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Multiple attenuation: data space vs. image space - A real data
example

Daniel A. Rosales and Antoine Guitfon

ABSTRACT

Multiples can be attenuated either before or after the inagrocess. Adaptive subtrag
tion can be applied after migration to eliminate the muétgin the image space. We buil
a multiple model based on the sea floor reflection, that isrkateally correct. We then
perform multiple attenuation to remove the water-bottonttiple in both the image space
and the data space.

|ON

INTRODUCTION

Multiples are often the most significant impediment to thecgssful construction and inter-
pretation of marine seismic and ocean bottom seismic ddtareTare several techniques for
multiple removal. The selection of the most appropriatehoeétdepends on, among other
factors, the geology, the acquisition methods and the geicg costs. Examples of possible
methods include: 1) multiple separation with a high-resoluhyperbolic Radon Transform
(Lumley et al., 1995; Kostov and Nichols, 1995), which degseon a observable difference be-
tween the moveout of the primaries and multiples; and 2pserfelated multiple elimination
(SRME) (Verschuur et al., 1992), which works better on awneitis a difficult-to-distinguish
difference between the moveout of the primaries and mekipl

Where to perform the multiple elimination, in the data spémefore imaging) or in the
image space (afterimaging), is also a variable to consittervattenuating the multiples. Sava
and Guitton (2003) conclude that multiples can be elimiatier migration, in the angle-
domain, using Radon Transforms. Guitton (2004) suggeststiie image space should be
used as much as possible for the multiple-suppression ggpsice one of the final products
of the seismic processing workflow is a migrated image. Tapsep compares the performance
of surface-related multiple elimination in the data andgmapaces.

For this purpose, we use a 2D/4C real data set, acquired wibk@an-bottom cable in the
Mahogany field, located in the Gulf of Mexico. The datasevtes an interesting test, be-
cause conventional multiple-removal methods fail. Thereit enough difference between the
moveout of primaries and multiples, and the water depthlaively shallow, thus producing
strong multiple reflections at deep targets.

lemail: daniel@sep.stanford.edu, antoine@sep.stanford.edu

377



378 Rosales and Guitton SEP-120

We first present a review of the theory behind multiple supgion by adaptive subtraction.
Then, we present the results of multiple suppression bothardata space and in the image
space. We conclude that multiple elimination in the imageespyields a better final pre-stack
image. However, the image space approach has a cost disageasince a full migration of
the multiple model is needed.

MULTIPLE ELIMINATION THEORY

The Delft approach (Verschuur et al., 1992) is able to rensovtace-related multiples for any
type of geology, as long as the receiver and source covetaye aurface is dense enough.
One of the main advantages of the Delft method is that no stazsiinformation is required.

In this implementation of the Delft approach, we first creatkinematic model of the
water-bottom multiple by convolving in time and space a watgtom operator. We do this
convolution such that the kinematics of all surface-relataultiples are accurate. Then, the
relative amplitudes of the first-order multiples are catreat the amplitudes of higher-order
multiples are over-predicted (Wang and Levin, 1994; Guittbal., 2001).

Once a multiple model has been estimated, it is adaptivddiracted from the data. Note
that, as pointed out by Berkhout and Verschuur (1997), thes $ubtraction step should be
followed by more iterations. The goal of the iterative prdwe is to better estimate and
eliminate higher-order multiples (Verschuur and Berkhdi®97). In this paper, we iterate
only once and hope that the adaptive subtraction step ibfexinough to handle all the
multiples at once.

We use non-stationary filtering technology for adaptivbtsaction (Rickett et al., 2001).
The main advantage of these filters is that they are compuatélei time domain and thus
take the inherent non-stationarity of the multiples anddata into account. Therefore, it is
possible to estimate adaptive filters locally that will gthe best multiple attenuation result.
Note that by estimating two-sided 2-D filters gives a lot ajidees of freedom for the matching
of the multiple model to the real multiples in the data.

Thus, given a model of the multipldd and the datal, we estimate a bank of non-
stationary filters such that

g(f) = IMf — d||® 4 €% || Rf||2 (1)

is minimum. In equation (1R is the Helix derivative (Claerbout, 1998) that smooths therfi
coefficients across micro-patches (Crawley, 2000) aigla constant to be chosenpriori.
Note thatM corresponds to the convolution with the model of the mudgph (Robinson and
Treitel, 1980). Remember that this model of the multiplesligained by convolving in space
and time the input data:

m(w) = d(w) *wh(w), )

wherex defines the convolution process detailed in Verschuur €1802), andn(w), d(w),
andwb(w) are the multiples model, the data, and the water-bottormadgefor one frequency
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(w), respectively. In equation (1), the filters are estimatexhtively with a conjugate-gradient
method.

The Delft approach is widely used in the industry and is knoavgive currently the best
multiple attenuation results for complex geology (Dragas®l Jericevic, 1998). However,
it has been shown that this method suffers from an approiomatade during the adaptive
filtering step. For instance, when “significant” amplitudéetences exist between the pri-
maries and the multiples, the multiple model might be matdioethe primaries and not to
the multiples. A solution to this problem is using thenorm in equation (1) (Guitton and
Verschuur, 2002). Another assumption made in equations(fl)at the signal has minimum
energy. Spitz (1999) illustrates the shortcomings of tlsisuanption and advocates that a
pattern-based method is a better way of subtracting me#tifsbm the data.

EXAMPLE

The data set that we use for our analysis corresponds to a 2D @pBeriment in the Gulf
of Mexico, in the Mahogany field. Rosales and Guitton (2004spnt the preprocessing for
this data set. After combining the hydrophone and geophongonents, we still have the
multiples related to the water bottom. For this particularadset, we can consider the water
bottom to be flat throughout the data (Herrenschmidt et BD12 Therefore, we can apply
the Delft methodology to CMP gathers, for the eliminatiorired water-bottom multiples.

Multiples model

First, we need to obtain the multiples model. For this we ter@a operator that represents
the reflection from the water surface to the water bottom aauk IfFigure 1) We obtain the
operator from the data itself, by considering the wattetdmta flat surface. We begin by
isolating the first arrival, we then upward continue the firstval to the water surface level.
Figure 2 shows the comparison of one gather of our multipledehwith the data itself.
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Figure 1. Multiple operator. An

OBC acquisition with the source at

the surface and the receivers at the

bottom. For this shallow experiment

the water-bottom multiple is the most
dominant multiple. |daniel3-sketch X

INR] r

z

The left side shows the multiples model and the right the.d@taserve the good correlation
between our data and the multiples model, not only at zesetfbut also in the moveout at
far offset.
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Data Space

We first applied adaptive subtraction to the Mahogany ddtmsiata space. Since the water
bottom is fairly shallow (approx. 118 m), the water-bottornltiples are the most domi-
nant multiples in the data set. Figure 3 shows one CMP, beteg and 4 s. This figure
shows, from top to bottom: A) the multiple model; B) the reésflthe adaptive subtraction,
the estimated primaries; C) the filter obtained with the iplds model for performing the
subtraction; and D) the original data set.

Many multiples were totally eliminated, while others wheeatially eliminated. The re-
sults are comparable throughout the data set. The shalldtipies, while they were partially
eliminated, still retain some energy. As we will see in thetrsections, this remaining energy
will still interfere with an otherwise accurate final image.

Image Space

We now apply adaptive subtraction after migration. We penfeplit-step wavefield downward-
continuation migration to go from the data to the image spBogh the original seismic data
and the multiples model were migrated with the same algoritBecause the velocity model
is still an unknown at this stage of the processing, we usenplej vertical-gradient velocity
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Figure 3: Data space multiple removal. From top to bottommAijtiple model; B) Primaries;
C) Filter; D) Data| daniel3-dspace_4pan¢CR]
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function. We use the same velocity model for the originahdsgt and the multiples model.

Since this particular data set corresponds to an OBC atiguisboth the original data set and

the multiples model were re-datumed in order to have bothcesuand receivers at the same
depth level before the migration.

Figure 4 shows one angle-domain common-image gathernwiwitpthe same presentation
scheme for the results in the data space. The figure showsi&mto bottom: A) the migrated
multiples model; B) the result of adaptive subtraction iaitthage space, that is the primaries;
C) the filter obtained with the migrated multiples model ferforming the subtraction; and
D) the migrated data set.

We first observe that both the migration of the entire dateasetthe migration of the
multiples (panels A and D) have a residual curvature in tliggeagathers because we have the
correct velocity model. However, this is not an obstacleadqgrming the multiples subtrac-
tion in this domain, since both panels present the sameuasidoveout. After estimating
the filter for performing the subtraction (panel C), we webéao eliminate almost all the
multiples present in our multiples model.

Data space vs. | mage space

To compare the results of multiple elimination in the datacgpdirectly to the multiple elim-
ination in the image space, we transformed our data-spdastraation results into the image
space. Figure 5 compares the same angle-domain commom-igzdhers for multiple re-
moval in the data space and in the image space. The figure sfromstop to bottom: A) the
migrated multiples model; B) the result of adaptive sulitcecdone in the data space, after
migration; C) the result of adaptive subtraction done inithage space; and D) the migrated
data set.

We observe that the multiples eliminated in the data spacalao eliminated in the image
space. However, some multiples were eliminated betteranrttage space, as, for example,
the strong multiple at around 2800 m. Figure 6 compares #uk sif the data space and image
space results: from top to bottom, we have: A) the migrattaslsof the primaries obtained
from the adaptive subtraction in the image space; B) the atimgr stack of the primaries
obtained from the adaptive subtraction in the data spaad;Grthe migration stack of the
original data set. Figure 7 compares the stack of migrateltiptes models. From top to
bottom, we have: A) the migrated multiple model; B) the eatiead multiple section from the
processing in the data space; and C) the estimated muléptea from the processing in the
image space.

DISCUSSION AND CONCLUSIONS

Multiples are not always easy to eliminate with well-knowethodologies, and many times
we carry them into the imaging process. During velocity gsial multiples interfere destruc-
tively with velocity model building. At this stage, primas and multiples both have residual
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Figure 4: Image space multiple removal. From top to bottorpMdgrated multiple model;
B) Primaries; C) Filter; D) Migrated datedaniel3-ispace_4pan¢CR]
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Figure 5: Comparison between multiple removal in the datespersus the image space.
From top to bottom: A) Migrated multiple model; B) Primariegsm the data space; C) Pri-
maries from the image space; D) Migrated dﬁhnielS-ispace_dspaﬁé:R]
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moveouts that do not allow for a separation and elimination.

The shallow multiples are better eliminated in the imagesp&ince there is a very small
coverage in offset for these multiples, when transformetiéamage space and mapped into
angle-domain common-image gathers, there is a wider bligton along the angle axis in the
image space compared with the offset axis in the data spaeesfore, subtraction performs
better in the image space than in the data space.

For deeper multiples, although we were able to do a good jaberdata space, there is
still some energy remaining. The coherent noise is strologigm to produce an event in the
image space that might interfere with future processingh s, migration velocity analysis.
Although, more detailed work can always be done in the dagaespo remove the multiples
more carefully, the final stage and result are going to beanrttage space. If we see coherent
noise in the image space, we will be obligated to go back tal&te space and re-process the
data.

This re-processing is not needed if we do all our processitige image space. The image
space is where we want our final result to be coherent andomatiable. Furthermore, it is
ideal for performing target-oriented processing and/@lysis, as, for example, focusing on
an specific event or area to improve the image, like velogitjfumination problems.
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Figure 6: Comparison between multiple removal in the datcsprersus the image space.
From top to bottom: A) Migrated stack of primaries from theagpe space processing; B)
Migrated stack of the primaries from the data space prosgsand C) Migrated stack of the

entire data setdaniel3-is_ds_sta¢kCR]
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Figure 7: Comparison between multiple removal in the datcsprersus the image space.
From top to bottom: A) Migrated stack of the multiple model; Bstimated multiple sec-

tion from the data space processing; and C) Estimated rreuigrtion from the image space

processing|daniel3-is_ds_mul{CR]




