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Short Note

Wavefield extrapolation in frequency-wavenumber domain for
spatially-varying velocity models

Gabriel Alvarez and Brad Artman1

INTRODUCTION

Mixed domain wavefield extrapolation methods can handle, toa large extent, spatial velocity
variations by performing part of their computation in theω-k domain and part of the com-
putation in theω-x domain. The best-known mixed domain methods are Phase ShiftPlus
Interpolation (PSPI) and extended split-step migration (Gazdag and Sguazzero, 1984; Stoffa
et al., 1990; Biondi, 2004). They downward continue the wavefield in theω-k domain at each
depth step with a series of reference velocities and then interpolate the wavefields in theω-x
domain possibly after a split-step correction.

There are three main potential sources of error in mixed-domain algorithms: (1) the choice
of the reference velocities, (2) the correction to account for the difference between the model
velocity and the reference velocity at each spatial location, and (3) the accuracy of the inter-
polation of the wavefields.

In this paper, we present an alternative toω-x – ω-k downward extrapolation that per-
forms each depth extrapolation completely in theω-k domain, yet can handle arbitrary spatial
variation of the migration velocities. The proposed algorithm eliminates the need for choos-
ing reference velocities and requires no FFT’s at each depthextrapolation level. Making the
algorithm efficient, however, is still a research issue.

In the next section, we will present a brief overview of the standardω-x – ω-k methods
without getting into any specific implementation details. In the following section, we present
our method, and in the last section, we discuss some implementation issues.

OVERVIEW OF MIXED-DOMAIN DOWNWARD EXTRAPOLATION

In this section, we will briefly review, from the mathematical point of view, theω-x – ω-k
algorithm. This will serve as the starting point for the presentation of the new extrapolation
method in the next section.
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Let WN be the wavefield at depth stepN in theω-k domain and letWN+1
l be the wavefield

extrapolated from depth stepN to depth stepN +1 using reference velocityVl . That is:

WN+1
l = WNeikzl 1z,

where1z is the depth of theNth layer andkzl is given by the dispersion relation:

kzl =

√

ω2

V2
l

−|k|2 (1)

with |k| being the magnitude of the horizontal wavenumber vector. PSPI handles the difference
between the true velocity and the reference velocity by interpolating the downward-continued
wavefields in theω-x domain based on the difference between the reference velocities and the
model velocity at eachx position. The interpolated wavefield is therefore given by:

wN+1( j ) =

nv
∑

l=1

σl wN
l ( j )

whereσl is an interpolation factor (
∑nv

l σl = 1), wN+1
l ( j ) is the downward-continued wave-

field in theω-x domain at the spatial locationj , andnv is the number of reference velocities.

Extended split-step adds a correction before the interpolation, the so-called “thin lens
term”:

eikssl where,kssl =
ω

V
−

ω

Vl

whereV is the true model velocity. Depending on the choice and number of reference veloci-
ties, split-step can make significant improvements in accuracy compared to PSPI.

Other methods, such as pseudo-screen and Fourier finite-difference, increase the accuracy
of the result by adding high-order spatial derivatives to the computation of thekzl term (Ristow
and Ruhl, 1994; Huang et al., 1999; Xie and Wu, 1999; Biondi, 2004). The more accurate
approximation ofkzl relaxes the need for a large number of reference velocities such that with
fewer reference velocities similar or even better accuracies can be obtained compared with
split-step.

The last step in either of these methods is to Fourier transform the interpolated wavefield
to theω-k space. This wavefield will then be the input to the propagation at the next depth
step.

It should be clear that the accuracy of these methods, especially PSPI and extended split-
step, is directly related to the accuracy of the wavefield interpolation and the number and
choice of the reference velocities.

ω-K DOWNWARD EXTRAPOLATION

The previous section suggests an alternative implementation of mixed-domain migration. To
see this more clearly, assume that, at each depth step, we downward continue the wavefield
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with the true velocities at that depth. In other words, compute nv = nx wavefields, each one
corresponding to the model velocity at each spatial location. No split-step correction or higher-
order approximation ofkz would then be required. The wavefield interpolation inω-x domain
reduces to a simple selection of the appropriate wavefield, operation that can be expressed as:

wN+1( j ) =

nv
∑

l=1

wN+1
l ( j )δl j (2)

wherewN+1
l is the row of the array of wavefields extrapolated with the velocity Vl , andδl j

is the Kronecker delta that selects from that row the corresponding j = l component. Notice
that, since we are extrapolating as many wavefields as there are spatial positions (traces),
nv = nx. Figure 1 shows a schematic of the velocity selection. In theω-k domain, Equation (2)

Figure 1: Diagram illustrating ve-
locity selection when there are as
many velocities as spatial locations.
gabriel1-bin_vels1[NR]

becomes:

WN+1 =

nv
∑

l=1

WN+1
l ⊗e−ikx1xl (3)

where1xl = (l − 1)1x/nx and we are using a single index to represent the spatial axis in
order to simplify the notation. The symbol⊗ represents circular convolution.

Notice that Equation (3) was derived without any approximation. Let’s make the compu-
tations more explicit in order to gain a better appreciationfor what it means:

WN+1( j ) =

nv
∑

l=1

∑

m=〈nx〉

WN+1
l (m)e−ikx ( j −m)1xl

where〈m〉 means that the summation is over the rangenx with modulusnx. That is,

WN+1( j ) =

nv
∑

l=1

nx
∑

m=1

WN(m)e−ikzl (m)1ze−ikx (mod( j −m,nx))1xl .

Let m̃j = mod( j −m,nx) and exchange the order of summation:

WN+1( j ) =

nx
∑

m=1

WN(m)
nv
∑

l=1

e−i [kzl (m)1z+kx (m̃j )]1xl .
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This equation shows that in order to compute thej th component of the extrapolated wavefield
in theω-k domain, we need to take the dot product of the wavefield at the previous depth step
with a vector that contains all the velocity and interpolation information. That is,

WN+1( j ) = WN · f j (4)

wheref j is the vector given by

f j =

nv
∑

l=1

e−i [kzl (m)1z+kx (m̃j )]1xl . (5)

PRACTICAL IMPLEMENTATION

The algorithm described by equations 4 and 5 is theoretically attractive because it shows in
one equation that downward extrapolation can be done entirely in the ω-k domain, even for
arbitrary spatial velocity variations. From the practicalpoint of view, however, the algorithm
is proportional, at each depth step and each frequency, to the cube of the spatial dimensions.
Clearly, the cost is associated with the unreasonable demand that we extrapolated, at each
depth step, as many wavefields as spatial positions. This is not really necessary, as we will see
below.

Computation of the vertical wavenumber

Equation (5) contains all the velocity information in the data and can be precomputed, at least
in part. Notice that, although we described the algorithm for nv = nx, that is not necessary
because the range of velocities is limited and independent of the spatial dimensions of the data
(although the velocities themselves vary spatially).

Start by binning the velocities in small bins, for example at10 m/s (which would imply
a maximum velocity error of 5 m/s, well below the likely errorin the estimation of the ve-
locities themselves) such that the vertical wavenumberkzl (that is, the dispersion relation),
needs to be computed only a few hundred times and can thus be stored as a function of the
horizontal wavenumber and the velocity. From the standpoint of the theoretical algorithm, all
that changes is the selection process to choose the trace from the extrapolated wavefield that
corresponds to the binned velocity at each spatial location. That is, instead of the selection
being simply a multiplication by a Kronecker delta to choosel = j as it was before, it is now
a multiplication with a Kronecker delta, to selectl = p( j ), that is, the wavefield that was mi-
grated with the binned velocity corresponding to the bin ofV( j ). Equation (2) can then be
rewritten as:

wN+1 =

nv
∑

l=1

wN+1
l

∑

p

δpl .
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The equation for the wavefield extrapolation then becomes:

WN+1( j ) =

nx
∑

m=1

WN(m)
nv
∑

l=1

(

e−ikzl (m)1z
∑

p

e−ikx (m̃j )1xp
)

. (6)

Notice that summation overl involves summing over all the binned velocities whereas sum-
mation overp involves selecting the different wavefield components thatcorrespond to a given
velocity. That is,p ranges over the spatial locations whose binned velocity isVl for eachl .
Figure 2 shows the velocity selection. This time, since we don’t have a wavefield migrated
with each velocity, at each spatial location, it is likely that several locations correspond to the
same wavefield, since they correspond to the same velocity bin. There is, obviously, just one
possible velocity at each spatial location, but many spatial locations may share the same ve-
locity. Also, it is possible for a particular velocity not tobe required at a specific depth step.

Figure 2: Diagram illustrating ve-
locity selection when there are fewer
velocities than spatial locations.
gabriel1-bin_vels2[NR]

Computation of the horizontal wavenumbers

The horizontal wavenumber termkx(m̃j ) can also be stored as a function of the circular-
convolution index ˜m since it does not depend on the data itself.

Subsampling inω-k Space

The previous subsections showed that the velocity part of the computation can be precomputed
and therefore the cost of the algorithm becomes essentiallyquadratic in the spatial dimensions.
For prestack 3D migration that is still too expensive. Notice however, that the algorithm
doesn’t have any significant approximation, since the velocities can be binned as finely as
required by their intrinsic accuracy without significantlyaffecting the cost.

The question is whether we can reduce the computation time significantly by introducing
reasonable approximations in the computation of each traceof the wavefield. It should be
clear from Equation (6) that the cost of the algorithm comes from having to consider every
single trace of the wavefield in the computation of every wavefield trace. We could, for in-
stance, compute only every other wavefield trace in each of the axis of theω-k space. For
3D prestack migration that alone would reduce the computation cost to one sixteenth. The
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extrapolated wavefield would then be interpolated at each depth step. Or, we can compute
only say one in four traces in the cmp inline wavenumber axis and every trace in the cross-line
offset wavenumber axis. This may be better since the cmp inline wavenumber axis is likely
to be over-sampled whereas the xline offset wavenumber axisis not. Similarly, we may only
consider traces of the wavefield in a given neighborhood for the computation of a given trace
of the wavefield. If, for example, for the computation of eachwavefield trace we use only
the half traces closest to the trace being computed along each axis, again, for 3D prestack
migration, that would imply a reduction of computation to only one sixteenth of the total com-
putation. If we combine the two forms of computation savingswe end up with an algorithm
that may begin to be competitive with the mixed-domain algorithms, but that is simpler and
more accurate in handling arbitrary lateral velocity variations.

Subsampling in theω-k domain is akin to reducing the lateral extent of the wavefield
in the ω-x domain. Whether this is acceptable and to what degree in eachof the spatial
axis is an unresolved issue at this point in our research. On physical grounds we can argue
that the wavefield expands as it propagates so perhaps the approximation is valid at small
depths but deteriorates at larger depths. Nothing preventsthe subsampling to be a function of
depth, making it an interesting issue to investigate further. Limiting the number of wavefield
components that are actually used to the computation of another component may be acceptable
in most cases since the wavefield is expected to be coherent intheω-k domain. However, in
specific, important cases, the wavefield may be irregular in the presence of sharp velocity
discontinuities. In those cases it is not clear to what extent the approximation deteriorates.

Other issues

One advantage, that may be difficult to quantify, but that maynone the less be significant is
the simplicity of the algorithm. By doing away with the computation of FFT’s, we are also
implicitly simplifying the data access, which may be significant advantage for large datasets.

CONCLUSION AND FUTURE WORK

We have shown a theoretically attractive formulation of downward extrapolation inω-k do-
main capable of handling arbitrary spatial velocity variations. The initial algorithm can be
easily modified to make its cost quadratic in the spatial dimensions. This may be appropriate
for 2D data or for post-stack 3D data but is certainly not goodenough for prestack 3D data.
By sacrificing some accuracy, yet to be quantified, we may be able to arrive to a competitive
algorithm that is much easier to implement and whose accuracy can be improved at run time.

We need to research the issues of wavefield subsampling and the extent to which wavefield
traces influence one another.
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