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Short Note

Wavefield extrapolation in frequency-wavenumber domain fo
spatially-varying velocity models

Gabriel Alvarez and Brad Artman

INTRODUCTION

Mixed domain wavefield extrapolation methods can handle,large extent, spatial velocity
variations by performing part of their computation in thhek domain and part of the com-
putation in thew-x domain. The best-known mixed domain methods are Phase ”Hbgt
Interpolation (PSPI) and extended split-step migratioazZdag and Sguazzero, 1984; Stoffa
et al., 1990; Biondi, 2004). They downward continue the Viialetin thew-k domain at each
depth step with a series of reference velocities and themgotate the wavefields in the-x
domain possibly after a split-step correction.

There are three main potential sources of error in mixedainm@lgorithms: (1) the choice
of the reference velocities, (2) the correction to accoanttie difference between the model
velocity and the reference velocity at each spatial locatand (3) the accuracy of the inter-
polation of the wavefields.

In this paper, we present an alternativeutex — w-k downward extrapolation that per-
forms each depth extrapolation completely in éh& domain, yet can handle arbitrary spatial
variation of the migration velocities. The proposed altjon eliminates the need for choos-
ing reference velocities and requires no FFT’s at each dexitlapolation level. Making the
algorithm efficient, however, is still a research issue.

In the next section, we will present a brief overview of thenstardw-x — w-k methods
without getting into any specific implementation detailsthe following section, we present
our method, and in the last section, we discuss some implat@missues.

OVERVIEW OF MIXED-DOMAIN DOWNWARD EXTRAPOLATION

In this section, we will briefly review, from the mathematipmaint of view, thew-x — w-k
algorithm. This will serve as the starting point for the mmatstion of the new extrapolation
method in the next section.
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LetWN be the wavefield at depth stépin thew-k domain and IerNJrl be the wavefield
extrapolated from depth stdy to depth stepgN + 1 using reference velocity;. That is:

WIN-‘rl — \NNeikzI AZ’
whereAz is the depth of théNth layer andk, is given by the dispersion relation:

2
w
kZ| = W - |k|2 (1)
with |k| being the magnitude of the horizontal wavenumber vectoRlR&ndles the difference
between the true velocity and the reference velocity byrpaiating the downward-continued
wavefields in thevo-x domain based on the difference between the reference tiekand the
model velocity at eack position. The interpolated wavefield is therefore given by:

W) = 3 o)
=1

whereo; is an interpolation factorX:{‘” o =1), W|N+1(j) is the downward-continued wave-
field in thew-x domain at the spatial location andn, is the number of reference velocities.

Extended split-step adds a correction before the intetipolathe so-called “thin lens
term”:

ei

k3 where kss = — — —

N\Sg V \/I
whereV is the true model velocity. Depending on the choice and nurobeeference veloci-
ties, split-step can make significant improvements in aagucompared to PSPI.

Other methods, such as pseudo-screen and Fourier finiezetite, increase the accuracy
of the result by adding high-order spatial derivatives tadbmputation of th&, term (Ristow
and Ruhl, 1994; Huang et al., 1999; Xie and Wu, 1999; Bion@Q4). The more accurate
approximation ok, relaxes the need for a large number of reference velocitigls that with
fewer reference velocities similar or even better accesacan be obtained compared with
split-step.

The last step in either of these methods is to Fourier tramstbe interpolated wavefield
to thew-k space. This wavefield will then be the input to the propagasibthe next depth
step.

It should be clear that the accuracy of these methods, edlygleSPI and extended split-
step, is directly related to the accuracy of the wavefieldrppdlation and the number and
choice of the reference velocities.

o-K DOWNWARD EXTRAPOLATION

The previous section suggests an alternative implementafimixed-domain migration. To
see this more clearly, assume that, at each depth step, wendod continue the wavefield
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with the true velocities at that depth. In other words, cotapy = ny wavefields, each one
corresponding to the model velocity at each spatial locatdp split-step correction or higher-
order approximation ok, would then be required. The wavefield interpolatiomix domain
reduces to a simple selection of the appropriate wavefiplkeration that can be expressed as:

W) = 3w G)sy @
1=1

Wherewl'\“rl is the row of the array of wavefields extrapolated with theoeiy Vi, and g

is the Kronecker delta that selects from that row the coomedmg j =1 component. Notice
that, since we are extrapolating as many wavefields as thierspatial positions (traces),
n, = nk. Figure 1 shows a schematic of the velocity selection. Irdtkedomain, Equation (2)

Xl XZ XS Xn
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gure 1: Diagram illustrating ve- 3
locity selection when there are as ®
many velocities as spatial locations. ®
gabriel1-bin_velsi[NR] .
@
Va @
becomes:
Ny
WN+1 — ZwlN—l—l ®e—ikxAX| (3)

I=1
where Ax; = (I — 1)Ax/nx and we are using a single index to represent the spatial axis i
order to simplify the notation. The symbe@l represents circular convolution.

Notice that Equation (3) was derived without any approxioratLet's make the compu-
tations more explicit in order to gain a better appreciat@rwhat it means:

Ny
WN+1(j) — Z Z WIN—I—l(m)e—ikx(j—m)AXI

I=1 m=(ny)

where(m) means that the summation is over the rang&vith modulusny. That is,

ny, Ny
WN+1(j ) — Z Z WN (m)e—ikzI (m)Aze—ikx(moc(j —m,Ny))AX| )
1I=1 m=1

Letmj = mod(j —m,ny) and exchange the order of summation:

Ny Ny
WN+1(J') — Z WN (m) Z e—i[kzI (M) Az+-ky (IM))] AX ]
m=1 =1
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This equation shows that in order to compute ftiecomponent of the extrapolated wavefield
in thew-k domain, we need to take the dot product of the wavefield atnaqus depth step
with a vector that contains all the velocity and interpaatinformation. That is,

W) =W ) (4)
wheref; is the vector given by
ny
f = Ze—i[kz, (M)AZ+ky ()] Ax (5)

=1

PRACTICAL IMPLEMENTATION

The algorithm described by equations 4 and 5 is theorefiedtiactive because it shows in
one equation that downward extrapolation can be done gniiréhe w-k domain, even for
arbitrary spatial velocity variations. From the practipalnt of view, however, the algorithm
is proportional, at each depth step and each frequencygtoube of the spatial dimensions.
Clearly, the cost is associated with the unreasonable derttet we extrapolated, at each
depth step, as many wavefields as spatial positions. That i®ally necessary, as we will see
below.

Computation of the vertical wavenumber

Equation (5) contains all the velocity information in thealand can be precomputed, at least
in part. Notice that, although we described the algorithmnip= nx, that is not necessary
because the range of velocities is limited and independehespatial dimensions of the data
(although the velocities themselves vary spatially).

Start by binning the velocities in small bins, for examplel@tm/s (which would imply
a maximum velocity error of 5 m/s, well below the likely eriorthe estimation of the ve-
locities themselves) such that the vertical wavenunige(that is, the dispersion relation),
needs to be computed only a few hundred times and can thusteel sts a function of the
horizontal wavenumber and the velocity. From the standpwithe theoretical algorithm, all
that changes is the selection process to choose the trandtimextrapolated wavefield that
corresponds to the binned velocity at each spatial locatidrat is, instead of the selection
being simply a multiplication by a Kronecker delta to chobse | as it was before, it is now
a multiplication with a Kronecker delta, to seléct p(j), that is, the wavefield that was mi-
grated with the binned velocity corresponding to the bin/df). Equation (2) can then be
rewritten as:
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The equation for the wavefield extrapolation then becomes:

Nx Ny
WN+1(j ) — Z WN (m) Z (e—ikzl (m)Az Z e—ikx(mj)AXp) ] (6)
m=1 =1 p

Notice that summation overinvolves summing over all the binned velocities whereas-sum
mation overp involves selecting the different wavefield componentstatespond to a given
velocity. That is,p ranges over the spatial locations whose binned velocity fer eachl.
Figure 2 shows the velocity selection. This time, since we'tdoave a wavefield migrated
with each velocity, at each spatial location, it is likehatlseveral locations correspond to the
same wavefield, since they correspond to the same velocityTliiere is, obviously, just one
possible velocity at each spatial location, but many sphtcations may share the same ve-
locity. Also, it is possible for a particular velocity not be required at a specific depth step.

Xl XZ XS Xn
Vil @ @ @
Figure 2: Diagram illustrating ve- v, ®
locity selection when there are fewer
velocities than spatial locations.
gabriel1-bin_velsNR] )

Computation of the horizontal wavenumbers

The horizontal wavenumber terky (M) can also be stored as a function of the circular-
convolution indexri'since it does not depend on the data itself.

Subsampling inw-k Space

The previous subsections showed that the velocity pareotdmputation can be precomputed
and therefore the cost of the algorithm becomes essentiadigiratic in the spatial dimensions.
For prestack 3D migration that is still too expensive. Netlowever, that the algorithm
doesn’t have any significant approximation, since the vugésccan be binned as finely as
required by their intrinsic accuracy without significardlffecting the cost.

The question is whether we can reduce the computation tigmifisiantly by introducing
reasonable approximations in the computation of each watlke wavefield. It should be
clear from Equation (6) that the cost of the algorithm comemfhaving to consider every
single trace of the wavefield in the computation of every Vil trace. We could, for in-
stance, compute only every other wavefield trace in eacheof#is of thew-k space. For
3D prestack migration that alone would reduce the comprtatost to one sixteenth. The



316 Alvarez and Artman SEP-120

extrapolated wavefield would then be interpolated at eagithdgtep. Or, we can compute
only say one in four traces in the cmp inline wavenumber axisevery trace in the cross-line
offset wavenumber axis. This may be better since the cmpamiavenumber axis is likely
to be over-sampled whereas the xline offset wavenumbetrisrigt. Similarly, we may only
consider traces of the wavefield in a given neighborhoodifercomputation of a given trace
of the wavefield. If, for example, for the computation of eachwefield trace we use only
the half traces closest to the trace being computed alony &es, again, for 3D prestack
migration, that would imply a reduction of computation tdyoone sixteenth of the total com-
putation. If we combine the two forms of computation saviagsend up with an algorithm
that may begin to be competitive with the mixed-domain atpars, but that is simpler and
more accurate in handling arbitrary lateral velocity vaoias.

Subsampling in thev-k domain is akin to reducing the lateral extent of the wavefield
in the w-x domain. Whether this is acceptable and to what degree in efate spatial
axis is an unresolved issue at this point in our research. l@Bigal grounds we can argue
that the wavefield expands as it propagates so perhaps thexapation is valid at small
depths but deteriorates at larger depths. Nothing prevleatsubsampling to be a function of
depth, making it an interesting issue to investigate furthemiting the number of wavefield
components that are actually used to the computation ohanobmponent may be acceptable
in most cases since the wavefield is expected to be coherém ik domain. However, in
specific, important cases, the wavefield may be irregulahénpresence of sharp velocity
discontinuities. In those cases it is not clear to what exttemapproximation deteriorates.

Other issues

One advantage, that may be difficult to quantify, but that mawye the less be significant is
the simplicity of the algorithm. By doing away with the contgtion of FFT’s, we are also
implicitly simplifying the data access, which may be sigrafit advantage for large datasets.

CONCLUSION AND FUTURE WORK

We have shown a theoretically attractive formulation of daward extrapolation imw-k do-
main capable of handling arbitrary spatial velocity vadas. The initial algorithm can be
easily modified to make its cost quadratic in the spatial disiens. This may be appropriate
for 2D data or for post-stack 3D data but is certainly not gendugh for prestack 3D data.
By sacrificing some accuracy, yet to be quantified, we may beetakarrive to a competitive
algorithm that is much easier to implement and whose acgwat be improved at run time.

We need to research the issues of wavefield subsampling emcttignt to which wavefield
traces influence one another.
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