Let be the wavefield at depth step N in the
-
domain and let
be the wavefield extrapolated from
depth step N to depth step N+1 using reference velocity Vl.
That is:
![]() |
(1) |
Extended split-step adds a correction before the interpolation, the so-called ``thin lens term'':
Other methods, such as pseudo-screen and Fourier finite-difference, increase the accuracy of the result by adding high-order spatial derivatives to the computation of the kzl term Biondi (2004); Huang et al. (1999); Ristow and Ruhl (1994); Xie and Wu (1999). The more accurate approximation of kzl relaxes the need for a large number of reference velocities such that with fewer reference velocities similar or even better accuracies can be obtained compared with split-step.
The last step in either of these methods is to Fourier transform the
interpolated wavefield to the -
space. This wavefield will
then be the input to the propagation at the next depth step.
It should be clear that the accuracy of these methods, especially PSPI and extended split-step, is directly related to the accuracy of the wavefield interpolation and the number and choice of the reference velocities.