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A self-adaptive algorithm for choosing reference velocities in the
presence of lateral velocity variations

Huazhong Wang and Guojian Shan1

ABSTRACT

Seismic wave propagation depicted with the perturbation theory has important and wide-
spread uses in reflection seismology. As we know, in perturbation theory, wave propaga-
tion needs a reference velocity. The closer the reference velocity is to the true velocity,
the more accurate the wave propagation is. However, it is noteasy to choose reason-
able reference velocities in the presence of severe lateralvelocity variations. Assigning
a reference velocity value at each spatial point is not computationally feasible, because
there is a trade-off between the calculation cost and the number of reference velocities.
We show that the accuracy of seismic wave propagation can be more easily improved
by choosing a set of reasonable reference velocities ratherthan by optimizing a one-way
wave propagator. Therefore, we introduce a self-adaptive approach to choose a set of ref-
erence velocities for an extrapolation layer, in the presence of lateral velocity variations.
Through sorting the velocity data an array with increasing values, and by setting a thresh-
old average-velocity ratio or velocity- variance ratio, wecan choose a set of reasonable
reference velocities for wavefield extrapolation. This method can also be used for image
edge detecting. It is flexible and computationally cost-effective.

INTRODUCTION

Seismic migration is used to image recorded reflection and scatter events based on wave theo-
retical approaches, by de-propagating them to their true subsurface positions. Wave propaga-
tion and de-propagation is based on perturbation theory. Nowadays, prestack depth migration
(PSDM) has become a most effective tool for imaging complex geological structures. Assum-
ing the macro-velocity field is accurate enough, the migration operators or wave propagators
should be competent for accurately expressing wave propagation in media with severe lateral
velocity variations.

Stoffa et al. (1990) introduced a first-order split-step correction, which is accurate for flat
reflectors. However, the accuracy of the migration operatorfor depicting wave propagation
decreases as reflectors become steeper and the differences between the reference and migra-
tion velocities increase. Therefore, Ristow and Ruhl (1994) put forward the Fourier finite-
difference (FFD) operator, and Huang et al. (1999) and Rousseau and de Hoop (2001) intro-
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duced the generalized-screen propagator GSP, to compensate for high-order terms neglected
when imaging steeply dipping reflectors with the Split-StepFourier SSF operator. The FFD
operator deals with the high-order terms in the frequency-space domain; the GSP processes
them in the frequency-wavenumber domain. The FFD operator requires that the reference ve-
locity is lower than the minimum velocity in an extrapolation layer, because the sign of the
coefficients in the finite-difference equation can not be changed at different lateral points in a
depth layer. Otherwise, calculation instability will occur. Therefore, even if a set of suitable
reference velocities is given, the FFD operator cannot givea very good image.

Biondi (2002) modified the general FFD operator by introducing the interpolation of two
wavefields: the first wavefield is obtained by applying the FFDcorrection, starting from a ref-
erence velocity lower than the medium velocity; the second wavefield is obtained by applying
the FFD correction starting from a reference velocity higher than the medium velocity.

In fact, the high-order terms in wave-propagation perturbation theory are generated by
the velocity perturbation between the true velocity and thereference velocity. If the reference
velocity is chosen as close as possible to the true velocity,the SSF, FFD and GSP operators can
accurately characterize the wave propagation in media withsevere lateral velocity variations.
Futhermore, the imaging quality can be improved with such propagators.

Assuming that the macro-velocity model for imaging is accurate enough, the main reason
for most imaging errors is that theone-way wave equation can not accurately characterize
the wave propagation in the case of severe lateral velocity variations. In such cases, steeply
dipping reflectors cannot be clearly imaged. We can decreasethese errors either by using an
optimized, but complex propagator, or by choosing a set of reasonable reference velocities and
using a simple propagator. We think that the latter is much more flexible and cost-effective.
Of course, both approaches can be combined together.

Clapp (2004) proposed that the reference velocity can be selected by a generalized Lioyd
method. The basic idea behind Lioyd’s method is to iteratively improve the quantization of
a function by looking at the velocity statistics of each region (such as mean, median, and
variance), and then changing the boundaries of the regions at each iteration to find the solution
which is optimal based on some criterion.

Now, we introduce a self-adaptive strategy for selecting a reasonable reference velocity
in the presence of lateral velocity variations. The main steps include setting a threshold for
the ratio between two adjoining reference velocities, sorting the velocity slice into an array,
and detecting the edges of velocity regions using velocity averages and variances in the dif-
ferent regions. The resulting reference velocity field and the imaging results produced with
it indicate that our approach is correct and effective. Meanwhile, the method is flexible in
use, computationally efficient, and easy to program in either 2D or 3D. The approach can also
be used for 2D or 3D image edge detecting. Numerical tests demenstrate that the method is
effective.
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WAVE PROPAGATOR CHARACTERIZED BY PERTURBATION THEORY

The Single-Square-Root (SSR) wavefield-extrapolation equation in the case of lateral velocity
variation is of the following form (Claerbout, 1985):

∂ P (t ,x, y,z)
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The sign convention for the square root is negative for upcoming wavefield and positive for
downgoing wavefield. We decompose the velocity field into twoparts: the background ve-
locity field and the velocity perturbation. In fact, we process the slowness field because the
decomposition of the slowness is linear. The slowness field decomposition is defined as fol-
lows:
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1
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=
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+4S(x, y,z) = S0 (z)+4S(x, y,z) , (2)

whereS0(z) is the background slowness,v (z) the background velocity and4S(x, y,z) is the
slowness perturbation. We hope that the velocity perturbation 4S(x, y,z) is as small as pos-
sible. Substituting the slowness-field-decomposition equation (2) into the wavefield-depth-
extrapolation equation (1) and discarding the second-order terms of the slowness perturbation
yields the following formula:
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Equation (3) can be rewritten as follows:
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In simplicity, we defineA =
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Meanwhile, equation (5) can be rearranged as follows:
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Transforming equation (6) into frequency-wavenumber domain gives
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Equation (8) downward extrapolates the wave field in the background velocity. Equation (9)
describes the scattering wave propagation, which is causedby the slowness perturbation. The
total wavefield is the summation of the background and scattering wavefields. When the ver-
tical wavenumberkz approaches zero, equation (9) has a singular point. To circumvent the
problem, 1
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is expanded into a Taylor series:
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Substituting formula (10) into equation (9) gives,
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Equation (11) is also split into two equations:

∂ P (ω,x, y,z)

∂z
= ∓i ω4S(x, y,z) P (ω,x, y;z) (12)

and

∂ P
(

ω,kx,ky,z
)

∂z
= ∓i

∞
∑

n=1

(2n−1)!!

2n

(

kT

k0

)2n

FTx,y
[

ω4S(x, y,z) P (ω,x, y;z)
]

. (13)



SEP–120 Choosing reference velocities 337

In the case of narrow propagation angles (near zero degree),1
kz

≈ 1 is satisfied, and equations
(8) and (9) degrade to the split-step Fourier propagator (Stoffa, 1990):
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Equations (8), (12) and (13) are combined to form the GSP (Huang et al, 1999). We can see
that equation (13) deals with the wave propagation at high angles, which can be processed in
either the frequency wavenumber domain (with the GSP operator) or frequency space domain
(with the FFD operator). From the above derivation, we can see that the high-order terms of
the slowness perturbation have been discarded twice, whichworks only under the condition
of small slowness perturbation. Therefore, the slowness perturbation4S(x, y,z) should be
as small as possible. However, using the velocity value at each spatial point as a reference
velocity is impractical in calculation. Generally, the slowness perturbation is defined as

4S
(

xi , yj ,z
)

= S
(

xi , yj ,z
)

− S0 (z) (16)

We need to choose a set of reference velocities in an extrapolation step to maximize the accu-
racy of wave propagation.

SELF-ADAPTIVE REFERENCE VELOCITY CHOICE WITH LATERAL
VELOCITY VARIATIONS

The background velocity or reference velocity should be chosen to match the true velocity
distribution as closely as possible. The more closely the reference velocity field mimics the
true velocity, the more accurately the wave-field propagation can be calculated and the higher
the modeling and imaging quality will be. We redefine the velocity perturbation as

4S
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− Sl
0

(

xi , yj ,z
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wherel is the index of the selected reference velocity.Sl
0

(

xi , yj ,z
)

means that there is a ref-
erence velocity with the indexl at a spatial point

(

xi , yj
)

. In the extreme case, the maximum
number of the reference velocities equals to the number of discrete spatial points in the ex-
trapolation layer. Theoretically, every spatial point could be assigned a reference velocity, but
that would entail a huge calculation cost. Generally, a set of reference velocities is chosen,
with which the wavefield extrapolations are carried out. Then the extrapolated wavefields are
merged together with some chosen methods (Gazdag and Sguazzero, 1984; Kessinger, 1992).
However, it is difficult to choose a set of reasonable reference velocities for modeling and
imaging, if the velocity laterally varies severely and irregularly. Therefore, we propose the
following self-adaptive strategy for medium with lateral velocity variations. The procedure is
as follows:
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(1) Assign a threshold value of the ratio of two adjoining reference velocities, according to
numerical experiments and experience. The threshold reflects how severe the lateral velocity
variation is. Generally, we define the ratio to be greater than 1.0. Of course the threshold could
be less than 1.0, but this would require sorting the discretevelocity values in decreasing order
in the third step.

(2) Filter the 2D or 3D velocity slice of the depth layer with amedian filter to eliminate
possible wild velocity values.

(3) Sort the discrete velocity values into an array in increasing order.

(4) Set the summation value equal to zero, then sum the sorteddiscrete velocity values
from left to right and point-by-point, calculating a cumulative velocity average, if a velocity

value is added, with the formulavl
avg =

Kl
∑

k=1
v

m̃
k (xi ,yj )

K l . Here,m̃ = 1, ...,N X in the 2D case and
m̃= 1, ...,N X× NY in the 3D case, where ˜m are the sequence numbers of the discrete velocity
points that were disordered by sorting.K l is the number of discrete velocity points in thel th

region, which is known after a dividing point is determined;l is the number of the reference
velocity. If the ratio between the velocity value at the nextpoint and the velocity average at
the current point is greater than the preset threshold, we can judge that there exists a velocity
boundary at the current point. This point is a dividing pointbetween two velocity regions.

(5) Starting from the dividing point, repeat Step 4 to findingeach successive dividing point
until the end of the sorted velocity array is reached.

(6) Repeat Step 4 and Step 5. This time, the ratio between the cumulative velocity average
at the current point and the velocity average at the adjacentand next point (which is calculated
in the last iteration) is used, and if it is greater than the preset threshold value, the dividing
point between two velocity regions is determined.

(7) If the velocity dividing points are not changed and the velocity averages are not changed,
stop the iterative procedure. Otherwise, repeat Step 6.

We can see that the number of velocity regions is the number ofchosen reference veloc-
ities. The velocity average in a velocity region is a reference velocity value. With the set of
reference velocities, wavefield extrapolation is carried out with SSF, FFD, or GSP operators.
For computational efficiency, the number of reference velocities should be kept small, usually
less than 5 or 6. It should be mentioned that Step 6 and 7 are optional.

In order to merge extrapolated wavefield, the correspondingsequence number between the
input discrete velocity slice and the sorted discrete velocity value should be recorded. This is
important for the approach.

The approach can be used in 2D or 3D, poststack or prestack, and time or depth migra-
tion or modeling, as long as the seismic-wave propagation ischaracterized with perturbation
theory. This method can be used for the image edge detecting as well.

If necessary, the velocity variances may be used as the criterion for dividing the velocity
regions. Usualy, it is sufficient to choose a set of referencevelocities with velocity averages
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for migration.

WAVEFIELD RECONSTRUCTION

Gazdag and Sguazzero (1984) use the following method for merging the extrapolated wave-
field. Assume that the two extrapolated wavefields with the different reference velocities
v

1
re f andv

2
re f are as follows:
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where A1 and A2, andθ1 andθ2 represent amplitude and phase, respectively. The merged
wavefield at a spatial point is
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The amplitude and phase of the merged wavefield is cauculatedwith
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wherev
(

xi , yj ,z+4z
)

is the velocity at the spatial point
(

xi , yj ,z+4z
)

. Kessinger (1992)
shows that the wavefield at a spatial point can be directly replaced by the extrapolated wave-
field with the reference velocity corresponding to the spatial point. The following formula is
used for merging the extrapolated wavefields with SSF operator

P
(

xi , yj ,z+4z;ω
)

= δ
(

vre f
(

xi , yj ,z+4z
)

−v
l
re f

)

ei4s(xi ,yj ,z+4z)4z

F FT−1[

eikz4zP
(

xi , yj ,z+4z;ω
)]

, (23)

wherevre f
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stands for the reference velocity at a spatial point
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)

, vl
re f is the

member of the set of chosen reference velocities with the indexl . The delta functionδ (•) = 1 if
vre f

(

xi , yj ,z+4z
)

= v
l
re f ; otherwise,δ (•) = 0. With this method, the extrapolated wavefield

can be directly inserted into the relevant position withoutstoring it. However, the amplitude
and phase of the merged wavefield is not so accurate in the caseof severe lateral velocity
variations. We use quadratic interpolation to reconstructthe extrapolated wavefield with the
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following equation:
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re f , respectively.

NUMERICAL TEST EXAMPLES

Now, we show some numerical examples of poststack depth migration results with the SSF
operator, in which the reference velocity is chosen with theapproach discussed above. Figure
1 is the 2D SEG/EAGE salt-dome model. Figure 2 shows the imaging result generated with
the (SSF) operator with one reference velocity during one extrapolation step. The image is
very noisy, especially in the inner part of the salt dome, andthe small faults are vague and
difficult to identify. In Figure 4, the reference velocity ischosen with the approach presented
above, and the threshold of the ratio between two adjacent velocity steps is set to 1.3. We can
see that the imaging noise is greatly attenuated, and the faults and the boundary are quite clear.
Figure 3 and Figure 5 are similar to Figure 4, but with a threshold of 1.5 and 1.1. In Figure
5, the imaging quality is improved further, but the improvement is not sufficient to justify the
increased number of reference velocities. In Figure 3, the imaging quality is not decreased
obviously, which means that it is not necessary for the number of reference velocities to be too
much. The reason why the noise appears on the right part of these images does not figure out.
It remains a problem. The chosen reference velocity field, with the threshold set to 1.5, 1.3
and 1.1, is shown in Figure 6, 7, and 8, respectively. This choice satisfactorily characterizes
the background variation of the true 2D SEG/EAGE salt-dome velocity model.

CONCLUSION AND DISCUSSION

We introduce the self-adaptive approach for choosing a set of reference velocities. The ap-
proach is quite flexible and of little calculation cost. It can be used for general image edge-
detecting also. Numerical tests demenstrate that the method is effective. During the wavefield
extrapolation, the wavefield merging remains a problem in the case of severe lateral velocity
variation. Furthermore, by considering the velocity variance in a region, a better reference
velocity choice can be reached.
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Figure 1: The 2D SEG/EAGE velocity model for the salt-dome example.
huazhong1-salt_model[ER]

Figure 2: The imaging result of 2D poststack depth migrationwith one reference velocity
during an extrapolation step.huazhong1-single_ref_v[ER]
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Figure 3: The imaging result of 2D poststack migration with aset of reference velocities
during an extrapolation step with a threshold of 1.5.huazhong1-multiple_ref_v1.5[ER]

Figure 4: The imaging result of 2D poststack migration with aset of reference velocities
during an extrapolation step with a threshold of 1.3.huazhong1-multiple_ref_v1.3[ER]
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Figure 5: The imaging result of 2D poststack migration with aset of reference velocities
during an extrapolation step with a threshold of 1.1.huazhong1-multiple_ref_v1.1[ER]

Figure 6: The chosen reference velocity field with a threshold of 1.5 which satisfactorily
characterizes the background variation of the true 2D SEG/EAGE salt-dome velocity model.
huazhong1-reference_v1.5[ER]
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Figure 7: The chosen reference velocity field with a threshold of 1.3 which satisfactorily
characterizes the background variation of the true 2D SEG/EAGE salt-dome velocity model.
huazhong1-reference_v1.3[ER]

Figure 8: The chosen reference velocity field with a threshold of 1.1 which satisfactorily
characterizes the background variation of the true 2D SEG/EAGE salt-dome velocity model.
huazhong1-reference_v1.1[ER]



SEP–120 Choosing reference velocities 345

ACKNOWLEDGEMENT

The first author thanks the SEP Group at Stanford University for providing an opportunity for
him to serve as a visiting scholar.

REFERENCES

Biondi, B., 2002, Stable wide-angle Fourier finite-difference downward extrapolation of 3-D
wavefields: Geophysics,67, 872–882.

Claerbout, J., 1985, Imaging the earth’s interior Blackwell Scientific Publications, Oxford.,
159–160.

Clapp, R. G., 2004, Reference velocity selection by a generalized lloyd method: 74th Ann.
Internat. Mtg., Soc. Expl. Geophys., Expanded abstracts, 981–984.

Gazdag, J., and Sguazzero, P., 1984, Migration of seismic data by phase-shift plus interpola-
tion: Geophysics,49, 124–131.

Huang, L. Y., Fehler, M. C., and Wu, R. S., 1999, Extended local Born Fourier migration
method: Geophysics,64, 1524–1534.

Kessinger, W., 1992, Extended split-step Fourier migration in 62nd Ann. Internat. Mtg. Soc.
of Expl. Geophys., 917–920.

Ristow, D., and Ruhl, T., 1994, Fourier finite-difference migration: Geophysics,59, 1882–
1893.

Rousseau, J. H. L., and de Hoop, M. V., 2001, Modeling and imaging with the scalar
generalized-screen algorithms in isotropic media: Geophysics,66, 1551–1568.

Stoffa, P. L., Fokkema, J. T., de Luna Freire, R. M., and Kessinger, W. P., 1990, Split-step
Fourier migration: Geophysics,55, 410–421.



346


