather migration, and midpoint half-offset domain migration.

Aliasing in shot gather migration is described by the following equation:

I ( Em,z) =
∑

Sk

∑

ω

S∗ ( Em,z|Sk) R( Em,z|Sk) , (24)

whereS∗ ( Em,z|Sk) is the conjugate of the extrapolated shot wave-field;R( Em,z|Sk) is the ex-
trapolated receiver wave-field.Sk stands for theK th common-shot gather. In general, single
common-shot-gather imaging presents no aliasing, becausethe receiver-point interval is eas-
ily arranged regularly and small enough. However, imaging an entire 2D line or 3D area will
present severe aliasing problems because of the irregular and large shot-point intervals.

Aliasing in receiver-gather migration is described by the following equation:

I ( Em,z) =
∑

Rk

∑

ω

S∗
sort

(

Emk,z|Rk

)

Rsort

(

Emk,z|Rk

)

, (25)

whereS∗
sort

(

Emk,z|Rk

)

is the extrapolated so-called shot wavefield, which corresponds to a

specific receiver point;Rsort

(

Emk,z|Rk

)

is the extrapolated receiver wavefield, which is sorted

from shot gathers.Rk stands for theK th common-receiver-gather. In general, single common-
receiver-gather imaging profiles are susceptible to aliasing.

Aliasing in midpoint half-offset domain migration followsequation (26):

I ( Em,z) =
∑

h

∑

ω

U
(

Em, Eh,ω,z
)

, (26)

whereU
(

Em, Eh,ω,z
)

is the extrapolated wavefield with a double-square-root equation. Alias-

ing will result if 4 Em and/or4Eh are too coarse.

Aliasing in common-offset-gather migration is described by the following equation:

I ( Em,z) =
∑

hk

∑

ω

U ( Em,hk,ω,z) , (27)

whereU ( Em,hk,ω,z) is the extrapolated wavefield with a double-square-root equation. Alias-
ing will result if 4 Em is too coarse.

In the case of rugged topography, the geometry of the acquisition configuration becomes
more and more irregular, especially the shot-point coordinates. Therefore, antialiasing pro-
cessing is necessary in redatuming, seismic data regularization and migration imaging for
land-data imaging.
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SEISMIC WAVE ILLUMINATION ANALYSIS

Seismic-wave illumination becomes increasingly problematic in regions with rugged topogra-
phy and complex geological structure with severe lateral velocity variations. In these hostile
cases, we think that seismic-wave illumination is much moreimportant than seismic-data reg-
ularization. Without enough illumination for the target reflectors, regular seismic data can not
guarantee a quality image.

Seismic-wave illumination is related to the macro-velocity model and the acquisition con-
figuration, both of which are embodied in the Green’s function. In fact, seismic-wave illu-
mination analysis inherently is an issue of seismic-wave propagation and observation in the
presence of complex velocity structure. Whether a seismic wave reaches a target reflector and
whether the reflected wave is received are both important.

Wu and Chen (2002) analyze seismic-wave illumination with Beamlet Propagators. With
directional illumination maps, the illumination of a reflector is demonstrated. Berkhout et al.
(2001); Volker et al. (2001) discuss how the imaging resolution and amplitude are affected
by the acquisition geometries with focal beams: emission-focusing and detection-focusing.
However, neither methods deals with the compensation for illumination deficiency from the
perspective of inverse imaging.

In least-squares inversion theory, the Hessian matrix—thesecond-order derivatives of the
wavefield about the perturbation of a physical parameter—isgiven. The Hessian matrix is
closely related to the seismic-wave illumination of a target reflector.

The two important issues of seismic-wave illumination analysis are (1) compensating for
illumination deficiencies and (2) evaluating acquisition patterns and guiding their design.

Seismic-wave migration imaging can be represented by the following matrix equation:

m =
(

L∗
)T d, (28)

where

d =
(

dx1,dx2, ...,dxn

)T
, (29)

and

m =
(

mx1,mx2, ...,mxl

)T
, (30)

(

L ∗
)T

=









L∗
11 L∗

12 · · · L∗
1n

L∗
21 L∗

22 · · · L∗
2n

. . . . . . . . . . . . . . . . . .
L∗

l1 L∗
l2 · · · L∗

ln









. (31)

The indexl is the number of imaging points or scattering points along the in-line direction in
the Zth layer; n is the number of shot-receiver pairs;L∗

i j are the complex amplitudes of the
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conjugate Green’s functions corresponding to the imaging points. In the matrix (L ∗)T , each
row is a Green’s function for an imaging point in theZth layer. In fact, equation (28) is the
Kirchhoff integral migration formula expressed in matrix form.

However, if seismic-wave illumination is considered, the concept of double focusing (emis-
sion focusing and detection focusing) should be introducedinto the general migration-imaging
formula (28), following Berkhout’s notation (Berkhout et al., 2001; Volker et al., 2001):

DLU RL DS= dobs. (32)

The matrix formula stands for the emission of a wavefield fromthe sourceSand the detection
by the receiversD; meanwhile the energy of the wavefield propagates downward to the reflec-
tor R with an ideal propagatorL D, and is reflected back to the surface;LU is an ideal upward
propagator.

DefiningFU = (D∗)T (L∗U
)T

andFD =
(

L∗D
)T

(S∗)T gives us the formulae for detection
focusing and emission focusing, respectively. Together, they represent the illumination of a
point on a reflector.

We will analyze the seismic-wave illumination of a target reflector with the local Hessian
matrix and compare this with the double-focusing approaches.

MIGRATION IMAGING AND INVERSION IMAGING AS A LEAST-SQUARES
PROBLEM

Seismic-wave imaging can be expressed as a least-squares inversion problem,

min|dcal −dobs|2, (33)

where, given an underground geological model characterized with some parameters such as
P-wave velocity, S-wave velocity, and/or density, or a reflectivity image, we then create a
synthetic data set which minimizes the "distance" between the calculated data set and the
observed data set.

The solution of the inverse problem is expressed as follows:

ˆminv =
[

(

L̂∗
)T

L̂
]−1

(

L̂∗
)T

d̂
obs

= H−1(L̂∗
)T

d̂
obs

(34)

= H−1 ˆmmig,

or

ˆminv =
[

(

L̂∗
)T

L̂
]−1

(

L̂∗
)T

d̂
reg

= H−1(L̂∗
)T

d̂
reg

(35)

= H−1 ˆmmig,

or

ˆminv =
[

(

L̂∗
)T

L̂
]−1

(

L̂∗
)T

d̂
datum

= H−1(L̂∗
)T

d̂
datum

(36)

= H−1 ˆmmig.
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Similarly, if we assume Hessian matrix is a unitary matrix, equation (35), (36), and (37)
all degenerate to

ˆmmig =
(

L̂∗
)T

d̂
obs

. (37)

Migration imaging avoids the matrix inversion by replacingthe general inverse with a

conjugate-transpose operator
(

L̂∗
)T

. The advantage of the processing is to change an ill-
posed inverse problem into a well-posed wavefield backpropagation problem, which is quite
stable and robust (Ronen and Liner, 2000; Duquet et al., 2000; Chavent and Plessix, 1999;
Nemeth et al., 1999; Chavent and Plessix, 1999). In fact, migration imaging mainly locates

the reflector and gives only a qualitative estimate of the reflectivity.
(

L̂∗
)T

is the two-way
or one-way propagator, which commonly is expressed in the form of the conjugate Green’s
function.

In fact, the quantitative estimation of the reflectivity should take advantage of inverse
imaging. If we consider the reflectivity imaging as a weighting summation, equation (37)
gives an unsuitable weight function. Bleistein and Stockwell (2000) discuss in detail about
how to choose a suitable weight function.

The inverse of the Hessian matrix is just a deconvolution operator, which modifies the
unsuitable weight function of the migration imaging. Therefore, equation (35) can give more
accurate estimate of the reflectivity than can the migrationimaging (equation (37).

If equation (35) is rewritten as

m̂inv = H−1m̂mig, (38)

it is clear that Hessian matrix is a deconvolution operator,which improves the resolution of
migration results (Hu et al., 2001). We will consider how to quantitatively estimate the reflec-
tivity with inverse imaging and determine the conditions under which direct inverse imaging
and iterative inverse imaging are equivalent.

RELATIONSHIP BETWEEN WAVEFIELD-EXTRAPOLATION IMAGING AN D
INVERSE IMAGING

At the scattering point, we can define a "distance" or norm as

E(R) =

ωmax
∑

ωmin

(US−UI R)2dω, (39)

whereR is the reflectivity,US is the wavefield downward extrapolated to a reflector, andUI

is the wavefield downward propagated to the reflector. The scattering wavefieldUS should
be equal to or close to the convolution result between the wavefield UI and the reflectivity.
Letting

∂E

∂ R
= 0, (40)
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we have

−2
ωmax
∑

ωmin

(US(ω)−UI (ω) R)UI (ω)dω = 0, (41)

If the incident wavefield equals zero, equation (41) is satisfied. However this case has no
physical meaning. If the incident wavefield does not equal zero, then,

R =

ωmax
∑

ωmin

US

ωmax
∑

ωmin

UI

. (42)

In the complex domain, we can rewrite equation (42) as

R =

ωmax
∑

ωmin

USU∗
I

ωmax
∑

ωmin

UI U∗
I

. (43)

If the incident wave is quite weak, the following regularization should be introduced:

R =

ωmax
∑

ωmin

USU∗
I

ωmax
∑

ωmin

(

UI U∗
I +ε

)

, (44)

whereε is the regularization coefficient. In fact, the reflectivityis related to the incident angle
to a reflector of the plane-wave component of a seismic wave. Therefore, we should modify
equation (44) into the following form to reach the angle gathers:

R(p) =

ωmax
∑

ωmin

US(ω,p)U∗
I (ω,p)

ωmax
∑

ωmin

(

UI (ω,p)U∗
I (ω,p)+ε

)

, (45)

whereUS(ω,p) andU∗
I (ω,p) are a scattering plane wavefield and an incident plane wavefield,

respectively. In fact, the extrapolated wavefield can be defined as

US =
(

L̂∗
)T

d̂
obs

. (46)

Therefore, in the frequency domain, equation (44) can be rewritten as

R =

ωmax
∑

ωmin

(

L̂∗U
)T

d̂
obs(

L̂∗D
)T

ωmax
∑

ωmin

(

L̂ D
(

L̂∗D
)T

+ε

)

. (47)

We will further discuss this topic later to clarify the relationship.
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RELATED TOPICS

Angle gathers

Common-image gathers are closely related to the angle reflectivity, which can be used for
AVA analysis or AVA inversion. Unfortunately, macro-velocity errors will cause amplitude
aberrations in common-image gathers. Therefore, some traps in AVA analysis or inversion
should be carefully avoided. However, residual depth or time differences are present in the
common-image gathers if macro-velocity field has errors; these differences can be used for
migration velocity analysis.

On the other hand, the amplitude-preserving common-image gathers may be generated
from inverse imaging.

Wavefield propagator

In seismic-wave migration imaging, the conjugate-transpose matrix
(

L̂∗
)T

stands for the back-
propagation of the observed wavefield. Therefore, the wavefield propagators are the basis for
seismic-wave imaging.

For constructing a wavefield propagator, we introduce the following methods: (1) a hybrid
wavefield propagator, that is, the split-step-Fourier propagator plus optimal interpolation with
a self-adaptive reference velocity choice; and (2) a local and directional wavefield propagator,
which can be designed with the local Fourier transform and local plane wave/Gaussian beam,
for target-oriented imaging (Hill, 2001, 1990; Soubaras, 2003).

MIGRATION VELOCITY ANALYSIS/INVERSION

The macro-velocity field has a decisive influence on seismic-wave imaging. Unfortunately,
it is not easy to accurately estimate the velocity field from the seismic data. Up to now, the
residual depth/time difference in the common-image gathers has been used for migration-
velocity analysis (MVA) or inverting the macro-velocity distribution. However, in the case of
complex topography and gelogical structures, MVA is not a successful approach. Therefore,
seismic-wave imaging in complex survey areas has a long way to go. We propose the following
approach to inverting the macro-velocity field. The norm is defined as

E = W1

(

U k+1
S −U k

S

)2
+ W2

(

4Sk+1
m −4Sk

m

)2
+ W3

(

Rk+1 − Rk)2 , (48)

wherek stands for the iterative number;US is the calculated scattering wavefield.R is the
position of the main reflectors, which can be identified from the migrated profile.4Sm is the
slowness disturbance field.W1,W2 andW3 are the different weights. According to Bleistein
(2000,p.39), the calculated scattering wavefield can be given by

US
(

Exg, Exs,ω
)

= ω2
∫ ∞

0

α (Ex)

c2 (Ex)
UI (Ex, Exs,ω)g

(

Ex, Exg,ω
)

dEx, (49)
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whereα (Ex) = c2(Ex)
c2(Ex)

−1. Alternatively, the calculated scattering wavefield (Huang et al., 1999)
also can be given by

∂US
(

ω,kx,ky,z
)

∂z
=

i

kz
FTx,y

[

ω4S(x, y,z)UI (ω,x, y,z)
]

, (50)

where4S(x, y,z) = S(x, y,z)− Sref (x, y,z) is the slowness disturbance,UI is the incident
wave field, andkz is the vertical wavenumber. The incident wave fieldUI can be calculated
with the following equation:

∂UI
(

ω,kx,ky,z
)

∂z
= ik0kzUI

(

ω,kx,ky,z
)

. (51)

wherek0 = ω

vr
, kz =

√

1−
(

kT
k0

)2
andkT =

√

k2
x +k2

y.

DISCUSSION AND CONCLUSION

Migration algorithms extract the depth locations and relative amplitude behavior of reflectors
in the earth from measured seismic data. However, these classic approaches cannot give a
quantitative estimate of the reflectivity. In fact, seismic-wave imaging can be performed with
the operator and matrix operations, based on least-squaresinverse theory. The inverse imaging
approaches have the potential to generate quantitive estimates of the reflectivity and to cope
with seismic-data regularization and seismic-wave illumination. The ideas we proposed using
these theories will open avenues for further research.
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