
Stanford Exploration Project, Report 120, May 3, 2005, pages 105–124

104



Stanford Exploration Project, Report 120, May 3, 2005, pages 105–124

3D wavefield extrapolation in laterally-varying tilted TI m edia

Guojian Shan and Biondo Biondi1

ABSTRACT

We develop a new 3D wavefield-extrapolation method for a transversely isotropic (TI)
medium with a symmetry axis. The wavefield extrapolation is done by an implicit
isotropic extrapolation operator with an explicit correction operator. The explicit correc-
tion is a 2D convolution operator in the space domain, whose coefficients are estimated
by a weighted least-squares method in the Fourier domain. The extrapolation operator is
stable and suitable for laterally-varying 3D TI media. Thisnew method can be used to ex-
trapolate wavefields in a 3D transversely isotropic medium with a vertical symmetry axis
(VTI) in tilted coordinates. We also discuss the effects of the filter length on its accuracy
and shorten the filter by changing the least-squares weighting function. We present the
impulse response of our algorithm and compare it with the anisotropic phase-shift method.

INTRODUCTION

Many rocks are anisotropic, and most sedimentary rocks can be approximated as TI media.
If anisotropy is not taken into account in the migration, reflectors, especially steeply dipping
reflectors, will be imaged incorrectly. To image the reflector in a TI medium, it is important to
use an anisotropic wavefield-extrapolation method. Implicit methods (Ristow and Ruhl, 1997),
phase-shift-plus-interpolation (PSPI) (Rousseau, 1997), non-stationary phase-shift (Ferguson
and Margrave, 1998), explicit operators (Uzcategui, 1995;Zhang et al., 2001a,b), and refer-
ence anisotropic phase-shift with an explicit correction filter (Baumstein and Anderson, 2003)
have been developed to extrapolate wavefields in 2D VTI, 3D VTI, or 2D tilted TI media.

Explicit extrapolation operators have proved useful in isotropic wavefield extrapolation
(Holberg, 1988; Blacquiere et al., 1989; Thorbecke, 1997).The dispersion relation in a tilted
TI medium is very complicated, and it is very difficult to design an implicit extrapolation
operator for it. However, explicit operators can still handle in the same way as isotropic
media. In 3D, the circular symmetry of the isotropic or VTI media allows us to design a
1D algorithm to replace the 2D convolution operator by McClellen transformations (Hale,
1991b,a; Zhang et al., 2001b). For tilted TI media, the deviation of the symmetry axis from
the vertical direction breaks that circular symmetry. As a result, a 2D convolution operator has
to be designed for the wavefield extrapolation in 3D tilted TImedia.
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Tilted coordinates (Shan and Biondi, 2004a) are used to extrapolate wavefields in a di-
rection close to the wave propagation direction. We can use tilted coordinates to get good
accuracy for high-angle energy using a less accurate operator. A VTI medium in Cartesian
coordinates becomes a tilted TI medium in tilted coordinates. Thus to extrapolate wavefields
in tilted coordinates in a VTI medium, we need an extrapolation operator for tilted TI media.

In this paper, we extrapolate the wavefield in 3D tilted TI media using an implicit isotropic
operator with an explicit anisotropic correction (Shan andBiondi, 2004b). We begin by first
deriving the 3D dispersion relation in tilted TI media. Thenwe discuss how to design 2D an-
tisymmetric convolution operators in the Fourier domain for tilted TI media. We discuss how
the length of the filter affects the accuracy of the operator and propose a way to design short
2D filters. Finally, we present 3D impulse response for a tilted TI medium of our algorithm.

3D DISPERSION RELATION IN TILTED TI MEDIA

In 3D VTI media, the phase velocity of P- and SV-waves in Thomsen’s notation can be ex-
pressed as follows (Tsvankin, 1996):
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whereθ is the phase angle of the propagating wave, andf = 1− (VS0/VP0)2. VP0 andVS0 are
the P- and SV- wave velocities in the vertical direction, respectively. The anisotropy parame-
tersε andδ are defined by Thomsen (1986):
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whereCi j are elastic moduli. In equation (1),V (θ ) is the P-wave phase-velocity when the sign
in front of the square root is positive, and the SV-wave phasevelocity for a negative sign. Let
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z be the wavenumbers for VTI media in Cartesian coordinates. For plane-wave
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can derive the dispersion relation for 3D VTI media as follows:
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where

b6 = f −1,
b5 = ( f −1)(1+2ε),
b4 = 2

[

( f −1)(1+ε)− f (ε− δ)
]

,

b3 =
(

ω

vp

)2
(2− f ),

b2 = (2+2ε− f )
(

ω

vp

)

,

b1 =
(

ω

vp

)4
.

(4)

For tilted TI media, the symmetry axis deviates from the vertical direction. We need two angles
to describe the tilting direction, the tilting angleϕ and the azimuth of the tilting directionψ .
We first assumeψ = 0, that is the symmetry axis is in the planey = 0. Then we generalize the
dispersion relation to the case thatψ 6= 0 by coordinate rotation.

For a tilted TI medium, if we rotate the coordinates so that the symmetry axis is the axis
z′, it becomes a VTI medium in the new coordinates. Letkx, ky, andkz be the wavenumbers
for a tilted TI medium in Cartesian coordinates.k′

x, k′
y andk′

z, which are the wavenumbers
for VTI media in Cartesian coordinates, can also be considered as the wavenumbers for tilted
TI media in the rotated coordinates. For the case thatψ = 0, the dispersion relation can be
obtained from equation (3) by rotating the coordinates as follows:
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We can re-organize the the dispersion relation and obtain the equation for the wavenumberkz

as follows:
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Equation (6) is a quartic equation inkz. Givenkx, kz, the velocityvp0, the anisotropy param-
etersε andδ, and the tilting angleϕ, we can calculate all the coefficients of equation (6), and
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it can be solved analytically (Abramowitz and Stegun, 1972). Usually there are four solutions
for equation (6). Two of them are related to the up- and down-going P-wave, and the other
two are related to the up- and down-going SV-wave, respectively.

Let k′′
x , k′′

y andk′′
z be the wavenumbers for tilted TI media with a generalψ in the original

coordinate system. For generalψ , after solving equation (6), we can get the wavenumberkz

by rotating coordinates (kx,ky) as follows:
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Figure 1 showskz as a function ofkx andky in a constant tilted TI medium. In this medium,
the velocity is 2000 m/s,ε is 0.4,δ is 0.2,ϕ is π

6 andψ is 0. The frequency used in Figure 1
57 Hz.
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Figure 1: Dispersion relation of 3D tilted TI media.guojian2-dispersion[NR]

WAVEFIELD EXTRAPOLATION OPERATOR

For a homogeneous medium, the wavefield can be extrapolated by an anisotropic phase shift
in the Fourier domain as follows:

Pz+1(kx,ky) = Pz(kx,ky)ekz1z. (9)
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In reality, the velocity and anisotropy parameters change laterally. PSPI, explicit methods, or
a combination of PSPI and explicit correction will remedy this problem. We extrapolate the
wavefield by an isotropic operator with an explicit correction operator as follows:

Pz+1(kx,ky) =
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z 1z

]

e(kz−kiso
z )1z. (10)

wherekiso
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y). In VTI media, the correction operatore(kz−kiso
z )1z is circularly

symmetric. This allows us to use a 1D algorithm to replace the2D operator by McClellan
transformations (McClellan and Parks, 1972; McClellan andChan, 1977; Hale, 1991a). How-
ever, tilting the symmetry axis in tilted TI media breaks thecircular symmetry. As a result, we
need to design a 2D convolution operator in the Fourier domain for wavefield extrapolation in
3D tilted TI media.

The correction operator is not symmetric for axesx or y in tilted TI media. This means

F(kx,ky) = e(kz(kx ,ky)−kiso
z )1z

is not a even function ofkx andky. However, we can decompose the functionF(kx,ky) into
either even or odd functions ofkx andky, and approximate the even parts with cosine functions
and the odd parts with sine functions.

We can decompose the functionF(kx,ky) into even and odd parts for the axiskx by
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We can decompose the operatorFe andFo into odd or even parts for the axisky by
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The functionFee(kx,ky) is an even function of bothkx andky, so it can be approximated by
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∑
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The functionFoe(kx,ky) is an even function ofky and an odd function ofkx, so it can be
approximated by
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110 Shan and Biondi SEP–120

The functionFeo(kx,ky) is an even function ofkx and an odd function ofky, so it can be
approximated by

Feo(kx,ky) =
∑

nx,ny

aeo
nxny

cos(nx1xkx)sin(ny1yky). (19)

The functionFoo(kx,ky) is an odd function of bothkx,ky, so it can be approximated by
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can be estimated by the weighted least-square method
(Thorbecke, 1997), which can be solved byQ R decomposition (Baumstein and Anderson,
2003; Shan and Biondi, 2004b). Appendix A discusses how to estimate the coefficientsaee

nxny
,

aoe
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in detail.

The original operatorF(kx,ky) can be obtained fromFee(kx,ky), Feo(kx,ky), Foe(kx,ky)
andFoo(kx,ky) by

F(kx,ky) = Fee(kx,ky)+ Feo(kx,ky)+ Foe(kx,ky)+ Foo(kx,ky). (21)

Appendix B derives the inverse Fourier transform of the functions Fee(kx,ky), Feo(kx,ky),
Foe(kx,ky) andFoo(kx,ky), and obtains the inverse Fourier transform of the functionF(kx,ky)
as follows:
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Let Pz(x, y) be the inverse Fourier transform ofPz(kx,ky). It is well known that

δ(x +nx1x, y+ny1y)∗∗Pz(x, y) = Pz(x +nx1x, y+ny1y),
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where “∗∗” is 2D convolution. From the Fourier transform theory, we have

F
−1{F(kx,ky)Pz(kx,ky)} = F

−1{F(kx,ky)} ∗∗Pz(x, y). (28)

Therefore, we can apply the correction operator on the wavefield in the space domain as fol-
lows:

F
−1{F(kx,ky)} ∗∗Pz(x, y) =

∑

nx,ny

cnx,ny Pz(x +nx1x, y+ny1y). (29)

From the above derivation, we know that the correction operator is designed in the Fourier
domain and is implemented as a convolution in the space domain. For a laterally varying
medium, we build a table of the convolution coefficients. When we run wavefield extrapola-
tion, for each space position, we search for the corresponding convolution coefficients from
that table and convolve the wavefield with these coefficientsat that space position.

FILTER LENGTH, COST, AND ACCURACY

For 3D tilted TI media, the explicit correction operator is a2D convolution operator. For
a medium with lateral variation, a table of the convolution coefficientscnx,ny are calculated
before the wavefield extrapolation. Long filters can extrapolate high-angle energy accurately.
However, it is too expensive to run a 2D convolution filter as long as 19 points in both the
x and y directions. Furthermore, it is not practical to store such abig table in the memory.
By the weighted least-square method, we can shorten the filter length at the price of losing
accuracy for the high-angle energy.

We test a 2D example to check how the length of a filter affects its accuracy. The medium
is homogeneous, in which the P-wave velocity in the direction parallel to the symmetry axis is
2000m/s,ε = 0.4,δ = 0.2 andϕ = π

6 . The frequency is 45.0 Hz.

Let kmax
x be the beginning wavenumber for the evanescent energy. We assign a weight of 1

to the wavenumbers smaller thankmax
x and a weight of 0.001 to the wavenumbers bigger than

kmax
x . In Figure 2, the phase for the even part of the 19-point filterexample is very close to

the true operator. In this model, the beginning wavenumber for the evanescent energykmax
x is

0.15. In Figure 3, the phase curve for the even part of the 5-point filter oscillates around the
true operator. The 5-point filter is not accurate even for thelow wavenumber energy. If our
aim is to guarantee the accuracy of the low-angle (low-wavenumber) energy, we can assign
big weights to the low-angle energy but small weights to the high-angle energy. We can also
smooth the amplitude and phase of the high angle-energy. Nowwe assign a weight of 1 to
the wavenumbers smaller than5

6kmax
x and a weight of 0.001 to the wavenumbers bigger than

5
6kmax

x . In this model,56kmax
x is 0.125. Figure 4 shows the phase curve of the 5-point filter after

we change the weighting policy. The new 5-point filter is veryclose to the true operator at the
low wavenumbers (smaller than 0.12) but has a big error at thehigh wavenumbers.

Though we lose the accuracy of high-angle energy when shorten the filter when we shorten
the filter, we greatly improve the efficiency of our algorithm. If we use the 5-point filter in both
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Figure 2: Comparison between the phase curves for the even part of the 19-point filter and the
true operator. The continuous curve is the phase of the true operator and the dashed line is the
phase of the 19-point filter.guojian2-approx19[ER]

Figure 3: Comparison between the phase curves for the even part of the 5-point filter and the
true operator. The continuous curve is the phase of the true operator and the dashed line is the
phase of the 5-point filter.guojian2-approx5[ER]

Figure 4: Comparison between the phase curves for the even part of the new 5-point filter and
the true operator. The continuous curve is the phase of the true operator and the dashed line is
the phase of the new 5-point filter.guojian2-approxw5[ER]
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inline and crossline directions in 3D wavefield extrapolation, the correction operator is a 9×9
2D filter, while it is a 37× 37 2D filter if we use the 19-point filter. Therefore using the
5-pointer filter, computation cost for the convolution in 3Dwavefield extrapolation is about
1
16 the cost using the 19-pointer filter. Furthermore, when the media is not homogeneous,
searching for the coefficients of a filter in the coefficient table plays an important role in 3D.
The total size of the coefficient table of the 5-point filter isabout 1

16 the size of the 19-point
filter in 3D. If we build the table with 100 discreteω/VP0s, 10 discreteεs and 10 discrete
δs, the size of table is about 8 Megabyte for the 5-point filter and is about 128 Megabyte
for the 19-point filter. The speed of searching in a 8 Megabyteis much faster than that in a
128 Megabyte table. By shortening the filter, we can greatly reduce the cost for the explicit
correction operator in 3D wavefield extrapolation.

We lose the accuracy of high-angle energy when we shorten thelength of the filter. But we
can apply plane-wave decomposition and tilted coordinates(Shan and Biondi, 2004a) to make
the wavefield-extrapolation direction close to the direction of wave propagation. By doing
this, we can get good accuracy for the high-angle energy evenwith a less accurate operator.

NUMERICAL EXAMPLE

We first compare the 19-point filter and the improved 5-point filter using a 2D impulse re-
sponse and a 2D synthetic dataset example. Then we show the 3Dimpulse responses for
the improved 5-point filter and compare them with the impulseresponse of the anisotropic
phase-shift method.

2D impulse response

Figure 5 compares the impulse response of the 19-point filterwith that of the improved 5-
point filter. The medium of the impulse response is a homogeneous medium, in which the
velocity is 2000 m/s, the anisotropy parametersε = 0.4 andδ = 0.2, and the tilting angle
ϕ = π

6 . The travel time for the three impulse are 0.4 s, 0.6 s and 0.8 s, respectively. From
Figure 5, we can see that the impulse response of the improved5-point filter is very similar to
that of the 19-point filter at low-angle energy but is different from the 19-point filter at high-
angle energy. The improved 5-point filter is accurate for theenergy up to 50◦ in the impulse
response, compared to the 19-point filter.

A synthetic anisotropic dataset

Figure 6 compares the 19-point filter with the new 5-point filter for the migration of an
anisotropic synthetic dataset. Shan and Biondi (2005) migrate this dataset with the anisotropic
plane-wave migration in tilted coordinates. Figure 6(a) shows the density model of this syn-
thetic dataset. We can see the steeply dipping salt flank in the density model. Figure 6(b) is
the anisotropic plane-wave migration in tilted coordinates with the 19-point filter. Figure 6(c)
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is the anisotropic plane-wave migration in tilted coordinates with the improved 5-point filter.
The migration result of the new 5-point filter is very close tothe 19-point filter, though it loses
a little resolution at the salt flank. This synthetic data example shows that we can get good
accuracy for high-angle energy in tilted coordinates, though we use the improved 5-point filter,
which is less accurate than 19-point filter.

Figure 5: Comparison of the 2D impulse response of the 19-point filter and the improved 5-
point filter. (a) The impulse response of the 19-point filter.(b) The impulse response of the
improved 5-point filter.guojian2-oldnew[CR]

3D impulse response

Figures 7-9 compare the impulse responses of our algorithm with those of anisotropic phase
shift method. The medium is a homogeneous, tilted TI medium.The symmetry axis of the
medium is in the (x,z) plane and is tilted 30◦ from the vertical direction. The P-wave velocity
in the direction parallel to the symmetry axis is 2000 m/s. The anisotropy parametersε and
δ are 0.4 and 0.2, respectively. The location of the impulse isat x = 2000 m andy = 2000
m. The travel time for the three impulses are 0.4 s, 0.6 s and 0.8 s, respectively. Figure 7
shows a depth slice of the impulse responses atz = 1500 m. Figure 7(a) is obtained with our
algorithm and Figure 7(b) is obtained with the anisotropic phase-shift method. First, Figure
7(a) is very similar to 7(b). Second, the depth slice of the impulse response is not a circle.
The wave propagates faster iny than inx direction. Third, the impulse locationx = 2000 m
andy = 2000 m is not the center of the impulse response. The impulse response is symmetric
alongy = 2000m, but it is not symmetric alongx = 2000 m. Figure 8 shows an in-line slice of
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Figure 6: Comparison of the anisotropic plane-wave migration of a synthetic dataset by the
19-point filter and the new 5-point filter. (a) The density model. (b) The migration result of the
19-point filter. (c) The migration result of the new 5-point filter. guojian2-filtercom[CR]
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the impulse responses aty = 2000 m. Figure 8(a) is obtained with our algorithm and Figure
8(b) is obtained with the anisotropic phase-shift method. Figure 9 shows a cross-line slice of
the impulse responses atx = 2000 m. Figure 9(a) is obtained with our algorithm and Figure
9(b) is obtained with the anisotropic phase-shift method. From Figure 8 and 9, we can see
that the impulse of our algorithm is very close to that of the anisotropic phase-shift method
at low-angle energy and is different from the the anisotropic phase-shift method at high-angle
energy. Since the medium is homogeneous, the anisotropic phase-shift method is accurate. So
our algorithm is accurate for the energy up to 50◦ in the impulse response, compared to the
anisotropic phase-shift method.

CONCLUSION

We present a 3D wavefield-extrapolation algorithm for tilted TI media. The wavefield is ex-
trapolated by an implicit isotropic operator with an explicit anisotropic correction. Tilted TI
media are not circularly symmetric, therefore the explicitanisotropic correction has to be a 2D
convolution operator. It is designed by a weighed least-square method. With proper weights,
we can shorten the correction operator and reduce the computation cost at the price of losing
the accuracy of high-angle energy. A 2D synthetic dataset example shows that we can still
have good accuracy for high-angle energy by decomposing thewavefields into plane waves
and extrapolating them in tilted coordinates. 3D impulse responses show that our algorithm is
accurate up to 50◦ with the short 2D filter.

ACKNOWLEDGMENTS

We would like to thank ExxonMobil for making the synthetic data available.

REFERENCES

Abramowitz, M., and Stegun, I., 1972, Solutions of quartic equationsin Handbook of Math-
ematical Functions with Formulas, Graphs, and Mathematical Tables. New York: Dover.,
17–18.

Baumstein, A., and Anderson, J., 2003, Wavefield extrapolation in laterally varying VTI media
in 73rd Ann. Internat. Mtg. Soc. of Expl. Geophys., 945–948.

Blacquiere, G., Debeye, H. W. J., Wapenaar, C. P. A., and Berkhout, A. J., 1989, 3D table-
driven migration: Geophys. Prosp.,37, 925–958.

Ferguson, R. J., and Margrave, G. F., 1998, Depth migration in TI media by nonstationary
phase shiftin 68th Ann. Internat. Mtg. Soc. of Expl. Geophys., 1831–1834.

Hale, D., 1991a, 3-D depth migration via McClellan transformations: Geophysics,56, 1778–
1785.



SEP–120 3D wavefield extrapolation in TI media 117

Figure 7: A horizontal slice of the 3D impulse response in a tilted TI medium at a depth of
z= 1000 m: (a) Our algorithm. (b) The anisotropic phase-shift method. guojian2-depth[CR]



118 Shan and Biondi SEP–120

Figure 8: An inline slice of the 3D impulse response in a tilted TI medium aty = 2000 m: (a)
Our algorithm. (b) The anisotropic phase-shift method.guojian2-inline [CR]

Figure 9: A cross-line slice of the 3D impulse response in a tilted TI medium atx = 2000 m:
(a) Our algorithm. (b) The anisotropic phase-shift method.guojian2-cross[CR]



SEP–120 3D wavefield extrapolation in TI media 119

—, 1991b, Stable explicit depth extrapolation of seismic wavefields: Geophysics,56, 1770–
1777.

Holberg, O., 1988, Towards optimum one-way wave propagation: Geophys. Prosp.,36, 99–
114.

McClellan, J., and Chan, D., 1977, A 2-D FIR filter structure derived from the Chebychev
recursion: IEEE Trans. Circuits Syst.„CAS-24, 372–378.

McClellan, J. H., and Parks, T. W., 1972, Equiripple approximation of fan filters: Geophysics,
37, 573–583.

Ristow, D., and Ruhl, T., 1997, Migration in transversely isotropic media using implicit oper-
atorsin 67th Ann. Internat. Mtg. Soc. of Expl. Geophys., 1699–1702.

Rousseau, J. H. L., 1997, Depth migration in heterogeneous,transversely isotropic media
with the phase-shift-plus-interpolation methodin 67th Ann. Internat. Mtg. Soc. of Expl.
Geophys., 1703–1706.

Shan, G., and Biondi, B., 2004a, Imaging overturned waves byplane-wave migration in tilted
coordinates: 74th Ann. Internat. Mtg., Soc. of Expl. Geophys., Expanded Abstracts, 969–
972.

—, 2004b, Wavefield extrapolation in laterally-varying tilted TI media: SEP–117, 1–10.

—, 2005, Imaging steeply dipping reflectors in TI media by wavefield extrapolation: SEP–
120, 63–76.

Thomsen, L., 1986, Weak elastic anisotropy: Geophysics,51, 1954–1966.

Thorbecke, J., 1997, Common focus point technologyin Ph.D. thesis. Delft University of
Technology.

Tsvankin, I., 1996, P-wave signatures and notation for transversely isotropic media: An
overview: Geophysics,61, 467–483.

Uzcategui, O., 1995, 2-D depth migration in transversely isotropic media using explicit oper-
ators: Geophysics,60, 1819–1829.

Zhang, J., Verschuur, D. J., and Wapenaar, C. P. A., 2001a, Depth migration of shot records
in heterogeneous, tranversely isotropic media using optimum explicit operators: Geophys.
Prosp.,49, 287–299.

Zhang, J., Wapenaar, C., and Verschuur, D., 2001b, 3-D depthmigration in VTI media with
explicit extrapolation operatorsin 71st Ann. Internat. Mtg. Soc. of Expl. Geophys., 1085–
1088.



120 Shan and Biondi SEP–120

APPENDIX A

This appendix discusses how to estimate the coefficientsaee
nxny

, aoe
nxny

, aeo
nxny

andaoo
nxny

in equa-
tions (17)-(20).

We begin with equation (17), as the other three equations aresilimiar. Let1kx and1ky

be the sampling of the wavenumberskx andky, respectively. To mimic the behavior of the
orginal operatorFee, we need to estimateaee

nxny
, so that

Fee(kx,ky) ≈
∑

nx,ny

aee
nxny

cos(nx1xkx)cos(ny1yky),

for kx ∈ [0,kNyquist
x ] andky ∈ [0,kNyquist

y ], wherekNyquist
x is the Nyquist wavenumberπ

1x and

kNyquist
x is the Nyquist wavenumberπ

1y . Let Mx be kNyquist
x /1kx and My bekNyquist

y /1ky.
The coefficients can be estimated by the following fitting goals:

W(Aeeaee− fee) ≈ 0, (A-1)

where

aee=

(

aee
00,a

ee
10, · · · ,aee

nx−1,ny
,aee

nx,ny
,aee

nx+1,ny
, · · · ,aee

Nx ,Ny

)T
.

Aee is a matrix with the elements

Aee
mn = cos(mxnx1kx1x)cos(myny1ky1y),

wherem = my(Mx +1)+mx andn = ny(Nx +1)+nx . fee is a vector as follows

fee=
(

f ee
00, f ee

10, · · · , f ee
mx−1,my

,aee
mx,my

, f ee
mx+1,my

, · · · , f ee
Mx,My

)T
,

where f ee
mx,my

= Fee(mx1kx,my1ky). W is a diagonal matrix with the weights for the wavenum-
berskx,ky. High weights are assigned to the wavenumbers of interest. The wavenumbers,
such as the evacent energy, are not of interest and are assigned low weights. Given the same
weight matrixW, the matrixWAeeare same thoughf eechanges with the functionFee(kx,ky).
Therefore, QR decomposition is a good way to solve the fittinggoal (A-1). First, we run QR
decomposition on matrixWA : WA = QR, whereQ is an orthogonal matrix andR is an upper
triangular matrix. We write down the matrixesQ andR. Given the functionFee(kx,ky), we
caluculatefee. The solution of fitting goal (A-1)aee is given by

aee= R−1QTWfee. (A-2)

For equation (18), we have the following fitting goal:

W(Aoeaoe− foe) ≈ 0, (A-3)

where

aoe =
(

aoe
00,a

oe
10, · · · ,aoe

nx−1,ny
,aoe

nx,ny
,aoe

nx+1,ny
, · · · ,aoe

Nx,Ny

)T
,
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andfoe in equation (A-3) is

foe =

(

f oe
00 , f oe

10 , · · · , f oe
mx−1,my

,aoe
mx,my

, f oe
mx+1,my

, · · · , f oe
Mx,My

)T
,

where f oe
mx,my

= Foe(mx1kx,my1ky). Aoe in equation (A-3) is a matrix with the elements

Aoe
mn = sin(mxnx1kx1x)cos(myny1ky1y),

wherem = my(Mx + 1)+ mx andn = ny(Nx + 1)+ nx . For equation (19), we have the fol-
lowing fitting goal:

W(Aeoaeo− feo) ≈ 0, (A-4)

where

aeo =
(

aeo
00,a

eo
10, · · · ,aeo

nx−1,ny
,aeo

nx,ny
,aeo

nx+1,ny
, · · · ,aeo

Nx,Ny

)T
,

andfeo in equation (A-3) is

feo =
(

f eo
00 , f eo

10 , · · · , f eo
mx−1,my

,aeo
mx,my

, f eo
mx+1,my

, · · · , f eo
Mx,My

)T
,

where f eo
mx,my

= Feo(mx1kx,my1ky). Aeo in equation (A-4) is a matrix with the elements

Aeo
mn = cos(mxnx1kx1x)sin(myny1ky1y),

wherem = my(Mx + 1)+ mx andn = ny(Nx + 1)+ nx . For equation (20), we have the fol-
lowing fitting goal:

W(Aooaoo− foo) ≈ 0, (A-5)

where

aoo =

(

aoo
00,aoo

10, · · · ,aoo
nx−1,ny

,aoo
nx,ny

,aoo
nx+1,ny

, · · · ,aoo
Nx,Ny

)T
,

andfoo in equation (A-3) is

foo =
(

f oo
00 , f oo

10 , · · · , f oo
mx−1,my

,aoo
mx,my

, f oo
mx+1,my

, · · · , f oo
Mx,My

)T
,

where f oo
mx,my

= Foo(mx1kx,my1ky). Aoo in equation (A-5) is a matrix with the elements

Aoo
mn = sin(mxnx1kx1x)sin(myny1ky1y),

wherem = my(Mx +1)+mx andn = ny(Nx +1)+nx. Fitting goals (A-3), (A-4), and (A-5)
can be solved in the same way as equation (A-1). The solution of fitting goal (A-3), (A-4),
(A-5) are given by

aoe = (Roe)−1(Qoe)TWfoe, (A-6)

aeo = (Reo)−1(Qeo)TWfeo, (A-7)

aoo = (Roo)−1(Qoo)TWfoo, (A-8)

whereQoe, Roe, Qeo, Reo andQoo, Roo are the QR decomposition result of the matrixsWAoe,
WAeo andWAoo, respectively.
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APPENDIX B

In this appendix, we derive the inverse Fourier transform ofthe correction operatorF(kx,ky).

It is well known that the inverse Fourier transform of the function cosnx1xkx, sinnx1xkx,
cosny1yky, sinny1yky are:

F
−1{cos(nx1xkx)} =

1

2
(δ(x −nx1x)+ δ(x +nx1x)), (B-1)

F
−1{sin(nx1xkx)} =

1

2i
(δ(x −nx1x)− δ(x +nx1x)), (B-2)

F
−1{cos(ny1yky)} =

1

2
(δ(y−ny1y)+ δ(y+ny1y)), (B-3)

F
−1{sin(ny1yky)} =

1

2i
(δ(y−ny1y)− δ(y+ny1y)). (B-4)

Let δ±nx = δ(x ± nx1x), δ±ny = δ(y ± ny1y) andδ±nx,±ny = δ(x ±nx1x, y±ny1y). The
inverse Fourier transform of the function cos(nx1xkx)cos(ny1yky) is :

F
−1{cos(nx1xkx)cos(ny1yky)} =

1

4
(δ−nx + δ+nx )∗ (δ−ny + δ+ny) (B-5)

=
1

4
(δ−nx ,−ny + δ−nx ,+ny + δ+nx ,−ny + δ+nx ,+ny). (B-6)

Similarly, the inverse Fourier transform of the functions cos(nx1xkx)sin(ny1yky),
sin(nx1xkx)cos(ny1yky) and sin(nx1xkx)sin(ny1yky) are :

F
−1{cos(nx1xkx)sin(ny1yky)} = −

i

4
(δ−nx,−ny − δ−nx ,+ny + δ+nx ,−ny − δ+nx ,+ny), (B-7)

F
−1{sin(nx1xkx)cos(ny1yky)} = −

i

4
(δ−nx,−ny + δ−nx ,+ny − δ+nx ,−ny − δ+nx ,+ny), (B-8)

F
−1{sin(nx1xkx)sin(ny1yky)} = −

1

4
(δ−nx,−ny − δ−nx ,+ny − δ+nx ,−ny + δ+nx ,+ny). (B-9)

Therefore the inverse Fourier transform of the functionsFee(kx,ky), Foe(kx,ky), Feo(kx,ky)
andFoo(kx,ky) are:

F
−1{Fee(kx,ky)} =

∑

nx,ny

1

4
aee

nx,ny
(δ−nx ,−ny + δ−nx ,+ny + δ+nx ,−ny + δ+nx ,+ny), (B-10)

F
−1{Foe(kx,ky)} =

∑

nx,ny

−
i

4
aoe

nx,ny
(δ−nx ,−ny + δ−nx ,+ny − δ+nx ,−ny − δ+nx ,+ny), (B-11)

F
−1{Feo(kx,ky)} =

∑

nx,ny

−
i

4
aeo

nx,ny
(δ−nx ,−ny − δ−nx ,+ny + δ+nx ,−ny − δ+nx ,+ny), (B-12)

F
−1{Foo(kx,ky)} =

∑

nx,ny

−
1

4
aoo

nx,ny
(δ−nx ,−ny − δ−nx ,+ny − δ+nx ,−ny + δ+nx ,+ny). (B-13)
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The correction operatorF(kx,ky) is the sum ofFee(kx,ky), Foe(kx,ky), Feo(kx,ky) andFoo(kx,ky).
Therefore the inverse Fourier transform of the correction operator is:

F
−1{F(kx,ky)} = F

−1{Fee(kx,ky)}+F
−1{Foe(kx,ky)}+F

−1{Feo(kx,ky)}+F
−1{Foo(kx,ky)} (B-14)

=
1

4

∑

nx,ny

(δ−nx,−nyc−nx,−ny + δ−nx ,+nyc−nx,+ny + δ+nx ,−nyc+nx,−ny + δ+nx ,+nyc+nx,+ny) (B-15)

where

c−nx,−ny = [(aee
nx,ny

−aoo
nx,ny

)− i (aeo
nx,ny

+aoe
nx,ny

)], (B-16)

c−nx,+ny = [(aee
nx,ny

+aoo
nx,ny

)+ i (aeo
nx,ny

−aoe
nx,ny

)], (B-17)

c+nx,−ny = [(aee
nx,ny

+aoo
nx,ny

)− i (aeo
nx,ny

−aoe
nx,ny

)], (B-18)

c+nx,+ny = [(aee
nx,ny

−aoo
nx,ny

)+ i (aeo
nx,ny

+aoe
nx,ny

)]. (B-19)


