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A self-adaptive algorithm for choosing reference velocitiesin the
presence of lateral velocity variations

Huazhong Wang and Guojian SHan

ABSTRACT

Seismic wave propagation depicted with the perturbatieomyhas important and widet
spread uses in reflection seismology. As we know, in pertimb#heory, wave propaga-
tion needs a reference velocity. The closer the referenloeitgeis to the true velocity,
the more accurate the wave propagation is. However, it iseasy to choose reason
able reference velocities in the presence of severe latetatity variations. Assigning
a reference velocity value at each spatial point is not caatfmnally feasible, because
there is a trade-off between the calculation cost and thebeurof reference velocities
We show that the accuracy of seismic wave propagation candse sasily improved
by choosing a set of reasonable reference velocities rétaarby optimizing a one-way
wave propagator. Therefore, we introduce a self-adappipecach to choose a set of ref
erence velocities for an extrapolation layer, in the presesf lateral velocity variations.
Through sorting the velocity data an array with increasialyies, and by setting a thresh
old average-velocity ratio or velocity- variance ratio, ean choose a set of reasonable
reference velocities for wavefield extrapolation. This Imoetcan also be used for image
edge detecting. It is flexible and computationally coseetif/e.

INTRODUCTION

Seismic migration is used to image recorded reflection aatlescevents based on wave theo-
retical approaches, by de-propagating them to their trbewgtace positions. Wave propaga-
tion and de-propagation is based on perturbation theorwadays, prestack depth migration
(PSDM) has become a most effective tool for imaging complex gaodgtructures. Assum-
ing the macro-velocity field is accurate enough, the migratiperators or wave propagators
should be competent for accurately expressing wave propaga media with severe lateral
velocity variations.

Stoffa et al. (1990) introduced a first-order split-steprection, which is accurate for flat
reflectors. However, the accuracy of the migration operftodepicting wave propagation
decreases as reflectors become steeper and the differesteeseh the reference and migra-
tion velocities increase. Therefore, Ristow and Ruhl (3994 forward the Fourier finite-
difference (FFD) operator, and Huang et al. (1999) and Reaussnd de Hoop (2001) intro-
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duced the generalized-screen propagator GSP, to compdnsditigh-order terms neglected
when imaging steeply dipping reflectors with the Split-Skepirier SSF operator. The FFD
operator deals with the high-order terms in the frequem@ce domain; the GSP processes
them in the frequency-wavenumber domain. The FFD operatprires that the reference ve-
locity is lower than the minimum velocity in an extrapolatiayer, because the sign of the
coefficients in the finite-difference equation can not bengea at different lateral points in a
depth layer. Otherwise, calculation instability will occTherefore, even if a set of suitable
reference velocities is given, the FFD operator cannot givery good image.

Biondi (2002) modified the general FFD operator by introdgdhe interpolation of two
wavefields: the first wavefield is obtained by applying the FléDection, starting from a ref-
erence velocity lower than the medium velocity; the secoadefield is obtained by applying
the FFD correction starting from a reference velocity highan the medium velocity.

In fact, the high-order terms in wave-propagation perttiopatheory are generated by
the velocity perturbation between the true velocity andréference velocity. If the reference
velocity is chosen as close as possible to the true veldb#y§SF, FFD and GSP operators can
accurately characterize the wave propagation in mediasetiere lateral velocity variations.
Futhermore, the imaging quality can be improved with sudpgagators.

Assuming that the macro-velocity model for imaging is aeteirenough, the main reason
for most imaging errors is that thene-way wave equation can not accurately characterize
the wave propagation in the case of severe lateral velo@tiations. In such cases, steeply
dipping reflectors cannot be clearly imaged. We can decrth@se errors either by using an
optimized, but complex propagator, or by choosing a setagaorable reference velocities and
using a simple propagator. We think that the latter is muchenfiexible and cost-effective.
Of course, both approaches can be combined together.

Clapp (2004) proposed that the reference velocity can leetssl by a generalized Lioyd
method. The basic idea behind Lioyd’s method is to iterdtiimprove the quantization of
a function by looking at the velocity statistics of each agi{such as mean, median, and
variance), and then changing the boundaries of the regi@ea iteration to find the solution
which is optimal based on some criterion.

Now, we introduce a self-adaptive strategy for selectingasonable reference velocity
in the presence of lateral velocity variations. The maipstaclude setting a threshold for
the ratio between two adjoining reference velocities,isgrthe velocity slice into an array,
and detecting the edges of velocity regions using velocigrages and variances in the dif-
ferent regions. The resulting reference velocity field amalitnaging results produced with
it indicate that our approach is correct and effective. Meate, the method is flexible in
use, computationally efficient, and easy to program in e@eor 3D. The approach can also
be used for 2D or 3D image edge detecting. Numerical testedstrate that the method is
effective.
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WAVE PROPAGATOR CHARACTERIZED BY PERTURBATION THEORY

The Single-Square-RodbHR) wavefield-extrapolation equation in the case of laterbdaigy
variation is of the following form (Claerbout, 1985):
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The sign convention for the square root is negative for upegmwavefield and positive for
downgoing wavefield. We decompose the velocity field into paeots: the background ve-
locity field and the velocity perturbation. In fact, we presdhe slowness field because the
decomposition of the slowness is linear. The slowness fietsohposition is defined as fol-
lows:

S(x.y,2) = +AS(X,Y,2) = S(2) + AS(X,Y,2), )

1
v(X,y,2) v (2
wheresy (2) is the background slowness(z) the background velocity and S(x, y, z) is the
slowness perturbation. We hope that the velocity pertiwobat S(x, y, z) is as small as pos-
sible. Substituting the slowness-field-decompositionagiqu (2) into the wavefield-depth-
extrapolation equation (1) and discarding the secondrdedms of the slowness perturbation
yields the following formula:
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Equation (3) can be rewritten as follows:
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square-root term in equation (4), neglecting second- aglaeniorder terms, yields

2
In simplicity, we defineA = \/ L (at )2 — <3t) . Taylor-series expansion of the second
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Meanwhile, equation (5) can be rearranged as follows:
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Transforming equation (6) into frequency-wavenumber dargaves

AP (o, kx, ky; 2) i

= FikokzP (w, ke, Ky; 2) F — FTxy [0AS(X,Y,2) P (w0, X, Y;2)],  (7)
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whereko = 15, kz = JJ1- (‘%) , kr = /ki+k3. Equation (7) can be split into two equa-
tions:
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Equation (8) downward extrapolates the wave field in the gamknd velocity. Equation (9)
describes the scattering wave propagation, which is caugéte slowness perturbation. The
total wavefield is the summation of the background and swagtevavefields. When the ver-
tical wavenumbek;, approaches zero, equation (9) has a singular point. Toroweuat the
problem,k—lZ is expanded into a Taylor series:
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Substituting formula (10) into equation (9) gives,
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Equation (11) is also split into two equations:
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In the case of narrow propagation angles (near zero de@;ece)l is satisfied, and equations
(8) and (9) degrade to the split-step Fourier propagataffggt1990):

P (w,kx, ky; 2)
0z

= Fikok; P (w,kx,ky; 2), (14)

P (w,X,Y;2)

. = FiwAS(X,Y,2) P(w,X,Y;2). (15)

Equations (8), (12) and (13) are combined to form the GSP i al, 1999). We can see
that equation (13) deals with the wave propagation at higjesnwhich can be processed in
either the frequency wavenumber domain (with the GSP opgrait frequency space domain
(with the FFD operator). From the above derivation, we cantkat the high-order terms of
the slowness perturbation have been discarded twice, wiicks only under the condition
of small slowness perturbation. Therefore, the slownessiiation AS(x,y,z) should be
as small as possible. However, using the velocity value et spatial point as a reference
velocity is impractical in calculation. Generally, thewlwess perturbation is defined as

AS(Xi,Y,2) = S(Xi, Y}, 2) — So(2) (16)

We need to choose a set of reference velocities in an exatpolstep to maximize the accu-
racy of wave propagation.

SELF-ADAPTIVE REFERENCE VELOCITY CHOICE WITH LATERAL
VELOCITY VARIATIONS

The background velocity or reference velocity should besehoto match the true velocity
distribution as closely as possible. The more closely thereace velocity field mimics the
true velocity, the more accurately the wave-field propageatian be calculated and the higher
the modeling and imaging quality will be. We redefine the e#loperturbation as

AS(xi,Y},2) = S(%,Y),2) — S (%, Y;,2), (17)

wherel is the index of the selected reference velocBy(xi,y;j,z) means that there is a ref-
erence velocity with the indexat a spatial poin(xi ,yj). In the extreme case, the maximum
number of the reference velocities equals to the numbersafirelie spatial points in the ex-
trapolation layer. Theoretically, every spatial point kcbibe assigned a reference velocity, but
that would entail a huge calculation cost. Generally, a $e¢ference velocities is chosen,
with which the wavefield extrapolations are carried out. Mtiee extrapolated wavefields are
merged together with some chosen methods (Gazdag and $goia¥284; Kessinger, 1992).
However, it is difficult to choose a set of reasonable refegevelocities for modeling and
imaging, if the velocity laterally varies severely and guéarly. Therefore, we propose the
following self-adaptive strategy for medium with lateralocity variations. The procedure is
as follows:
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(1) Assign a threshold value of the ratio of two adjoiningerehce velocities, according to
numerical experiments and experience. The threshold teff@wv severe the lateral velocity
variation is. Generally, we define the ratio to be greaten tha. Of course the threshold could
be less than 1.0, but this would require sorting the disareligcity values in decreasing order
in the third step.

(2) Filter the 2D or 3D velocity slice of the depth layer withmaedian filter to eliminate
possible wild velocity values.

(3) Sort the discrete velocity values into an array in insieg.order.

(4) Set the summation value equal to zero, then sum the sdisecete velocity values

from left to right and point-by-point, calculating a cumiiNa velocity average, if a velocity
|
> ul(.1)

value is added, with the formuhdavg = H—K,— . Herem=1,...,,NXin the 2D case and
m=1,..,.NXx NY inthe 3D case, whem are the sequence numbers of the discrete velocity
points that were disordered by sorting' is the number of discrete velocity points in #B
region, which is known after a dividing point is determinédas the number of the reference
velocity. If the ratio between the velocity value at the npaint and the velocity average at
the current point is greater than the preset threshold, wguchye that there exists a velocity
boundary at the current point. This point is a dividing pdiatween two velocity regions.

(5) Starting from the dividing point, repeat Step 4 to findaagh successive dividing point
until the end of the sorted velocity array is reached.

(6) Repeat Step 4 and Step 5. This time, the ratio betweenuthelative velocity average
at the current point and the velocity average at the adjag®hhext point (which is calculated
in the last iteration) is used, and if it is greater than thespt threshold value, the dividing
point between two velocity regions is determined.

(7) If the velocity dividing points are not changed and thioegy averages are not changed,
stop the iterative procedure. Otherwise, repeat Step 6.

We can see that the number of velocity regions is the numbeha$en reference veloc-
ities. The velocity average in a velocity region is a refeeemelocity value. With the set of
reference velocities, wavefield extrapolation is carriatdwith SSF, FFD, or GSP operators.
For computational efficiency, the number of reference ve&scshould be kept small, usually
less than 5 or 6. It should be mentioned that Step 6 and 7 aieapt

In order to merge extrapolated wavefield, the corresporsiggience number between the
input discrete velocity slice and the sorted discrete vgla@lue should be recorded. This is
important for the approach.

The approach can be used in 2D or 3D, poststack or prestadkjrae or depth migra-
tion or modeling, as long as the seismic-wave propagatichasacterized with perturbation
theory. This method can be used for the image edge detedivwgla

If necessary, the velocity variances may be used as theiontior dividing the velocity
regions. Usualy, it is sufficient to choose a set of referematecities with velocity averages
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for migration.

WAVEFIELD RECONSTRUCTION

Gazdag and Sguazzero (1984) use the following method fogingethe extrapolated wave-
field. Assume that the two extrapolated wavefields with tHéeint reference velocities
vk andvZ, are as follows:

P(Xi, Y, 2+ Az w) = Are®, (18)

P2 (X, Y, 2+ Az w) = Are®, (19)

where A; and A, and#, and 6, represent amplitude and phase, respectively. The merged
wavefield at a spatial point is

P(xi,Yj,z+ Az w) = Ae°. (20)

The amplitude and phase of the merged wavefield is cauculated

Ay (vrzef —v(X,Yj, 2+ Az)) + A (v (Xi,Yj,z+Az) — vrlef>

A= : (21)
Urzef - Urlef
and
61 (vrzef —v (XY, z+ Az)) + 62 (v (Xi,Yj, 2+ A2) —vrlef)
0= 5 T . (22)
Uref = Uref

wherev (xi Y Z+ Az) is the velocity at the spatial poir@ki Y Z+ Az). Kessinger (1992)
shows that the wavefield at a spatial point can be directliaoel by the extrapolated wave-
field with the reference velocity corresponding to the spatoint. The following formula is
used for merging the extrapolated wavefields with SSF operat

P (Xi i Z+ AZ a)) -5 (Uref (Xi,Yj ,Z+ AZ) — vlref) eiAS(Xi Yj Z+AZ) Az
FETL[%52P (x;,yj, 2+ AZ )], (23)

whereurer (Xi, Y}, 2+ AZ) stands for the reference velocity at a spatial piity; ), vj; is the
member of the set of chosen reference velocities with thexihdlhe delta functioid (e) = 1 if
Uref (xi Y Z+ Az) = v'ref; otherwise§ (o) = 0. With this method, the extrapolated wavefield
can be directly inserted into the relevant position withstoting it. However, the amplitude
and phase of the merged wavefield is not so accurate in theotasyere lateral velocity
variations. We use quadratic interpolation to reconsttivetextrapolated wavefield with the
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following equation:

P(X.yj,z+Az;w) = (24)
( v(%i.y)— vlref) CER
(e

P b b2
f
1
f

8 (vref (XY}, 2+ A2) — vlef) 4 +( (X(I Yi)- v:relgg (%, yll)ﬂv)léffl
(o031)- gg o(58) ) L1t

I+1 I+1
(ref 1)ref Uref 1)ref)

)P' (XY, z+AZw) ¢,

(%, Yj, 2+ AZ )

whereP'=(x;,yj,z+ Az;w), P' (XY}, 2+ AZ w) andP'*1 (x,yj, 2+ AZ w) are the extrap-
olated wavefield at poinx;,y;) with the three adjacent reference velociti¢s, vl and

oL
Vet » FESpPECtively.

NUMERICAL TEST EXAMPLES

Now, we show some numerical examples of poststack depthatiogrresults with the SSF
operator, in which the reference velocity is chosen withajpproach discussed above. Figure
1 is the 2D SEG/EAGE salt-dome model. Figure 2 shows the ingagisult generated with
the (SSF) operator with one reference velocity during one extragafastep. The image is
very noisy, especially in the inner part of the salt dome, gr@dsmall faults are vague and
difficult to identify. In Figure 4, the reference velocityéhosen with the approach presented
above, and the threshold of the ratio between two adjacéntiesteps is set to 1.3. We can
see that the imaging noise is greatly attenuated, and ths &nd the boundary are quite clear.
Figure 3 and Figure 5 are similar to Figure 4, but with a thoéslof 1.5 and 1.1. In Figure
5, the imaging quality is improved further, but the improwsris not sufficient to justify the
increased number of reference velocities. In Figure 3, tieging quality is not decreased
obviously, which means that it is not necessary for the nurabeeference velocities to be too
much. The reason why the noise appears on the right part ¢ iheages does not figure out.
It remains a problem. The chosen reference velocity fielth tie threshold set to 1.5, 1.3
and 1.1, is shown in Figure 6, 7, and 8, respectively. Thiscehsatisfactorily characterizes
the background variation of the true 2D SEG/EAGE salt-dogleaity model.

CONCLUSION AND DISCUSSION

We introduce the self-adaptive approach for choosing afsedference velocities. The ap-
proach is quite flexible and of little calculation cost. Indae used for general image edge-
detecting also. Numerical tests demenstrate that the miéthedfective. During the wavefield
extrapolation, the wavefield merging remains a problem éenddise of severe lateral velocity
variation. Furthermore, by considering the velocity vacea in a region, a better reference
velocity choice can be reached.
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Figure 1: The 2D SEG/EAGE velocity model for the salt-dome aregle.
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Figure 2: The imaging result of 2D poststack depth migratioth one reference velocity
during an extrapolation stebquazhongl-single_ref VER]
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Figure 3: The imaging result of 2D poststack migration witked of reference velocities
during an extrapolation step with a threshold of 1Hhiazhong1-multiple_ref v1[fER]
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Figure 4. The imaging result of 2D poststack migration witked of reference velocities
during an extrapolation step with a threshold of j.tﬁjazhongl-muItipIe_ref_vl}BER]
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Figure 5: The imaging result of 2D poststack migration witked of reference velocities
during an extrapolation step with a threshold of 1Huazhong1-multiple_ref_v1}IER]
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Figure 6: The chosen reference velocity field with a thredtadl 1.5 which satisfactorily
characterizes the background variation of the true 2D SBGHE salt-dome velocity model.
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Figure 7: The chosen reference velocity field with a thregtadl 1.3 which satisfactorily
characterizes the background variation of the true 2D SBGHE salt-dome velocity model.
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Figure 8: The chosen reference velocity field with a thredtadl 1.1 which satisfactorily
characterizes the background variation of the true 2D SBGHE salt-dome velocity model.
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