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Water-bottom and diffracted 2D multiple reflections in data
space and image space

Gabriel Alvarez1

ABSTRACT

Water-bottom multiples from a dipping interface have the same kinematics in a Common
Midpoint (CMP) gather as a primary from a reflector with twicethe dip at twice the per-
pendicular depth at the CMP location. When migrated with thevelocity of the primaries,
these multiples are overmigrated just as primaries migrated with higher velocity, and their
moveout is thus predictable in image space. Diffracted multiples, on the other hand, have
an apex-shifted moveout in CMP gathers and a more complicated, also apex-shifted, resid-
ual moveout in image space when migrated with the velocity ofthe primaries. I illustrate
the moveout of water-bottom and diffracted multiples in image space with a simple 2D
synthetic dataset.

INTRODUCTION

Recently, the increased interest in exploration in areas with rough salt bodies, such as the
Gulf of Mexico, has sparkled the interest in multiple attenuation methods that work in the
image space (Sava and Guitton, 2003; Hargreaves and Wombell, 2004; Alvarez et al., 2004)
as opposed to more traditional methods that work in the data space (Hampson, 1986) or Sur-
face Related Multiple Elimination (SRME) methods (Verschuur et al., 1992; Verschuur and
Berkhout, 1997) that require dense surface coverage of sources and receivers or demanding
data interpolation and extrapolation.

The main advantage of the image space is that most of the complexity of the propaga-
tion for the primary reflections is handled by prestack depthmigration such that the primary
reflections in Angle-Domain Common-Image Gathers (ADCIGs)are flat or nearly flat if the
migration is done with the velocity of the primaries. It is not immediately obvious, however,
what is the residual moveout of the migrated multiples in ADCIGs. A reasonable approxi-
mation is to consider that the residual moveout of the migrated multiples is the same as that
of the primaries when migrated with the wrong (higher) velocity (Biondi and Symes, 2004).
This approach leads, in 2D, to a relatively simple and effective algorithm for the attenuation of
the multiples in the image space (Sava and Guitton, 2003) and, with some modifications, can
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attenuate 2D diffracted multiples reasonably well (Alvarez et al., 2004). In this paper I present
the equations for the image space coordinates of the water-bottom multiples in 2D ADCIGs
and illustrate the migration of the multiples with a synthetic dataset.

The next section presents the kinematics of water-bottom and diffracted multiples in data
space. The following section presents the equations to map the multiples from data space to
image space. The last section illustrates the mapping of themultiples in image space, both in
common subsurface offset common-image gathers and angle-domain common-image gathers
for the simple synthetic dataset.

KINEMATICS OF MULTIPLES IN DATA SPACE FROM A 2D DIPPING
INTERFACE

Water-bottom multiples

Consider a model with a dipping water-bottom in 2D. The raypath of the primary reflection
can be easily computed using the concept of the image source as illustrated in Figure 1. The

Figure 1: Construction of the primary
reflection from a dipping interface.
gabriel2-rayprim[CR]
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moveout of the primary reflection in the CMP domain is given by:
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wheretp is the time of the primary,ϕ is the dip angle of the reflector,ZD is the perpendicular
distance between the surface and the reflector at the CMP location, hD is half the source-
receiver offset,V is the propagation velocity above the dipping reflector,VN M O = V/cosϕ
is the normal moveout velocity andt0 is the traveltime of the zero-offset reflection. This is
obviously the equation of a hyperbola, as illustrated in Figure 4.

The raypath of the multiple reflection can be considered as a cascaded of two primary
reflections as SRME methods do (Figure 2), but the traveltimeof the multiple, tm, can be
computed more easily as the traveltime of an equivalent primary from a reflector dipping at
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twice the dip angle of the actual reflector as illustrated in Figure 3. That is,
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whereẐD is the perpendicular distance between the surface and the equivalent reflector with
twice the dip at the CMP location and̂VN M O is now V/cos(2ϕ). Figure 4 corresponds to a
CMP showing the primary and the multiple reflection. Obviously, they are both hyperbolas
since the multiple has the same kinematics as a primary from areflector dipping at twice the
dip as indicated above.

Figure 2: Decomposition of the
water-bottom multiple as a cas-
caded of two primary reflections.
gabriel2-raymul1[CR]
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Figure 3: Multiple reflection as
a primary from an equivalent re-
flector with twice the dip angle.
gabriel2-raymul2[CR]
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Figure 4: Moveout curves of pri-
mary and water-bottom multiple from
a dipping interface on a CMP gather.
gabriel2-moveouts1[CR]
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Diffracted multiples

Consider now a diffractor sitting on top of the water-bottomreflector at the lateral positionxd

and depthzd (Figure 5). The moveout of the primary diffraction is given by

td = ts + tg =
1

V
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wherets andtg are traveltimes from the source and receiver to the diffractor, respectively,mD

is the horizontal position of the CMP gather andhD is the half-offset between the source and
the receiver. This is the equation of a hyperbola with apex atthe horizontal position directly
above the diffractor. Consider now the multiple that hits the diffractor on its second bounce on

Figure 5: Image source construc-
tion for the primary diffraction.
gabriel2-rayprimdiff [CR]
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the dipping reflector (source-side multiple), as shown in Figure 6. This multiple is no longer
the equivalent of any primary, but we can compute its traveltime in the following way:

1. Form the image source.

2. Find the point at the surface such that the lines joining that point with both the im-
age source and the diffractor intercept with the same angle with respect to the vertical
(Snell’s law).

3. Compute the raypath using the law of cosines and divide by the velocity to get the
traveltime.

The coordinates of the image source (Xis, Zis) are given by

Xis = Xs −2Z0sinϕ, (4)

Zis = 2Z0cosϕ, (5)

where

Z0 = ZD −hD sinϕ (6)

is the perpendicular distance between the shot and the reflector. From the description of nu-
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Figure 6: Diffracted multiple. No-
tice that the last leg of the mul-
tiple does not satisfy Snell’s law.
gabriel2-raymuldiff [CR]
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meral 3. above, the surface coordinate of the multiple bounce at the surface is:

Xms =
Xiszd + xd Zis

Zis + zd
. (7)

The aperture angle of the first bounce of the multiple isβs +ϕ whereβs is the takeoff angle of
the multiple with respect to the vertical. The aperture angle at the surface bounce isβs + 2ϕ

and can be easily computed as

tan(βs +2ϕ) =
xd − Xms

zd
. (8)

The traveltime of the first leg of the multiple, in terms ofβs and the vertical distance between
the source and the reflector,Zs =

ZD−hD sinϕ

cosϕ , is:

tm1 =
Zscosϕ
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. (9)

Similarly, repeated application of the law of sines gives the traveltime of the other three legs
of the multiple
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The total arrival time of the diffracted multiple is therefore:

tm =
Zscosϕ

V cos(ϕ +βs)

(

1+
cosβs

cos(2ϕ +βs)
+

cosβs cos(2ϕ +βs)

cos(2ϕ +βs)cos(3ϕ +βs)

)

+
zd

V cosβr

=
2Zs

V

cosϕ

cos(βs +3ϕ)
+

zd

V cosβr

=
2(ZD −hD sinϕ)cosϕ

cos(βs +3ϕ)
+

zd

V cosβr
, (12)

where tanβr =
mD+hD−xd

zd andβr is the emergence angle of the diffracted multiple with respect
to the vertical. Figure 7 compares the moveout of the diffracted multiple with that of the water-
bottom multiple. Obviously, the apex of the diffracted multiple is not at zero offset.
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Figure 7: Moveout curves of pri-
mary, water-bottom multiple, diffrac-
tion and diffracted multiple from a
dipping interface on a CMP gather.
gabriel2-moveouts3[CR]
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WATER-BOTTOM MULTIPLE IN IMAGE SPACE

Given the kinematic equivalence between the water-bottom multiple and a primary from a
reflector dipping at twice the dip angle, we can express the image space coordinates of the
water-bottom multiple in terms of the data space coordinates by solving the system of equa-
tions presented by Fomel and Prucha (1999):

tm =
2Ẑξ

V
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cos2 ϕ̂ −sin2 γ̂
, (13)

hD = Ẑξ

sinγ̂ cos ˆγ
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, (14)

mD = m̂ξ + Ẑξ

sinϕ̂ cosϕ̂

cos2 ϕ̂ −sin2 γ̂
, (15)

where (X̂ξ ,m̂ξ , γ̂ ) are the image space coordinates of the primary that is kinematically equiv-
alent to the first order water-bottom multiple as mentioned nthe previous section and ˆϕ = 2ϕ.
The formal solution of these equations, for the image space coordinates is:
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These equations allow the computation of the impulse response of the water-bottom multiples
in image space as a function of the aperture angle. More importantly, they are the starting point
for understanding the kinematics of the data in 3D ADCIGs (Tisserant and Biondi, 2004), still
a subject of research.
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2D SYNTHETIC DATA EXAMPLE

To illustrate the migration of the multiples, I created a simple 2D synthetic model consisting
of a water-bottom reflector dipping at 15 degrees. A diffractor sits on top of this reflector at
a horizontal coordinate of 5600 m. The coordinate origin is the point at which the dipping
reflector intercepts the surface. Two hundred CMP gathers were generated with 100 traces
in an offset range from 0 to 3000 m. The first CMP corresponds toa horizontal position of
5000 m and the CMP interval is 10 m. Four events were simulated: primary reflection, water-
bottom reflection, diffraction and diffracted multiple using the traveltime equations presented
before. I used a Ricker wavelet with peak frequency of 20 Hz. Figure 8 shows the zero

Figure 8: Zero subsurface-offset
section extracted from the image
obtained by migrating the data
with a two constant-velocity layer
model: 1500 m/s above the reflector
and 2800 m/s below the reflector.
gabriel2-zsoff_mig_all[CR]

subsurface offset section extracted form the image data migrated with a velocity model that
consists of two constant velocity layers: 1500 m/s above thereflector and 2800 m/s below
the reflector. Two reference velocities were used for the migration at each depth step. As
expected, the water-bottom (primary) reflector and the diffraction are properly imaged since
they were migrated with a velocity close to the true velocity. The water-bottom multiple
and the diffracted multiple, on the other hand, have both been migrated. This can be seen
more clearly in Figure 9, which shows four subsurface-offset common image gathers at four
different horizontal locations: (a) CMP_X=6280 m, a primary location; (b) CMP_X=5800 m,
diffractor location; (c) CMP_X=4600 m, a diffracted multiple location; and (d) CMP_X=3600
m, a water-bottom multiple location. The primary and the diffraction are well focused at zero
subsurface offset, but not the multiples, since they were migrated with the wrong velocity.

There is, however, an important difference between the image of the water-bottom multiple
and that of the diffracted multiple. This can be seen in Figure 10 that shows the zero-subsurface
offset section but for the image obtained by migrating thye data with constant water velocity
(1500 m/s). The primary and the diffractor are both perfectly imaged since they were migrated
with the exact velocity. The water-bottom multiple is also imaged perfectly as a primary with
twice the dip of the real primary. The diffracted multiple, on the other hand, is still poorly
imaged and does not show as a diffractor at all, since its kinematics do not match those of a
primary reflection as explained before. Figure 11 shows the same image gathers as those in
Figure 9. Notice the good focusing of the water-bottom multiple. Since the “natural” prestack
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Figure 9: Subsurface-offset common-image gathers extracted form the image obtained
by migrating the data with a two constant-velocity layer model. (a) at primary location
(CMP_X=6280 m). (b) at the location of the diffractor (CMP_X=5800 m). (c) at a
diffracted multiple location (CMP_X=4600 m) and (d) at a water-bottom multiple location
(CMP_X=3600 m).gabriel2-cigs1_all[CR]

Figure 10: Zero subsurface-offset
section extracted from the im-
age obtained by migrating the
data with constant water velocity.
gabriel2-zsoff_mig_all_const[CR]
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Figure 11: Subsurface-offset common image gathers extracted from the image obtained by
migrating the data with constant water velocity. (a) at a primary location (CMP_X=6280
m). (b) at the location of the diffractor (CMP_X=5800 m). (c)at a diffracted multiple lo-
cation (CMP_X=4600 m) and (d) at a water-bottom multiple location (CMP_X=3600 m).
gabriel2-cigs1_all_const[CR]

domain of data migrated with wave-equation migration for velocity analysis is the aperture
angle rather than the subsurface offset, it is worth lookingat the results of the migration in
this domain. Figure 12 shows angle-domain common-image gathers extracted from the image
obtained by migrating the data with the two-velocity layer model at the same spatial locations
as in Figure 9. The primary shows a good coverage of aperture angles. The diffraction samples
even more aperture angles, since it is not restricted by Snell’s law whereas the water-bottom
multiple shows the characteristic overmigration. The diffracted multiple shows the expected,
complicated apex-shifted moveout.

Finally, Figure 13 shows the angle-domain common-image gathers at the same spatial
locations as in Figure 12 but corresponding to the data migrated with constant velocity. Notice
how the moveout of then water-bottom multiple is flat like that of the primary but its range
of aperture angles is much smaller as is intuitively obvious. The diffracted multiple shows
focusing at its apex, located at an aperture angle of about 15degrees.

CONCLUSIONS

I have demonstrated with a simple synthetic dataset that water-bottom multiples from a dip-
ping interface behave as primaries generated by a reflector with twice the dip at twice the
perpendicular depth at the CMP location. Therefore they canbe perfectly migrated if the mi-
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Figure 12: Angle domain common image gathers extracted fromthe image obtained by migrat-
ing the data with a two constant-velocity layer model. (a) ata primary location (CMP_X=6280
m). (b) at the location of the diffractor (CMP_X=5800 m). (c)at a diffracted multiple lo-
cation (CMP_X=4600 m) and (d) at a water-bottom multiple location (CMP_X=3600 m).
gabriel2-adcigs1_all[CR]

Figure 13: Angle domain common image gathers extracted fromthe image obtained by
migrating the data with constant water velocity. (a) at a primary location (CMP_X=6280
m). (b) at the location of the diffractor (CMP_X=5800 m). (c)at a diffracted multiple lo-
cation (CMP_X=4600 m) and (d) at a water-bottom multiple location (CMP_X=3600 m).
gabriel2-adcigs1_all_const[CR]



SEP–120 Kinematics of multiples 375

gration is done with the water velocity. The diffracted multiples, on the other hand, cannot be
perfectly migrated because they do not correspond to an equivalent primary. Understanding
how the multiples behave after migration, specially in 3D, is very important for the ultimate
goal of attenuating the multiples in image space.
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