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Unified seismic-wave imaging - from data space to model space

Huazhong Wang and Guojian SHan

ABSTRACT

Under operator, matrix and inverse theory, seismic-wawaging can be considered a un
fied process—mapping from data space to model space. Theiopas in seismic-wave
imaging include (1) seismic-data interpolation, reguation and redatuming, which
mainly decrease the imaging noise; (2) seismic-wave ithation analysis, which pre-
dicts whether a target reflector can be imaged and evalusesittability of an acquisi-
tion configuration in the case of rugged topography and sdeggeral velocity variations;
and (3) seismic-wave migration/inversion imaging aldons, which give an imaging re-
sult with the help of a wave propagator, known a macro-vétatiodel. The last and
most important thing is to build an accurate macro-velonigdel. All of the processes
can be considered with the conjugate operator/matrix uledet-squares theory. In thi
article, we review the following topics: (1) expression @ital space and model spac
(2) affiliation between data space and model space; (3) secata preprocessing; (4
seismic-data illumination; (5) migration imaging and irsien imaging as least-squares
inverse problems; (6) amplitude-preserving migrationdgimg with wavefield extrapola-
tion; (7) migration velocity analysis and inversion and¢8jne related topics. We express
the imaging process with the operator or matrix theory ane gpme directions for further
research.

DO

INTRODUCTION

Seismic-wave imaging can be seen as a mapping from data &paoedel space. The ob-
jective is to position reflectors and to quantitatively estie the physical parameters of the
medium (such as reflectivity, P-wave velocity, S-wave vidyoand density).

From the view of the historical development of seismic wamaging, there are two ways
to reach the goal. The first approach is seismic-wave magrdaéchnologies commonly used
in the oil industry at present, which includes estimating-lwavenumber macro-velocity (with
NMO+DMO velocity analysis, migration velocity analysis taveltime tomography), posi-
tioning the reflectors and qualitatively estimating theaetilvity. However, quantitatively es-
timating reflectivities (which is called amplitude-pregag imaging or true-amplitude imag-
ing) is currently much more actively pursued by the oil indpsnd academia. Seismic-wave
illumination analysis, migration convolution, least-ageis migration, and amplitude analysis
of angle gathers are being given increased attention by raathors (Chavent and Plessix,
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1999; Gray, 1997; de Bruin et al., 1990; Black et al., 1993%i&¢in et al., 1999; Nemeth
et al., 2000; Brandsberg-Dahl et al., 2003). All of theseeawvdrs aim for clearer imaging
and more quantitative reflectivity. The second approackimsc-wave inversion, which di-
rectly and quantitatively estimates the physical contpasameters of rocks (such as P-wave
impedance, S-wave impedance and density).

The advantages of the first approach are that reflectors cpoditgoned step by step, and
that reflectivity estimation can take advantage of manyadignise enhancement technologies,
macro-velocity analysis techniques and migration imagmeghods. The procedure can be
easily controlled and adjusted, and its calculation costlimaafforded by present computer
systems. The geological and lithological knowledge abauirgey area can be easily used for
adjusting the final imaging results. The disadvantage sf¢binventional approach is its lack
of a unified theoretical framework. Therefore, it is diffictd guarantee the reliability of the
guantitative estimation of reflectivities.

The second approach has two subcategories: direct inmensethods (Bleistein et al.,
1987; Wu and Toksoz, 1987; Miller et al., 1987), and itemtinversion methods (Taran-
tola, 1984; Mora, 1987, 1988; LeBras and Clayton, 1988; €htand Jacewitz, 1995; Pratt,
1999). Both have elegant theoretical expressions. How#welinverse problems are inher-
ently ill-posed and the solutions are unstable and nonenigbe observed data set has certain
flaws, including frequency band-limitation, aperture liation, non-Gaussian noise, and/or an
unknown source function. An unsuitable modeling algoritrmon-linearity between the
observed data and geophysical parameters will also caobéeprs. In addition, the calcu-
lation costs of these methods often exceed the capacitipesént computer systems. Until
recently, only 2D inversion algorithms can be used in pcactlhe direct-inversion approach
requires an analytical expression, which can be given &nally only in the case of constant
background or slow background variance. Otherwise, theoggp cannot produce a satisfac-
tory result. Iterative inversion problems deal with eitheximum-probability solutions for a
Gaussian probability-density function or least-squaodst®ns of arl>-norm problem. These
kinds of inverse problems need huge numbers of iterativestirggicalculations.

At present, some trends indicate that standard seismie-wegration imaging and inver-
sion imaging are merging. The problem at the point of inteiea is how to quantitatively
estimate the reflectivity. How the shot and receiver configans affect the imaging reso-
lution and the amplitude of the estimated reflectivity is @sfion relevant to both imaging
approaches.

We think that it is worthwhile to investigate how to generateplitude-preserving common-
image gathers with inversion imaging approaches, while atmsidering how to include
seismic-wave-illumination effects and irregular dataset

In this research proposal, we review the following topick) €xpression of data space
and model space; (2) relationship between data space anel spate; (3) seismic-data pre-
processing; (4) seismic-data illumination; (5) migratioraging and inversion imaging as a
least-squares inverse problem; (6) amplitude-presemiggation imaging with wavefield ex-
trapolation; (7) migration-velocity analysis or macrdeaty inversion and (8) some other
related topics. We try to express the imaging process wittercontext of inverse theory and
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give some directions for further research.

EXPRESSION OF DATA SPACE AND MODEL SPACE

First, we give a general expression of the data space and spat=e for seismic-data imaging.
In general, seismic data acquired at the surface or in a weltésented as(rﬁ,ﬁ,w or

d(S,d,»). We can use the following special variables to depict dptecs: azimuth, offset,
and CMP coordinate, or azimuth, offset, shot-point coatirand receiver-point coordinate
respectively. These special variables completely defireg@space or a seismic data set.

Model space can be characterized with as many differenbappes as there are different
applications. We define the model space as one which chaesst¢he interior of the earth,
such as a velocity field, an impedance field, a stacked imagyhgne, or common-image
gathers, etc.. Basically, the model space is expressediasx, j Ay,nAz), with evenly dis-
cretized intervals. We usually present the velocity modedtacked imaging data volume in
this form.

In some models, the subsurface floats in a velocity (or othgsipal parameter) field.
The subsurface is a very important component of a physicainpater model, which shows
the geometry of a geological structure. Reflectivities, dgample, are defined in the sub-
surface. Therefore, common-image gathers and AVO/AVA yamslhave a close relation
to the subsurface. In fact, the subsurface plays a key rotaaaro-velocity model build-
ing (Mora, 1989; Cao et al., 1990; Pratt and Hicks, 1998). |Amathers are expressed as
m(i AX, JAY,y («x,9),nAZ), wherey is an incident angle (between the incident ray and the
normal ray of a reflector) or an emerging angle (between thergimg ray and the normal
ray); ¢ is the azimuth angle; and is the dipping angle of a reflector. In macro-velocity in-

i i k ok ok k ko
version, the model space is commonly expressegh é@i,ryj ,vfunc,an), wherevz . is @

velocity function attached to a reflector, which is given aaete formula for each specific
application;r¥ is the horizontal coordinate of" point on thek™ reflector, and £ andrk
have a meaning similar td;l .

How to evaluate data space and model space

What is a good observed data space? What is a good estimateel sjpace?lt is difficult

to answer these two questions, because the answers dep#mel mactical applications. Up
to now, the acquisition systems basically can be dividealtimee classes: Casde: Full-area
acquisition system. A 3D survey area is discretized intogalleg grid, and each grid point
has a receiver point and a shot point. This is an ideal casghich a data set has an even
azimuth interval, offset interval and CMP interval. Suchagéadset is a complete one. In prac-
tice, to minimize acquisition costs, a receiver is put abegrid point, and the shot points are
arranged depending on the on-site situations. @as@/ide-azimuth acquisition system with
partial sacrifice of cross-line aperture. The land acquaisisystem belongs to this category.
It is difficult to maintain even azimuth intervals and evefsef intervals because of complex
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variations of the surface and near-surface, and the caaside of acquisition efficiency and
costs. Commonly, we have to move the shot point to an adveateglocation, sacrificing
spatial regularization. Casl: Narrow-azimuth acquisition system with complete sacziti€
cross-line aperture. The present marine acquisition sybedongs in this category. It is easy
to achieve an even azimuth and even offset, but the dataisebisiplete because it lacks the
cross-line aperture. This acquisition system is not slétabcases of complex structure vari-
ance along the cross-line direction. Similarly, we candbvihe model space into three cate-
gories: Caseny, with a flat surface and some flat subsurfaces; @asavith a flat surface and
some complex subsurfaces; and Casewith a rough topography and some complex subsur-
faces. Table 1 gives the relationship between the data sppalo@odel space in different cases.
d1 d_2 d_3
m_1 | even azimuth interval, uneven azimuth interr even azimuth interval,
even offset interval and val, uneven offset interr even offset interval and
even CRP illumination] val and basically eveneven CRP illumination
a complete data set CRP illumination;
m_2 | even azimuth interval, uneven azimuth inter- even azimuth interval,
even offset interval and val, uneven offset interr even offset interval angFrom
uneven CRP illumina; val and uneven CRP il uneven CRP illumina
tion lumination tion

m_3 | even azimuth interval, uneven azimuth interr even azimuth interval,
uneven offset interval val, uneven offset intert uneven offset interval
and uneven CRP illumit val and uneven CRP ilr and uneven CRP illumit
nation lumination nation
the table, we know that wide-azimuth acquisition gives wagerture in the cross-line direc-
tion. However, this also causes an uneven azimuth intencbaeven offset interval, which
will result in a noisy image. Narrow-azimuth acquisitiomagive an even azimuth interval
and even offset interval but sacrifices the cross-line apertOur conclusion can be summa-
rized with following statements: In Case;, the regularization of the data space yields an
even sampling of the model space. In a geologically sympldiune, a good data set is one
with an even azimuth interval, an even offset interval anéaen CMP interval. In Cases
m» andms, a good data set is one with an even azimuth interval, an effeet interval and
aneven CRP illumination. In practice, even CRP illumination commonly means thatta da
set is irregular. There exists a trade-off between the eliemination and the regular data
set. Since an irregular acquisition configuration gengndaklds a noisy image, a field data
set should be preprocessed to be regular. On the other hadd|wmination causes a vague
image or no image, or yields false amplitude; thereforejlthmination deficiency should be
compensated with other information from well-logging, kghysics or geology data. From
the perspective of prestack imaging, assuming the madomitye model is accurate enough,
a good model space can be definedas which has an amplitude-preserving angle gather
on each point of a reflector at each azimuthwhich is the main goal of seismic-wave imaging
(Shin and Min, 2001; Plessix and Mulder, 2004).
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RELATIONSHIP BETWEEN DATA SPACE AND MODEL SPACE

Data space can be related to model space with the followimguia.:
d(r'ﬁ,ﬁ,w) — Lm (M, y (@, ¢),nAZ), (1)

where the modeling operatdr is can be a Green’s function, a one-way or two-way wave
equation, or a more complex wave equation suitable for waldeéxtrapolation or model-
ing. Wavefield extrapolation and modeling operators wereastively studied by many au-
thors (Hale, 1991c,a; Stoffa et al., 1990; Ristow and Rud®41 Huang et al., 1999; Biondi,
2002; Li, 1991; Docherty, 1991; Berkhout and Wapenaar, 19&®penaar et al., 1989; Mar-
furt, 1984). However, prestack depth migration imaging astly implemented with one-way
acoustic wave equations, which is one of the reasons it ¢auhgeve true-amplitude images.
If a one-way wave equation is used for migration imagingwale phenomena except the pri-
mary reflection wave are processed as noise. In fact, if gatine reflectivity is the objective
of imaging, a two-way acoustic, or even elastic, wave equaghould be used (Mora, 1988;
Pratt, 1999; Pratt and Shipp, 1999).

SEISMIC DATA PREPROCESSING

As discussed above, seismic-wave imaging needs a suitatdesdt. In general cases, real
data sets have some drawbacks. For example, the spatidisgmiland data commonly is
too coarse and/or irregular; marine data sets commonly $bathering. Therefore, seismic-
data preprocessing is necessary. Seismic-data prepiregeesls with the signal-to-noise en-
hancement, wavelet correction, seismic-data regulasizand interpolation, and redatuming.
The latter three terms are closely related to seismic-waaging. Seismic data regularization,
interpolation and redatuming can be seen as a seismic-dgiping under the least-squares
theory. Anirregular seismic-data set from on-site fieldasigjon can be expressed as follows:

doPS = Lm, 2)

wherelL is an ideal seismic-wave propagator, ands an ideal underground medium model.
From the irregular observed seismic-data, an undergroweaium model can be estimated:

e = [(£9)7 €] (L) e 3)

whereL is the practical seismic wave propagator, which can beevriéks a complex matrix.

([*)T is a conjugate transpose matrix of the matrixSubstituting the estimated model into
equation (3), the estimated and regular data set can be:found

areg —L [(I:*)T I:}—l (I:*)T dobs. (4)

In equation (4), the ideaJ wave propagatoris unknown, but it can be replaced with the
practical wave propagatdr. Therefore, equation (4) can be rewritten as

~ AT, A ~1-1 . ~ ~
Greg=L[ (L) L] (L) albe= CH (L") a0, 5)
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whereH = (I:*)T L is a Hessian matrix which acts as a filter. If we choose the fikean ideal
full-pass one, that id;l = I, equation (5) can be rewritten as

dreg =L (%) " d°bs, (6)

which is a general seismic data mapping frame. Up to now,eisrsc data mapping can be
implemented withtDMO +DMO ~* or PSTM + PSTM~(Biondi et al., 1998; Canning and
Gardner, 1996; Ronen, 1987, Bleistein et al., 1999).

Redatuming also can be carried out with equation (5). Thadita for redatuming should
be modified as follows:

A S TeaTe T raT S 1T

ddatum= L2 [(LT) |—1:| (Li) dobs = LoH 1(Ly{) dObS, (7
whereéldatum is a new and regular data set extrapolated from a topographfiace to another
surface which may be a horizontal or non-horizontal datuﬁﬂs the propagator correspond-
ing to the topographic surface, amg is the propagator to a horizontal datum. Now the

Hessian matri has a relation to the topography and the acquisition cordtgan. Similarly,
if the Hessian matrix is an ideal full-pass filter, equatidhgan be rewritten as

~ ~ AT
dgatum= LZ(Ll) dObs- (8)

However, if a suitable Hessian filter is chosen, the qualitgada mapping will be improved
further. Next, we discuss data regularization with comrofiset prestack time migration and
the necessity of anti-aliasing for processing land data set

Common-offset prestack time migration and data regularizdion

The time-distance relation for a shot-receiver pair is

J—h)2 4+ (y—hy)?+ 22+ (x+ )2+ (y+hy) 2+ 22 = uty, ©)

wherety, is the two-way traveltime of a non-zero-offset shot-reeepair,hy is the in-line com-
ponent of the half-offset, arfal, is the cross-line component of the half-offset. For simfylic
the connection line of the shot and receiver points is parédl thex-axis of the Cartesian
coordinate system. Therefore, we have the following singgjeation which delineates the
isochron surface of the prestack migration:

(@) ()

whereay,ayanda; are the half-lengths of the axes of the rotary isochron sdlip the case of
. , . th. i ¢ . th \ 2
constant velocity. Ify’=z=0, thenag =% = 22; If x=2=0, thenay =y =,/()"—h?=
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o lf x=y=0,thena, =z=,/ (%)2 —h2 = %n. The variabley, is the two-way traveltime
after NMO. Equation (10) can be rewritten as

“ 2 y 2 7 2
2 2 2

Further, equation (11) can be changed into

%2 . th\

ﬁ+y2+22= (U_Zn) . (12)

2
1+(2)
Defining X? = —%— yields:
,/1+(%)

. vtn\ 2
X242+ 22 = (7”) : (13)

Equation (13) is in the form of a poststack migration. Theref prestack migration can be
explained as a poststack migration on a post-NMO data sekndie that

2
kg = kg 1+(2h> : (14)

vty

Therefore, the dispersion relation of equation (13) is

(%)2[k§<+k§+k§] — W2 (15)

Substituting (14) into the above formula yields

(g)z [k)% <1+ (5—2)2) +KG+ kf} = of, (16)

which can be rewritten as follows:

2 2
st (22 (11 (2) )1 @

This is the dispersion relation of the common-offset p&staigration equation. In the time
domain, the dispersion relation is

(t)\? 2h \?
kf=sgn(wn)Jw%(%> |:(1+<v(r)tn) >k§+k§}. (18)
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Therefore, common-offset prestack time migration (PST#&) be implemented with the fol-
lowing relation:

m(wf,kx,ky):/dth{e‘i“’fAt“d(tn,kx,ky,h)}. (19)

The term in the braces represents the wave-field extrapolatnd the integral &t = O serves
to extract the imaging values. Then, the common-offsetrs&®STM is

d (tn, kx, Ky, h) = f dwf%{ei“f‘“"m(wf,kx,ky)}- (20)

Similarly, the term in the braces represents the wave-fieihpolation, which is an inverse
migration. The integral is an inverse Fourier transform.

In the presence of moderate lateral velocity variationssiack time migration can be
expressed as follows:

m(z,my,my) = /dxsfdmwle‘iw[t‘(ts“gﬂd(t,xs,xg,h),

= fdxs/dxgwld (t,Xs:Xg,h) 8 (t =ts+1g), (21)
my—he \% . (My=hy\2 | (1)2 methe \2 o (My+hy\2 | /7)\2 .
wheret = t5+tg = < F— ) +( " ) + (E) + (W) + (m) + (5) . Wi is

the amplitude weight, andis the two way traveltime along the imaging ray.

The inverse PSTM is
d(t,Xs,xg,h) = fdrrledrrlywze‘i‘“[‘+(ts+t9)]m(r,mx,my),

= /de/dmyWZm (r,my,my) 8 (t = — (ts +1g)) - (22)

Bleistein and Stockwell (2000) give a general theory of datpping. From here, we will
develop some practical approaches for data mapping.

Aliasing and anti-aliasing

From the discretized data space, the discretized mode¢spad their relation formula,
d (my My, , hy . hy ' Zn, @) = Lm (my My, nAz), (23)

some causes of aliasing can be clearly seen. The sourceasihglcan be divided into the
following three types:

(1) Overly coarse sampling intervals. For exampig,and/orAg, Am and/orAh are too
coarse, wher@s andAg are the shot-point and receiver-point intervals respelgtiandAm
andAh are the CMP and half-offset intervals, respectively.
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(2) Unsuitable modeling or imaging operators, such as ttegrated DMO operator (Hale,
1991b), or the Kirchhoff integral operator (Zhang et alQ2Biondi, 2001; Abma et al., 1999;
Druzhinin, 1999).

(3) Insufficient output resolution, where the output spatigrvals, such admandAzare
too coarse. We can analyze the aliasing in the cases of slitfeérgmigration, receiver-gather
migration, common-offset gather migration, and midpoif{offset domain migration.

Aliasing in shot gather migration is described by the follogvequation:
(M2)= "> S (M2S)RM, IS, (24)
S o

where S* (M, z|S) is the conjugate of the extrapolated shot wave-fi&dn, z|S,) is the ex-
trapolated receiver wave-field; stands for the<t" common-shot gather. In general, single
common-shot-gather imaging presents no aliasing, be¢haseceiver-point interval is eas-
ily arranged regularly and small enough. However, imagimgiatire 2D line or 3D area will
present severe aliasing problems because of the irrequiidaege shot-point intervals.

Aliasing in receiver-gather migration is described by tbkoiving equation:

(M2 =Y 3" Son (M, 2IRC) Reort (M, 2IR). (25)
R(«

where &, (n;k,z| Rk> is the extrapolated so-called shot wavefield, which cooedp to a

specific receiver pointiRsort (rﬁk, Z| Rk> is the extrapolated receiver wavefield, which is sorted

from shot gathersRy stands for th& t" common-receiver-gather. In general, single common-
receiver-gather imaging profiles are susceptible to algasi

Aliasing in midpoint half-offset domain migration follovexjuation (26):
I(m2)=) Y U (m,ﬁ,w,z), (26)
h o

whereU (rﬁ, ﬁ,w,z) is the extrapolated wavefield with a double-square-rooagqgu. Alias-
ing will result if Am and/orAh are too coarse.

Aliasing in common-offset-gather migration is describgdhte following equation:

1 (M,2)=> ") U (Mhge,2), (27)

hy o

whereU (m, hg,, Z) is the extrapolated wavefield with a double-square-roaaéqgn. Alias-
ing will result if Amis too coarse.

In the case of rugged topography, the geometry of the ac¢gquisionfiguration becomes
more and more irregular, especially the shot-point coatais. Therefore, antialiasing pro-
cessing is necessary in redatuming, seismic data regafismzand migration imaging for
land-data imaging.
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SEISMIC WAVE ILLUMINATION ANALYSIS

Seismic-wave illumination becomes increasingly problgeria regions with rugged topogra-
phy and complex geological structure with severe lateriloiy variations. In these hostile
cases, we think that seismic-wave illumination is much nioqgortant than seismic-data reg-
ularization. Without enough illumination for the targetieetors, regular seismic data can not
guarantee a quality image.

Seismic-wave illumination is related to the macro-velpaiiodel and the acquisition con-
figuration, both of which are embodied in the Green’s funttidn fact, seismic-wave illu-
mination analysis inherently is an issue of seismic-wawpagation and observation in the
presence of complex velocity structure. Whether a seismieweaches a target reflector and
whether the reflected wave is received are both important.

Wu and Chen (2002) analyze seismic-wave illumination widaBlet Propagators. With
directional illumination maps, the illumination of a reftecis demonstrated. Berkhout et al.
(2001); Volker et al. (2001) discuss how the imaging resoiuand amplitude are affected
by the acquisition geometries with focal beams: emissaus$ing and detection-focusing.
However, neither methods deals with the compensation lianihation deficiency from the
perspective of inverse imaging.

In least-squares inversion theory, the Hessian matrix-séicend-order derivatives of the
wavefield about the perturbation of a physical parametergiMen. The Hessian matrix is
closely related to the seismic-wave illumination of a targélector.

The two important issues of seismic-wave illumination gsal are (1) compensating for
illumination deficiencies and (2) evaluating acquisiti@itprns and guiding their design.

Seismic-wave migration imaging can be represented by flenwimg matrix equation:

m=(L*)"d, (28)
where
d = (g, G- 0xy) T (29)
and
m = (My,, My,, ...,mxl)T, (30)
L1 LIp L1
| th e | e
L L in

The index is the number of imaging points or scattering points alomgitihline direction in

the Z'" layer; n is the number of shot-receiver paiﬂsi’,‘j are the complex amplitudes of the
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conjugate Green’s functions corresponding to the imagwigts. In the matrixi(*)", each
row is a Green’s function for an imaging point in t&Z&" layer. In fact, equation (28) is the
Kirchhoff integral migration formula expressed in matroti.

However, if seismic-wave illumination is considered, tbacept of double focusing (emis-
sion focusing and detection focusing) should be introducstecthe general migration-imaging
formula (28), following Berkhout’s notation (Berkhout ét,2001; Volker et al., 2001):

DLYRLPS=d°s, (32)

The matrix formula stands for the emission of a wavefield ftbesourceS and the detection
by the receiver®; meanwhile the energy of the wavefield propagates downvettktreflec-
tor R with an ideal propagatdr®, and is reflected back to the surfaté* is an ideal upward
propagator.

DefiningFY = (D*)" (L*U)T andFP = (L*D)T (ST gives us the formulae for detection
focusing and emission focusing, respectively. Togetlny represent the illumination of a
point on a reflector.

We will analyze the seismic-wave illumination of a targdteetor with the local Hessian
matrix and compare this with the double-focusing approsche

MIGRATION IMAGING AND INVERSION IMAGING AS A LEAST-SQUARES
PROBLEM

Seismic-wave imaging can be expressed as a least-squegesiam problem,
mi n|dcal _ d0b5|2’ (33)

where, given an underground geological model charactémath some parameters such as
P-wave velocity, S-wave velocity, and/or density, or a &y image, we then create a
synthetic data set which minimizes the "distance" betwéencalculated data set and the
observed data set.

The solution of the inverse problem is expressed as follows:

Miny = I:(l:*)T|:j|_1(|:*)TaObS:H—l(l’_‘*)TaObS (34)
= H lanlg,
or
T o=l . T o
- [T s
= H_lmAmlg,
or
O o
min, = [(£)7C] (L)@ = (L) et (36)
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Similarly, if we assume Hessian matrix is a unitary matrigu&tion (35), (36), and (37)
all degenerate to

Miig = (L) A, (37)

Migration imaging avoids the matrix inversion by replacitig general inverse with a
conjugate-transpose operal(d}*)T. The advantage of the processing is to change an ill-
posed inverse problem into a well-posed wavefield backgaipan problem, which is quite
stable and robust (Ronen and Liner, 2000; Duquet et al., ;2088vent and Plessix, 1999;
Nemeth et al., 1999; Chavent and Plessix, 1999). In factrati@n imaging mainly locates
the reflector and gives only a qualitative estimate of thescdflity. ([*)T is the two-way
or one-way propagator, which commonly is expressed in tha fof the conjugate Green'’s
function.

In fact, the quantitative estimation of the reflectivity shbtake advantage of inverse
imaging. If we consider the reflectivity imaging as a weigtisummation, equation (37)
gives an unsuitable weight function. Bleistein and Stodk¢2900) discuss in detail about
how to choose a suitable weight function.

The inverse of the Hessian matrix is just a deconvolutiorratpe, which modifies the
unsuitable weight function of the migration imaging. THere, equation (35) can give more
accurate estimate of the reflectivity than can the migratizaging (equation (37).

If equation (35) is rewritten as
ﬁ']inv = H_lmmig, (38)

it is clear that Hessian matrix is a deconvolution operatdnch improves the resolution of
migration results (Hu et al., 2001). We will consider how taqtitatively estimate the reflec-
tivity with inverse imaging and determine the conditionslenwhich direct inverse imaging
and iterative inverse imaging are equivalent.

RELATIONSHIP BETWEEN WAVEFIELD-EXTRAPOLATION IMAGING AN D
INVERSE IMAGING

At the scattering point, we can define a "distance” or norm as

E(R)= ) (Us—UR?do, (39)
whereR is the reflectivity,Us is the wavefield downward extrapolated to a reflector, dnd
is the wavefield downward propagated to the reflector. Theesaag wavefieldUs should

be equal to or close to the convolution result between theefigld U, and the reflectivity.
Letting

= o, (40)
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we have
=2 (Us(@) = Ui (@) R)U) (@) do =0, (42)

®Wmin

If the incident wavefield equals zero, equation (41) is Satis However this case has no
physical meaning. If the incident wavefield does not equid, zéen,

> Us
R=1T"0 (42)
> Ui

®min

In the complex domain, we can rewrite equation (42) as

> UsUj
- (43)

Wmax

> Uy

®min
If the incident wave is quite weak, the following regulatipa should be introduced:

> UsUj
R: ®min , (44)

@wmax

> (iU +¢)

®min

wheree is the regularization coefficient. In fact, the reflectividyelated to the incident angle
to a reflector of the plane-wave component of a seismic waberéefore, we should modify
equation (44) into the following form to reach the angle gash

S Us(@,p)Uf (@.p)
R(p)= " , (45)

> (Ui (@,p) U (w,p) +¢)

®min

whereUs(w, p) andU; (w, p) are a scattering plane wavefield and an incident plane vedgefi
respectively. In fact, the extrapolated wavefield can benddfas

d

obs

Us= (L*) (46)

Therefore, in the frequency domain, equation (44) can beittew as

wfx(l:*u)TaObs(E*D)T
R= 2 : (47)
> (Lo(L0)" +e)

®Wmin

We will further discuss this topic later to clarify the ratatship.
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RELATED TOPICS

Angle gathers

Common-image gathers are closely related to the angle tigitgcwhich can be used for
AVA analysis or AVA inversion. Unfortunately, macro-velpcerrors will cause amplitude
aberrations in common-image gathers. Therefore, soms trepVA analysis or inversion
should be carefully avoided. However, residual depth oetdifferences are present in the
common-image gathers if macro-velocity field has erroresé¢hdifferences can be used for
migration velocity analysis.

On the other hand, the amplitude-preserving common-imagleegs may be generated
from inverse imaging.

Wavefield propagator

In seismic-wave migration imaging, the (:onjugate-tralsem)atrix(I:*)T stands for the back-
propagation of the observed wavefield. Therefore, the waldgiropagators are the basis for
seismic-wave imaging.

For constructing a wavefield propagator, we introduce theviing methods: (1) a hybrid
wavefield propagator, that is, the split-step-Fourier pggdor plus optimal interpolation with
a self-adaptive reference velocity choice; and (2) a loodldirectional wavefield propagator,
which can be designed with the local Fourier transform andllplane wave/Gaussian beam,
for target-oriented imaging (Hill, 2001, 1990; Soubard&)3).

MIGRATION VELOCITY ANALYSIS/INVERSION

The macro-velocity field has a decisive influence on seismgice imaging. Unfortunately,

it is not easy to accurately estimate the velocity field frénva seismic data. Up to now, the
residual depth/time difference in the common-image gatles been used for migration-
velocity analysis (MVA) or inverting the macro-velocitystiiibution. However, in the case of
complex topography and gelogical structures, MVA is not ecessful approach. Therefore,
seismic-wave imaging in complex survey areas has a longowgy.tWe propose the following

approach to inverting the macro-velocity field. The norme$irted as

2
E:Wl(UEH—Ug) +W2(AS§+1—A$§1)2+W3(R"+1—Rk)z, (48)

wherek stands for the iterative numbdds is the calculated scattering wavefiel® is the
position of the main reflectors, which can be identified fréva migrated profileA Sy, is the
slowness disturbance fiel®;, W, andWj3 are the different weights. According to Bleistein
(2000,p.39), the calculated scattering wavefield can bengoy
Us (Rg, %o, ) = wzf Y ) (R, %er0) 9 (% g, ) 0%, (49)
o ¢“(X)
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wherea (X) = gz—g; — 1. Alternatively, the calculated scattering wavefield (Hgiat al., 1999)
also can be given by

aUS(w,kx,ky,Z)
0z

= li_ZFTX,y [0AS(X,Y,2)U) (0,%,Y,2)], (50)

where AS(X,Y,2) = S(X,Y,2) — Sef (X,Y,2) is the slowness disturbandd, is the incident
wave field, andk; is the vertical wavenumber. The incident wave fieldcan be calculated
with the following equation:

8U| (Cl),kx, ky,z)
0z

whereko = £, k; = 1—('%)2andkT = Jke+ke.

DISCUSSION AND CONCLUSION

Migration algorithms extract the depth locations and redésamplitude behavior of reflectors

in the earth from measured seismic data. However, thessiclapproaches cannot give a
guantitative estimate of the reflectivity. In fact, seismiave imaging can be performed with

the operator and matrix operations, based on least-squaszse theory. The inverse imaging
approaches have the potential to generate quantitive &stsnof the reflectivity and to cope

with seismic-data regularization and seismic-wave illuation. The ideas we proposed using
these theories will open avenues for further research.
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