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3D wavefield extrapolation in laterally-varying tilted Tl m edia

Guojian Shan and Biondo Biordi

ABSTRACT

We develop a new 3D wavefield-extrapolation method for astrarsely isotropic (TI)
medium with a symmetry axis. The wavefield extrapolation amel by an implicit
isotropic extrapolation operator with an explicit corientoperator. The explicit correc;
tion is a 2D convolution operator in the space domain, whasfficients are estimated
by a weighted least-squares method in the Fourier domaie.eXtrapolation operator is
stable and suitable for laterally-varying 3D Tl media. Timesv method can be used to e
trapolate wavefields in a 3D transversely isotropic mediuth @ vertical symmetry axis
(VTI) in tilted coordinates. We also discuss the effectshef filter length on its accuracy
and shorten the filter by changing the least-squares weaglfitinction. We present the
impulse response of our algorithm and compare it with thearopic phase-shift method,

INTRODUCTION

Many rocks are anisotropic, and most sedimentary rocks eaapproximated as Tl media.
If anisotropy is not taken into account in the migration,eefors, especially steeply dipping
reflectors, will be imaged incorrectly. To image the refleataa Tl medium, it is important to
use an anisotropic wavefield-extrapolation method. Intphethods (Ristow and Ruhl, 1997),
phase-shift-plus-interpolation (PSPI) (Rousseau, 19840)-stationary phase-shift (Ferguson
and Margrave, 1998), explicit operators (Uzcategui, 129tng et al., 2001a,b), and refer-
ence anisotropic phase-shift with an explicit correctitterfiBaumstein and Anderson, 2003)
have been developed to extrapolate wavefields in 2D VTI, 3 wiT2D tilted Tl media.

Explicit extrapolation operators have proved useful irtrigoic wavefield extrapolation
(Holberg, 1988; Blacquiere et al., 1989; Thorbecke, 1991g dispersion relation in a tilted
Tl medium is very complicated, and it is very difficult to dgsian implicit extrapolation
operator for it. However, explicit operators can still hendh the same way as isotropic
media. In 3D, the circular symmetry of the isotropic or VTI diee allows us to design a
1D algorithm to replace the 2D convolution operator by Mdlete transformations (Hale,
1991b,a; Zhang et al., 2001b). For tilted TI media, the dewieof the symmetry axis from
the vertical direction breaks that circular symmetry. Assuit, a 2D convolution operator has
to be designed for the wavefield extrapolation in 3D tiltedriddia.

lemail: shan@sep.stanford.edu, biondo@sep.stanford.edu

105



106 Shan and Biondi SEP-120

Tilted coordinates (Shan and Biondi, 2004a) are used t@apalate wavefields in a di-
rection close to the wave propagation direction. We can ilteel toordinates to get good
accuracy for high-angle energy using a less accurate aperatVTI medium in Cartesian
coordinates becomes a tilted TI medium in tilted coordigafiéhus to extrapolate wavefields
in tilted coordinates in a VTl medium, we need an extrapofatperator for tilted TI media.

In this paper, we extrapolate the wavefield in 3D tilted Tl madsing an implicit isotropic
operator with an explicit anisotropic correction (Shan &nohdi, 2004b). We begin by first
deriving the 3D dispersion relation in tilted TI media. Thea discuss how to design 2D an-
tisymmetric convolution operators in the Fourier domaintiibed Tl media. We discuss how
the length of the filter affects the accuracy of the operatal gropose a way to design short
2D filters. Finally, we present 3D impulse response for adilf| medium of our algorithm.

3D DISPERSION RELATION IN TILTED TI MEDIA

In 3D VTI media, the phase velocity of P- and SV-waves in Then's notation can be ex-
pressed as follows (Tsvankin, 1996):

2, 2 f f

. 2 .
v\j(e) —1+ssin2(0)£iil <1+285|n2(9)> _2(8—8)5|n2(29), "

whereg is the phase angle of the propagating wave, firell — (Vso/ Vpo)?. Vpo andVg are
the P- and SV- wave velocities in the vertical directionpexgively. The anisotropy parame-
terse ands are defined by Thomsen (1986):

_Cu—Cs o (Cuat Ca4)® — (Ca3— Ca)®
2Czz 2C33(C33—Caa) ’

whereC;; are elastic moduli. In equation (1¥,(¢) is the P-wave phase-velocity when the sign
in front of the square root is positive, and the SV-wave phasdecity for a negative sign. Let
k. ky andk; be the wavenumbers for VTI media in Cartesian coordinates.pfne-wave
propagation, the phase angles related to the wavenumbeks, ki andk; by the following
relations:

V(6)k/ V(6)K,
sing = YO g - YOI
1) 1)

(2)

wherew is the temporal frequency, amgl = /(k;()2+(k§,)2. From equations (1) and (2), we
can derive the dispersion relation for 3D VTl media as fodow

be(K})* -+ bs(k/)* -+ ba(k,)? (K )% + ba(K,)* + ba(k ) + by = O, (3)
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where

be = -1,
bs = (f—-1)(1+2¢),
bs = 2[(f—1)(1+¢)— f(e—3)],
2
by = (&)@, (4)

(2426 — f)(;“—p) ,
4
o= (3)
For tilted TI media, the symmetry axis deviates from theigatdirection. We need two angles
to describe the tilting direction, the tilting angfeand the azimuth of the tilting direction.

We first assume = 0, that is the symmetry axis is in the playe- 0. Then we generalize the
dispersion relation to the case thiat~ O by coordinate rotation.

o
N
Il

For a tilted TI medium, if we rotate the coordinates so thatshmmetry axis is the axis
Z, it becomes a VTl medium in the new coordinates. kgtky, andk, be the wavenumbers
for a tilted TI medium in Cartesian coordinates,, ki andk;, which are the wavenumbers
for VTl media in Cartesian coordinates, can also be constlas the wavenumbers for tilted
Tl media in the rotated coordinates. For the case ¢hat O, the dispersion relation can be
obtained from equation (3) by rotating the coordinates hevis:

Ky \ _( Cosp —sing Ky (5)
kK, ]\ sing sing k, )°
We can re-organize the the dispersion relation and obtaieduation for the wavenumbler
as follows:

auk; + agk? + agk? + ark; + a0 =0, (6)
where
as = (f—1)+2¢(f —1)sirfp— (e —8)sin? 29,
a3 = 2(f—21)esin2p— f(e—35)sindp,
a = [2(f —1)(1+e)— f(e—8)(2cog2p — sir 2p)]k2
+ 2[(f —1)(A+e)+(f —DesirPe— f(e —8)cod p]k?
+ (v&m)z(zssinzwz—f),
a1 = [2(f —1)esin2p+ f(e—58)sindp]k3 %
+ 2sin2[(f —1)e + f (e — 8)]kuk2
n ZE(U%O)ZSin?(ka,
a0 [(f — 1)1+ 2e cofp) — 5 (e — 8)siP 20k + (f — 1)(1+2e)k?

+ |l

2(f — 1)(1+2 +ecofe) — f (e —8)sirp]k2k2
2 2
+ () @ f+2co8+2(:2) @+ — NiE.

Equation (6) is a quartic equation ka. Givenky, k;, the velocityvpo, the anisotropy param-
eterse andg, and the tilting angle, we can calculate all the coefficients of equation (6), and
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it can be solved analytically (Abramowitz and Stegun, 191&ually there are four solutions
for equation (6). Two of them are related to the up- and dowingy P-wave, and the other
two are related to the up- and down-going SV-wave, respagtiv

Letky, ky andk; be the wavenumbers for tilted Tl media with a generah the original

coordinate system. For gener@l after solving equation (6), we can get the wavenunikper
by rotating coordinatek, ky) as follows:

Ky \ _ ([ cosy —siny Kx (8)
ky J— \ siny  siny ky )
Figure 1 shows; as a function oky andky in a constant tilted TI medium. In this medium,

the velocity is 2000 m/s; is 0.4,5 is 0.2,¢ is & andyr is 0. The frequency used in Figure 1
57 Hz.
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Figure 1: Dispersion relation of 3D tilted Tl medi@uojianZ-dispersioﬁNR]

WAVEFIELD EXTRAPOLATION OPERATOR

For a homogeneous medium, the wavefield can be extrapolgtad anisotropic phase shift
in the Fourier domain as follows:

PZ L (ky, ky) = P?(kx, ky)€<22, (9)
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In reality, the velocity and anisotropy parameters chaagedlly. PSPI, explicit methods, or
a combination of PSPI and explicit correction will remedisthroblem. We extrapolate the
wavefield by an isotropic operator with an explicit correntoperator as follows:

PZ e, ky) = | Pk ky)e 22 ] a2z (10)

wherek!S° = \j“—: — (k2 +k2). In VTl media, the correction operatete—k)42 s circularly
PO

symmetric. This allows us to use a 1D algorithm to replace2ibeoperator by McClellan
transformations (McClellan and Parks, 1972; McClellan @hdn, 1977; Hale, 1991a). How-
ever, tilting the symmetry axis in tilted TI media breaks diveular symmetry. As a result, we
need to design a 2D convolution operator in the Fourier dorffaiwavefield extrapolation in
3D tilted Tl media.

The correction operator is not symmetric for axesr y in tilted Tl media. This means
Fk ky) = alke(kaky) k) Az

is not a even function dfx andky. However, we can decompose the funct®(ky, ky) into
either even or odd functions &f andky, and approximate the even parts with cosine functions
and the odd parts with sine functions.

We can decompose the functiéitky, ky) into even and odd parts for the akisby

Fkiky) = STF (k) +F(koky)l (11)
Fokaky) = SIF(kuky) — F(ka k)] (12)
We can decompose the operakstandF° into odd or even parts for the axs by

Folkak) = IFS (k) + Fo(ks, —K)] 13)

Fokuky) = SIFeky) — Fo(ks, —k)), (14)

FOlkky) = STFkeky) + Fok k)l 15)

Fkx, ky) = %[Fo(kx, ky) — F°(kx, —ky)]. (16)
The functionF®¥(ky, ky) is an even function of botky, andky, so it can be approximated by
Feke, ky) = ) ane, cosfixAxky)cosfyAyky), (17)

NNy

The functionF°®(ky, ky) is an even function ok, and an odd function oky, so it can be
approximated by

FO%kx, ky) = Z aﬁxeny sin(ny Axky) cosfiy Ayky). (18)

nx,ny
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The functionF®°(ky,ky) is an even function oky and an odd function oky, so it can be
approximated by

F®kx, ky) = Z aﬁ;’ny cosfix Axky)sin(ny Ayky). (19)

nx,ny

The functionF°°(ky, ky) is an odd function of botky, ky, so it can be approximated by

F ok, ky) = Z aﬁfny sin(ny Axky) sin(ny Ayky). (20)

nx,ny

Coefficientsarf, . ant, - 8nn, andagh, can be estimated by the weighted least-square method
(Thorbecke, 1997), which can be solved @R decomposition (Baumstein and Anderson,
2003; Shan and Biondi, 2004b). Appendix A discusses howttmate the coefficient efny,
8neny» 8neny, @NdanS, in detail.

The original operatoF (ky, ky) can be obtained fronfr ®&(ky, ky), F®(kx,Ky), F°%(kx,Kky)
and F°°(ky, ky) by

F(kx, ky) = F®(Kx, ky) + F ks, ky) + FO%(Kx, ky) + F (K, ky). (21)

Appendix B derives the inverse Fourier transform of the fioms F®&(ky,ky), F(ky,ky),
F°%(ky, ky) andF°°(ky, ky), and obtains the inverse Fourier transform of the funckdky, ky)
as follows:

THF (ke ky)} = Y Cony8(X+Nx AX, Y 4Ny Ay), (22)
e
where
Ny = —Ng, =Ny +1,---,—1,0,1; -, Ny — 1, Ny,
= —Ny,—Ny+1,--,-1,0,1;--,Ny — 1,Ny,
andcy, n, is as follows:
Coo = a0, (23)
Gy = % (a8, a5, ) +i (ak%, +a5%, )] ifnx>0andny >0 (24)
Crony = % (a5, +88%, ) +i (ak%, — a0, )], ifnx <Oandny >0, (25)
Cryuny % (885, +88%, ) +i (—a2, +a%%,, ) |, ifnx>0andny <0 (26)
Couny = % [(age,, —a%, ) i (a5, +2%, )] ifnc<0andn, <0 (27)

Let P#(x,y) be the inverse Fourier transform Bf (ky, ky). It is well known that

S(X+NxAX,y +nyAy) xxP?(X,y) = P*(X + nx AX,y + nyAy),
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where “%x" is 2D convolution. From the Fourier transform theory, weda
FHF (ke Ky) P?(Kx, Ky)) = F H{F (e, Ky) )} %% PZ(X, Y). (28)

Therefore, we can apply the correction operator on the wealdefi the space domain as fol-
lows:

FHF (ke ky)} 5 %P2, y) = D Cnyny PAX+Nx AX,y+ Ny Ay). (29)

nx,ny

From the above derivation, we know that the correction dperia designed in the Fourier
domain and is implemented as a convolution in the space donféor a laterally varying
medium, we build a table of the convolution coefficients. Whee run wavefield extrapola-
tion, for each space position, we search for the correspgnclnvolution coefficients from
that table and convolve the wavefield with these coefficiahteat space position.

FILTER LENGTH, COST, AND ACCURACY

For 3D tilted Tl media, the explicit correction operator i2B convolution operator. For
a medium with lateral variation, a table of the convolutimefficientsc,, n, are calculated
before the wavefield extrapolation. Long filters can extlajgohigh-angle energy accurately.
However, it is too expensive to run a 2D convolution filter asd as 19 points in both the
x andy directions. Furthermore, it is not practical to store sudhigatable in the memory.
By the weighted least-square method, we can shorten theléhgth at the price of losing
accuracy for the high-angle energy.

We test a 2D example to check how the length of a filter afféstadcuracy. The medium
is homogeneous, in which the P-wave velocity in the direcgiarallel to the symmetry axis is
2000m/s¢ = 0.4,6 = 0.2 andp = %. The frequency is 45.0 Hz.

Letk'®* be the beginning wavenumber for the evanescent energy. Sasweight of 1
to the wavenumbers smaller thefi** and a weight of 0.001 to the wavenumbers bigger than
k'@, In Figure 2, the phase for the even part of the 19-point fdtexmple is very close to
the true operator. In this model, the beginning wavenumtettie evanescent energ{?* is
0.15. In Figure 3, the phase curve for the even part of theibtfitier oscillates around the
true operator. The 5-point filter is not accurate even forltewavenumber energy. If our
aim is to guarantee the accuracy of the low-angle (low-wakdrer) energy, we can assign
big weights to the low-angle energy but small weights to tightangle energy. We can also
smooth the amplitude and phase of the high angle-energy. Wewassign a weight of 1 to
the wavenumbers smaller th%k;“ax and a weight of 0.001 to the wavenumbers bigger than
gk;“ax. In this model 2k"®¥ s 0.125. Figure 4 shows the phase curve of the 5-point fifter a
we change the weighting policy. The new 5-point filter is velgse to the true operator at the
low wavenumbers (smaller than 0.12) but has a big error dtiffewavenumbers.

Though we lose the accuracy of high-angle energy when shtivésfilter when we shorten
the filter, we greatly improve the efficiency of our algorithifwe use the 5-point filter in both
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Figure 2: Comparison between the phase curves for the eveafiiae 19-point filter and the
true operator. The continuous curve is the phase of the frasator and the dashed line is the
phase of the 19-point fiIterguojianz-approxlgER]
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Figure 3: Comparison between the phase curves for the evenfghe 5-point filter and the
true operator. The continuous curve is the phase of the fragator and the dashed line is the
phase of the 5-point filtefguojian2-approx5[ER]
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Figure 4: Comparison between the phase curves for the eveafghe new 5-point filter and
the true operator. The continuous curve is the phase oftleeofperator and the dashed line is
the phase of the new 5-point filt¢guojian2-approxwH[ER]
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inline and crossline directions in 3D wavefield extrapalatithe correction operator is a<®
2D filter, while it is a 37x 37 2D filter if we use the 19-point filter. Therefore using the
5-pointer filter, computation cost for the convolution in 3vefield extrapolation is about
% the cost using the 19-pointer filter. Furthermore, when tleglimmis not homogeneous,
searching for the coefficients of a filter in the coefficieftiéaplays an important role in 3D.
The total size of the coefficient table of the 5-point filteabnoutl—ls the size of the 19-point
filter in 3D. If we build the table with 100 discrete/Vpps, 10 discretes and 10 discrete
3s, the size of table is about 8 Megabyte for the 5-point filiedl & about 128 Megabyte
for the 19-point filter. The speed of searching in a 8 Megalg/tauch faster than that in a
128 Megabyte table. By shortening the filter, we can grea&tiuce the cost for the explicit
correction operator in 3D wavefield extrapolation.

We lose the accuracy of high-angle energy when we shortdertigéh of the filter. But we
can apply plane-wave decomposition and tilted coordin@kan and Biondi, 2004a) to make
the wavefield-extrapolation direction close to the dir@ttof wave propagation. By doing
this, we can get good accuracy for the high-angle energy witbra less accurate operator.

NUMERICAL EXAMPLE

We first compare the 19-point filter and the improved 5-poilt¢rfiusing a 2D impulse re-
sponse and a 2D synthetic dataset example. Then we show the@idse responses for
the improved 5-point filter and compare them with the impulkssponse of the anisotropic
phase-shift method.

2D impulse response

Figure 5 compares the impulse response of the 19-point Viltier that of the improved 5-
point filter. The medium of the impulse response is a homogesnenedium, in which the
velocity is 2000 m/s, the anisotropy parameters 0.4 andé = 0.2, and the tilting angle
¢ = %. The travel time for the three impulse are 0.4 s, 0.6 s and ,0r@spectively. From
Figure 5, we can see that the impulse response of the imp&spedht filter is very similar to
that of the 19-point filter at low-angle energy but is differé&om the 19-point filter at high-
angle energy. The improved 5-point filter is accurate foreghergy up to 50in the impulse
response, compared to the 19-point filter.

A synthetic anisotropic dataset

Figure 6 compares the 19-point filter with the new 5-poinefilfor the migration of an
anisotropic synthetic dataset. Shan and Biondi (2005)ateghis dataset with the anisotropic
plane-wave migration in tilted coordinates. Figure 6(avebithe density model of this syn-
thetic dataset. We can see the steeply dipping salt flankeidémsity model. Figure 6(b) is
the anisotropic plane-wave migration in tilted coordisatéth the 19-point filter. Figure 6(c)
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is the anisotropic plane-wave migration in tilted coordasawith the improved 5-point filter.
The migration result of the new 5-point filter is very closehe 19-point filter, though it loses
a little resolution at the salt flank. This synthetic dataregke shows that we can get good
accuracy for high-angle energy in tilted coordinates, giowe use the improved 5-point filter,
which is less accurate than 19-point filter.

[m]

x
1000 2000 3000 4

[w]
0001

(o]
0001

Figure 5: Comparison of the 2D impulse response of the 18tfitter and the improved 5-
point filter. (a) The impulse response of the 19-point filigr) The impulse response of the
improved 5-point filter} guojian2-oldnew[CR]

3D impulse response

Figures 7-9 compare the impulse responses of our algorittimtihose of anisotropic phase
shift method. The medium is a homogeneous, tilted Tl medilitme symmetry axis of the
medium is in the X, z) plane and is tilted 30from the vertical direction. The P-wave velocity
in the direction parallel to the symmetry axis is 2000 m/se Emisotropy parametessand

8 are 0.4 and 0.2, respectively. The location of the impulss is= 2000 m andy = 2000
m. The travel time for the three impulses are 0.4 s, 0.6 s a®id,0respectively. Figure 7
shows a depth slice of the impulse responses=att500 m. Figure 7(a) is obtained with our
algorithm and Figure 7(b) is obtained with the anisotroghage-shift method. First, Figure
7(a) is very similar to 7(b). Second, the depth slice of thpuise response is not a circle.
The wave propagates fasteryrthan inx direction. Third, the impulse locatian= 2000 m
andy = 2000 m is not the center of the impulse response. The impesg®nse is symmetric
alongy = 2000m, but it is not symmetric along= 2000 m. Figure 8 shows an in-line slice of
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Figure 6: Comparison of the anisotropic plane-wave migratf a synthetic dataset by the
19-point filter and the new 5-point filter. (a) The density rabdb) The migration result of the
19-point filter. (c) The migration result of the new 5-poiritefi. | guojian2-filtercom[CR]
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the impulse responses yat= 2000 m. Figure 8(a) is obtained with our algorithm and Figure
8(b) is obtained with the anisotropic phase-shift methaduie 9 shows a cross-line slice of
the impulse responsesat= 2000 m. Figure 9(a) is obtained with our algorithm and Figure
9(b) is obtained with the anisotropic phase-shift methotbn¥Figure 8 and 9, we can see
that the impulse of our algorithm is very close to that of thesatropic phase-shift method
at low-angle energy and is different from the the anisotrgbiase-shift method at high-angle
energy. Since the medium is homogeneous, the anisotropgepshift method is accurate. So
our algorithm is accurate for the energy up t¢ & the impulse response, compared to the
anisotropic phase-shift method.

CONCLUSION

We present a 3D wavefield-extrapolation algorithm for ¢illd media. The wavefield is ex-
trapolated by an implicit isotropic operator with an explanisotropic correction. Tilted Tl
media are not circularly symmetric, therefore the exphqiisotropic correction has to be a 2D
convolution operator. It is designed by a weighed leasasgimethod. With proper weights,
we can shorten the correction operator and reduce the catigrutost at the price of losing
the accuracy of high-angle energy. A 2D synthetic datasatgke shows that we can still
have good accuracy for high-angle energy by decomposingvétvefields into plane waves
and extrapolating them in tilted coordinates. 3D impulspoases show that our algorithm is
accurate up to 50with the short 2D filter.
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APPENDIX A

This appendix discusses how to estimate the coefficagits, ag?, . a5ln, andagl, in equa-
tions (17)-(20).

We begin with equation (17), as the other three equationsitam@ar. Let Aky and Aky
be the sampling of the wavenumbégsandky, respectively. To mimic the behavior of the
orginal operatof-°%, we need to estimaf, , so that

F &y, ky) ~ Z 8, COSOix Axke) cosfy Ayky),

Ny ,ny

for ky € [0,k Y9""*] andky € [0,ky ¥""*], whereky Y9""*'is the Nyquist wavenumbef. and
ke Y9! is the Nyquist wavenumbef;. Let My be ke Y95y Ak and My be k) Y'Y Ak,.
The coefficients can be estimated by the following fittinglgoa

W (A®*®— 1) ~ 0, (A-1)
where

e

e _ ee ,ee ee ee ee ee
ar= (aoo’ 810" 80, 10y 8y nyr Byt any ’aNx,Ny>

A®€is a matrix with the elements
ASS = cosnyng Aky AX) cosfnyny AkyAy),

wherem = my(My + 1)+ my andn = ny(Ny + 1)+ ny. f*®is a vector as follows

T
ee__ ee fee ee ee ee ee
= <f0 , f10"" ) fmx—l,my’amx,my’ my+1my? """ fo,My) ,

where fn‘ixe’my = F®(my Aky, myAky). W is a diagonal matrix with the weights for the wavenum-
bersky,ky. High weights are assigned to the wavenumbers of interelseé Wavenumbers,
such as the evacent energy, are not of interest and are eddam weights. Given the same
weight matrixW, the matriXWA € are same though®® changes with the functioR ®%(ky, ky).
Therefore, QR decomposition is a good way to solve the fitjoal (A-1). First, we run QR
decomposition on matri®A: WA = QR, whereQ is an orthogonal matrix and is an upper
triangular matrix. We write down the matrix€sandR. Given the functionF®¥(ky, ky), we
caluculatg®®. The solution of fitting goal (A-1%°¢is given by

a®®=R1QTwree (A-2)
For equation (18), we have the following fitting goal:
W (A%a%€ — £9¢) ~ O, (A-3)
where

(o]

T
e _ oe ,0e oe oe oe oe
ar= <a00’a10""’anx—l,ny’anx,ny’anx+l,ny""’aNx,Ny) ,
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andf°®in equation (A-3) is

.
(90 = (188, £98, 108 1ymy 80 s F08 iy Ty )
where e . = Fo%(myAky, myAky). A% in equation (A-3) is a matrix with the elements
A% = sin(myny Ak Ax) cosfmyny Aky Ay),

wherem = my(My + 1)+ my andn = ny(Ny 4+ 1)+ ny. For equation (19), we have the fol-
lowing fitting goal:

W(Aeoaeo _ fQO) ~ 0’ (A_4)
where

T
€0 __ €0 L€0 eo eo eo eo
ar= (aOO’alo""’anx—l,ny1anx,ny’anx+l,ny""'aNx,Ny> :

andf€?in equation (A-3) is

.
feo_ (fgg, FE s Fone iy By frooyamy fﬁg‘My) ,
wherefgo . = Fe(myAky, myAky). A%in equation (A-4) is a matrix with the elements
ASY = cosfnknx Aky AX) sin(myny Aky Ay),

wherem = my(My + 1)+ my andn = ny(Ny 4+ 1)+ ny. For equation (20), we have the fol-
lowing fitting goal:

W(A®°2% _ 90 ~, 0, (A-5)
where
00 00 L00 00 00 00 (e]0) T
a = (aoo’alo"" 18n,—1ny 8nyonyr Bnyang s ’aNx,Ny> ;

andf°?in equation (A-3) is

.
190 = (180, £+ 1y B mye Ty T2, )
where f2° = Fo%(mxAky, myAky). A% in equation (A-5) is a matrix with the elements
A = sin(myxnyx Akyx AX) sin(myny Aky Ay),

wherem = my(My + 1)+ my andn = ny(Nx + 1)+ ny. Fitting goals (A-3), (A-4), and (A-5)
can be solved in the same way as equation (A-1). The solufiditting goal (A-3), (A-4),
(A-5) are given by

a’t — (Roe)—l(Qoe)TWf oe’ (A-G)
at° — (Reo)—l(Qeo)TWf eo, (A-7)
a%° — (ROO)—l(QOO)wa oo’ (A-8)

whereQ°€, R°¢ Q®°, R®?andQ®°, R°° are the QR decomposition result of the matiiva °¢,
WA €2 andWA°°, respectively.
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APPENDIX B

In this appendix, we derive the inverse Fourier transforrthefcorrection operatdf (ky, ky).

Itis well known that the inverse Fourier transform of thedtion cosy, A XKy, Sinny A XKy,
cosny Ayky, sinnyAyky are:

F YHcoshxAxk)} = %(S(X—nxAx)—i—cS(x—i—nxAx)), (B-1)
FYsin(yAxky)} = 2—1i(8(x—nxAx)—8(x+nxAx)), (B-2)
FHooshyayk)l = S(6(y—nyAy)+5(y-+nyAY)) ®-3)
FAsinayayk)) = ((y—nyAy)~5(y-+nyay)) B4

Let 61n, = 8(X £ NxAX), d1n, = (Y £ NyAy) anddin, +n, = S(XENxAX,y£nyAy). The
inverse Fourier transform of the function cogf xky) cosfiy Ayky) is :

1

FH{cos fix Axky) cosfiyAyky)} = Z((S—nx + 840y ) % (8—ny +34ny) (B-5)
1

= 2(5—nx,—ny +8—ny,+ny +34ng,—ny + 310, 4ny). (B-6)

Similarly, the inverse Fourier transform of the functioms @y Axky) sin(ny Ayky),
sin(nx Axkyx) cosfiyAyky) and sinfix Axky) sinnyAyky) are :

F HeosixAxke) sin(yAyky)} = _2(5‘”X"”y — 8 ngtny +84ng,—ny — 4ngtny)s (B-7)
. [

?_I{Sln(nx Axkx) COS@yAyky)} == —Z((S_nx’_ny +8_nx’+ny - (S+nx’_ny - 8+nx’+ny), (B'8)
1

FHsin(xAxky)sinyAyky)} = —Z((s_nx,_ny—3_nx,+ny—5+nx,_ny+3+nx,+ny). (B-9)

Therefore the inverse Fourier transform of the functieit§(ky, ky), F°%(ky,ky), F(kx,ky)
andF°°(ky, ky) are:

1
‘{F_l{Fee(kX’ky)} = Z Zaﬁiny(s—nx,—ny +8-ny+ny T 84ng,—ny +4ne4ny),  (B-10)
nx,ny
—1lyo0e€ _ _i_ oe . . _
FH{F ke, ky)} = Z 4anx,ny(5—nx,—ny+5—nx,+ny S4ng,—ny = S4ny4ny),  (B-11)
nx,ny
—17zeo _ _i_ €o _ _ _
FUF k)l = D =780, (5-neny —8-nitny +81nny —Sincin,), (B-12)
nx,ny

1
FY Fky, ky)} = Z _Zag)?‘ny((s—nx,—ny — 8—ng4+ny = 84ny,—ny T 84nc4ny)-  (B-13)

Ny ,ny
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The correction operatdf (ky, ky) is the sum ofF ®&(ky, ky), F%(kx, Ky), F®°(kx, ky) andF °°(ky, ky).
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Therefore the inverse Fourier transform of the correctiperator is:

FHF (ke ky)}

where

FHF Ky, Ky)} + F THF(ke, ky)} + F ~HF kg, Ky)} + F HF kg, Ky))

123

(B-14)

1
=) (8-nynyConny 8- nytnyCong iy 81, —nyCiny,—ny + 81, 0y Ciny,ny) (B-15)

nx,ny

Cny,—ny
C_nx,+ny
C+nx ,—Ny

Ciny,+ny

= [(aﬁiny - ar?f,ny) —Ii (ar?)?,ny + ar?f,ny)]’
= [(@fgn, +a0en,) Ti(@nn, —anin)]:
= [(aﬁf,ny + arcl)s,ny) —Ii (areb?,ny - ar?f,ny)]’

= [(aﬁiny - ar?

(0]
XNy

)+ (a2, +a8%, )]

(B-16)
(B-17)
(B-18)
(B-19)



