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Converted-mode angle-domain common-image gather s for
migration velocity analysis

Daniel A. Rosales and Biondo BioAdi

ABSTRACT

Common-image gathers are very useful for velocity and péisical analysis.
Wavefield-extrapolation methods produce Angle-Domain @om-Image Gathers (AD-
CIGs). For the conventional PP case, ADCIGs are a functicgh@bpening angle. The
representation of ADCIGs for PS data (PS-ADCIGs) is moréatate than for conven-
tional ADCIGs. In PS-ADCIGs, the P-to-S velocity ratio is ajor variable in transform-
ing the subsurface offset to the opening angle, and in toamsng this opening angle tqg
either the P-incidence or the S-reflection angle. Numestadies show that when the
P-to-S velocity ratio and image midpoint information aré mzorporated the error in
computing PS-ADCIGs is enough to introduce artifacts inviélecity model.

A%

INTRODUCTION

Imaging is the combined process of migration and velociglysis. The final image provides
two important pieces of information about the subsurfatestructure and some of its rock
properties. To obtain a reliable image, we need a reliabteitg model. Therefore, the image
process becomes a combined procedure between migratianigretion velocity analysis.

The final image by itself provides information about the aacy of the velocity model.
This information is present in the redundancy of the seigihai@, that is in non-zero-offset
images. The information is distributed along a 3-dimensiomage space, for 2D seismic
data; the coordinates of this space &e:,mg,h). The subsets of this image for a fixed
image point ) with coordinates %, h) are known as common-image gathers (CIG), or
common-reflection-point gathers (CRP). If the CIGs are a&fion of (z:,h), the gathers are
also referred to offset-domain common-image gathers ()CThese gathers can also be
expressed in terms of an opening angldy transforming the offset axi#) into the opening
angle ) to obtain a common image gather with coordinateg/); these gathers are known
as Angle-Domain Common-Image Gathers (ADCIG) (de Bruinlgt1®90; Prucha et al.,
1999; Brandsberg-Dahl et al., 1999; Rickett and Sava, 28@2a and Fomel, 2003; Biondi
and Symes, 2004).

lemail: daniel@sep.stanford.edu, biondo@sep.stanford.edu

285



286 Rosales and Biondi SEP-120

There are two kinds of ODCIGs: those produced by Kirchhofjnaion, and those pro-
duced by wavefield-extrapolation migration, referred mnirnow on as wave-equation mi-
gration. There is a conceptual difference in the offset disi@n between these two kinds of
gathers. For Kirchhoff ODCIGs, the offset is a data param@te= hp), and involves the
concept of flat gathers. For wave-equation ODCIGs, the bffiseension is a model parame-
ter (h = hg), and involves the concept of focused events. In this papewyill refer to these
gathers as subsurface offset-domain common-image ga®@BRCIG).

There are problems observed with ODCIGs, which can be aliediby parameterizing the
offset axis into an angle axis to form angle-domain commaageagathers. Unlike ODCIGs,
ADCIGs produced with either method have similar charasties, since they describe the
reflectivity as a function of the angle at the reflector.

Depending on the seismic experiment we are analyzing, tielcates of the image space
possess different information relevant to the experim¥ve.refer to a conventional seismic
reflection experiment, where the source and the receiver thasame type of wave, sisigle-
modecase. The transformation from ODCIGs to ADCIGs is a wellskngrocess in the
literature, and in this case the angle axis representsukedflection angle.

A seismic experiment where the source and the receiver psatiferent types of waves
is known as multi-component seismic, throughout this paperrefer to this experiment as
converted-modease, as for example the conversion from P wave into an S wabe ae-
flection point. This paper discusses the common-image gatbethis kind of experiment,
focusing mainly on SODCIGs and their accurate transfonaitito ADCIGs. We validate
our results by generalizing the concepts of Kirchhoff miigra

A final side product of our analysis is the ability to sepatheefinal image into two parts,
each one corresponding to a distinctive wave. Throughdstgiocess, the velocity ratio
between the different velocities plays an important rolthentransformation. We present and
analyze the kinematics of our equations and present sontleetiqresults.

KINEMATIC EQUATIONS

This section describes the kinematic equation that tramsf@ subsurface offset-domain CIG
to an opening-angle-domain CIG, for the converted-mode.cd$e derivation follows the
well-known equations for apparent slowness in a constaltteity medium in the neighbor-
hood of the reflection/conversion point. Our derivationassistent with those presented by
Fomel (1996);Sava and Fomel (2000); and Biondi (2005).

The expressions for the partial derivatives of the totalditame with respect to the image
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point coordinates are as follows (Rosales and Rickett, 2001

ot . .
ﬂ = Ssinfs+ S singr,
at . .
a—hg = —SsinBs+ S singr,
ot
% = SscosBs+ S cosp; . (1)

WhereS; and S are the slowness (inverse of velocity) at the source andvesciecations.
Figure 1 illustrates all the angles in this discussion. Tinglegs is the direction of the wave
propagation for the source, and the anglas the direction of the wave propagation for the
receiver. Through these set of equations, we obtain:

9z; S sin —Ssings

“9h: S cosB 4+ Scosps’
0z Ssinfs+Ssing B
dms  S5C08Bs+ S coshr
We define two angleg; andy, to relatess and g, as follows:
Br + Bs Br — Bs
— , d y= . 3
> and vy > (3)

The meaning of the anglesandy will become clear later in the paper; for now, we will refer
to y as thefull-apertureangle. Through the change of angles presented on equajicen(s
by following basic trigonometric identities, we can rewréquations (2) as follows:

9z tany +Stana

dhs —  1—Stanatany’

0z; tana+dStany (@)

amg  1—Stanytana

where,

. 1

§_3I-S_¢ , (5)
S+S o+1

Figure 1. Angle definition for
the kinematic equation of converted
mode ADCIGsdaniel2-angle§NR]
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Figure 2: Slant stack angle trans-
formation from SODCIGs to AD-
CIGs. This transformation allows
lateral and vertical variation of.
|daniel2-sketch[NR]

andg is the velocity ratio, as for example the P-to-S velocityaafThis leads to quadratic
equations for taa and tary as follows:

|:8—Z€ 82& :|tanzy+[1 %i]tany—l-azS 9% _ 0,

8m§ hg 3mg ahg

0Z; 32& 0Z¢ 0Z¢

= tarf 1— $2]t == — 0.

[ahg T } arfo +[1— $%]tana +8hg am; 0 (6)

Each equation has two solutions, which are:

o fa- sy e fo[Bo-R]

—tany = P ,
:
2 [3'“& 5= ahs 52]
0z 0z (4 0z
—1i\/(1—52)2— 78— o8| [ 58— g |
—tana

2[825/8 9z /52] ) ()

8h§ omg

The first of equation (7) provides the transformation frorbssuface offset-domain CIG into
angle-domain CIG for the converted-mode case. This theowalid under the assumption
of constant velocity. However, it remains valid in a diffetial sense in an arbitrary-velocity
medium, by considering thdt: is the subsurface half offset. Therefore, the limitation of
constant velocity is on the neighborhood of the image. 4o, z¢), it is important to consider
that every point of the image(z:, mg, h¢) is related to a point on the velocity model with the
same coordinates.

In order to implement this equation, we observe that thislmlone by an slant-stack
transformation as presented on Figure 2. Note that the ibatibn along the midpoints is
a correction factor needed in order to perform the transébion. This allows us to do the
transformation from SODCIGs to ADCIGs including the latenad vertical variations of.

A Fourier domain look

Itis also possible to implement the transformation to &gkrture angle in the Fourier domain.
Although this transformation does not take into accountidteral and vertical variations of
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4, it's still an interesting exercise. We can link this theangh Fourier transform by knowing

that:

i = @1 ﬂ = E, and ﬂ = &
m: o 0z o ohy o
From equations (8), it is well known that

8_25_& and 8_252@

ohy kg ome kg

Therefore, the Fourier equivalent for equations (7) is

52— 11\/(1—52)2—4[%5 - t’“—fﬂ] [%g - th_é]
ZS ZE ZS ZE

—tany =
T
2[_5,3__552]
kzs kzs
e . km K . Km
2 3 3 3
t 8 —11\/(1—52)2—4[é5—§52] [gg—@}
—tane =
kne o kg
i

(8)

()

(10)

Equations (10) can be used to transform SODCIGsfinteapertureADCIGs through stretch-
ing of the offset and midpoint axes, but this is only valid éovelocity-ratio function$ that is

constant along the imagé(g:, mg, he)).

Transfor mation into independent angles

From equation (3) we established a relation between theagain angles for the down-
going and up-going plane-wavess and §;, respectively. Now, from Figure 1 it is easy to
see that the propagation angles are related to: 1) the moedengle of the down-going plane
wave into the reflectorf); 2) the reflection angle of the up-going plane waye;(and the

structural dip &x). The relation among all the angles is

Bs=ax—vy, and Br=oax+n.

(11)

Combining equation (3) and (11), we can see the direct ogldietween the angles that we
compute with relations (7) and/or (10) and the real strattdip, the incidence angle, and the

reflection angle. That is:

2y = %+n,
20 20 + (yr — 1)

(12)

It is easy to note that the opening angias the reflection angle and is the geological dip

wheny; = y;, which is only valid for the single-mode case.
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With these equations and Snell’s law, we can converfulepertureangle () obtained
with equation (7) or (10) into the incidence angjg) (or the reflection anglef):

B ¢sin2y
fany = 1+¢cosdy’
sin2y

Appendix A presents a full derivation of the same equatiartswith the perspective of the
Kirchhoff approach. The reader is encourage to follow tleamhdnstration.

NUMERICAL ANALYSIS

First, we analyze which one of the two solutions for jai$ appropriate. For this, we plot
both solutions for different values of the velocity ratio Figure 3 presents such result. The
right panel presents the positive solution surface, thegahel presents the negative one.
The positive solution is more stable than the negative swiutNote that the solution for the
guadratic system (7) is singular when= 1. Thus, system (7) reduces to the known relation
for single-mode case. The solid blue lingpat 1 represents this case The negative solution is
not well behaved for any of the values@®f Figure 4 shows the first of equations (4), that is the

6 15000
10000

5000

dz/dh

—5000

Hx Phi

Figure 3: Both solutions for tgnon equation (7). Left: Positive solution, the blue lingat 1
corresponds to the single-mode case. Right: Negativeisplilaniel2-ang_cwv_2soJiCR]

expression for théull-apertureangle as a function af and the velocity ratiop. Remember
that for the converted-mode casejs related to the geologic dip (equation (12), but it's not
the dip itself. In order to understand better the previoos, pe take a look at Figure 5. This
figure is a cut along = 2 on Figure 4 (dotted line) and it's compared against the eotiwnal
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approach, which is tan equals the partial derivative of depth with respect to offseéwe
omit the contribution ofr and¢, we introduce a considerable error in the transformatiomfr
SODCIGs into ADCIGs for the converted-mode case. The firgqofations (4) establishes

80
60
40

20

Figure 4: Full-aperture angle
(y) as a function ofa and ¢,
from the first of equation (4).
| daniel2-ang_cwv_alph§CR]

Full-aperture angle
o

T T
m— iz/dh
O corrected

Figure 5: Difference between the
conventional approach for tan
(solid line) versus the transformation
with the correction fora and ¢
(dotted line). This is a cut fop = 2
on Figure 4.|daniel2-ang_cwv_diff
[CR]
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a relationship between tanand the partial derivative of depth with respect to offsete W
derive this relation following a wave-equation approachpp@ndix A shows that we can
arrive at the same conclusion following an integral sumamaéipproach. Figure 6 summarizes
both approaches. This figure presents two surfaces, botieof torrespond t6z/oh. The
color surface represents the computation with the intesgn@mation approach (Appendix B);
and the black surface represents the computation with thre-@quation approach (equation
(4)). Both surfaces have a perfect match, this strongly esigghat equations (4) is accurate,
and must be followed for an appropriate transformation fI®@@DCIGs into ADCIGs for
converted-mode seismic.

Synthetic model

A simple synthetic was created with constant velocity,pf 2000 andvs = 1000, and varying
dips. Figure 7 shows on the left the reflectivity model, andhenmiddle and right panels, one
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Figure 6: Wave-equation ap-
proach compared with Integral
summation approach. Both of
them arrive to the same surface.
| daniel2-ang_cwv_wei_surf_corip
[CR]

dz/dh
L O O S

single mode PP CMP gather and one converted mode PS CMP .gatlePP-CMP gather
presents four reflection hyperbolas, all of them centereskai-offset. The PS-CMP gather
also presents the four reflection hyperbolas, correspgndirthe same events as in the PP-
CMP gather, however, they are not centered at zero-offset,iexpected for the coverted-
mode case. Also, the time axis for both synthetic data set$fesent. The events on the PS
CMP gather take longer to arrive, this is also a charactefwmtthe converted-mode case. The
polarity flip is not included in this model, since it has beé&eady discussed by Rosales and
Rickett (2001b).

After wave-equation migration with the correct velocity ded, the image is perfectly
focused at zero subsurface offset, displayed on the le#lpzrigure 8. Note, that both PP
and PS sections, had the same SODCIG.

The middle and right panels of Figures 8 present the resulh@ftransformation from
SODCIGs into the single-mode ADCIG (center panel), and lieeconverted-mode ADCIG
(right panel). It is possible to observe that the angle rgngebefore the start of the artifacts
due to the transformation in the Fourier domain) for the estad-mode ADCIG is longer
than for the single-mode ADCIG, as it is expected, since tiggeainformation contains both
the incidence and reflection angle information.

CONCLUSIONSAND FUTURE WORK

The accurate transformation from subsurface offset-do@#5s into angle-domain CIGs for
the converted-mode case requires both the informatiomalemidpoint axis and the velocity
ratio. Omitting this information yields to errors in thesiormation that might transforms in
wrong velocity updates. Two separate approaches to olwanetation between the subsurface
offset and thdull-apertureangle corroborates the accuracy of our formulation.

For the converted-mode case, the angle axis of the final irfla@e, mg,y)), after the
transformation, is neither the incidence nor reflectionegut the average of both. THall-
apertureangle gathers can be transformed into two separate andjergaéach one represent-
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Figure 7: Synthetic data. Left: reflectivity model. Righthe¢s: One single-mode PP CMP

gather, and one converted-mode PS CMP gattaniel2-data[CR]

ing the incidence and reflection angle. This transformatimight bring useful information
for the analysis of rock properties or velocity updates far two different velocity models.

The transformation from SODCIGs into ADCIGs with a Fourienthin approach is ac-
curate only for constant velocity. The general transforomaheeds to be done in the image
space. Radon Transforms may provide to be a solution fosttuation. The method will use
the information along both the midpoint and subsurfaceetfiges in order to map the image
into thefull-apertureangle axis.

The next step is to analyze how errors in either P or S velwootyels are transformed in
the PS-ADCIGs. This will result in both a formulation for thesidual moveout of converted
mode data, and a methodology for vertical velocity updaté®th P and S velocity models.
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APPENDIX A

In this part, we obtain the relation to transform subsurfaitset-domain common-image gath-
ers into angle-domain common-image gathers for the casg dfa. To perform this deriva-
tion, we use the geometry in Figure 1 in order to obtain thamatric equations for migration
on a constant velocity medium.

Following the derivation of Fomel (1996) and Fomel and Pau@@®99), and applying sim-
ple trigonometry and geometry to Figure A-1, we obtain patn equations for migrating
an impulse recorded at timig, midpointmp and surface offsdip as follows:

Figure A-1: Parametric formu-
lation of the impulse response.
daniel2-anglesgNR]

COSpBy COSPs
cosp +cosfs’
sinBscosp; — singB; cosPs
2h: = 2h Ls+L
d o +(Ls+Lr) COSB; + COSPs
m (Ls+ L) sinBscosp + sinB; cosPs
D— .

zz = (Ls+Ly)

m A-1
d 2 COSpr + COSPs (A1)
where the total path length is:
tb = Ssl-s + Sr Lr’
Zs—% = LgscosBs— L, cosp. (A-2)
From that system of equations, Biondi (2005) shows thatdted path length is
tp CosBr +Ccosfs
= ) A-3
2 Scospr + S cospPs (A-3)
Appendix A shows that we can rewrite system (A-1) as:
_ (Ls+Ly) cofa —sirfy
N 2 COSx COSy
sin
2he = 2hp—(Ls+L)—L,
COSx
Ls+L;)si
Mg D— M% (A-4)

2 cosy’
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wherea andy follow the same definition as in equation (3). whdren terms of the angles
o andg is:

to
L@ f) = (S +S)+(S — S)tana tany (A-5)

Tangent to theimpulseresponse

Following the demonstration done by Biondi (2005), the \d#ive of the depth with respect
to the subsurface offset, at a constant image point, anddtreative of the depth with respect
to the image point, at a constant subsurface offset are tiyeine following:

o 0z Mg 9Zg oM,
9z _ahé‘mfms __WW_T;TJ (A-6)
ohg| = a1 ~ dme dhe _ dme o’
s =1 9z¢ me =i da Jy dy Ja
and
T 9z: oh:  9z¢ oh
825 _ omg hE:FE _ 3_3/53_(5 _Wa_; (A'?)
M | e oz - aaﬂaaﬁ_aaﬁaak
825 hézﬁé o Y Y o
where the partial derivatives are:
3 L [ . — S)tany(cofa —sirty) |
% _ - tana(coS « +sirfy) + (S = S)tany(Cosa 7) ,
o COSx COSy cofu
3 L i . — S)tana(cofa —sirty) |
% _ - tany (cos a + sirf y) + (5 = S)tana(cos 7) ,
dy COSx COSy coy
am L — '
e [COSa B (§ — $)sina tany] ,
do cosy cofu
amg L sina sin (§ — S)tana
dy  coy cosy '
oh L sin —
da cofa cosx
oh L — §)tana sin
o L [COSV_ (§ — S)tana )/]_ (A-8)
oy CoSx coy

Figure A-2 presents the analytical solutions for the tahgethe impulse response. This was
done for an impulse at a PS-travel time of 2 s, andl walue of 2. The left panel shows
the solution for equation (A-6). The right panel shows thiitson for equation (A-7). The
solid lines superimpose on both surfaces represents otierse€the numerical derivative to
the impulse response. The perfect correlation betweenrthlytecal and numerical solution
validates our analytical formulations. This results suppthe analysis presented with the
kinematic equations.
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Figure A-2: Validation of the analytical solutions for thengent to the impulse response,
the surface represents the analytical solutions and suapese is the cut with the numerical
derivative. Left: For equation (A-6). Right: For equatioh-7) analytical solutions for the
tangent of the spreading surface for different valueg ‘aﬂanieI2-ang_cwv_wei_sqrthR]

APPENDIX B

This section proofs the equivalence between the paramsguations A-1, that is a direct
result of trigonometry and geometry on the Figure A-1, with parametric equations A-4,
which the same equations presented by previous authors.

It is important to note that even though both parametric Bgna A-1 and A-4 are equiv-
alent, the difference relies on the conceptual definitidite@angles involved.

The proof of this section is pure trigonemetry, and the reade safely skip this entire
Appendix. However, this Appendix is here to show that theafssur equations is valid.

First, we rewritefs and 8, as function ofe andy by simple algebraic manipulation of
equations 3.

Bs=a—y, and Br=a+y. (B-1)
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The first proof is the first parametric equation:

COSB; cOSPs
COoSspBr + Cosfs
cos@+y)cose —y)

COS( +y)cos@ —y)
(cosx cosy — sina siny)(cosx cosy + Sina siny)

2C0osx COosy
cofacody —sirfasirty
2 C0oSsx Cosy
cofacofy —sirfy +sin’y cofa
2 C0oSsx Cosy
cofa(cody +sirPy) —sirfy
2Cosx Ccosy
(Ls+L;) cofa —sirfy
2 COSx COSy

zz = (Ls+Ly)

= (Ls+Ly)

= (Ls+Ly)

= (Ls+Ly)

= (Ls+Ly)

= (Ls+Ly)

The second parametric equation is:

sinBscosB; — sinp, cosBs

2hsg = 2h Ls+L
5 o+ (Ls+Lr) COSpr + C0SBs

sin(Bs —

= 2hp+(Ls+L,) (Bs — Br)
2 COS( /3342—l3r ) COS( Br ;ﬂs)
sin(—2

— Dhp(Le Ly)—mz2r)
2C0osx Cosy
—2siny co

= 2hp (Lot L)W O
2C0osx Cosy
sin

= 2hp—(Ls+Ly) Y
CcoSx

The third parametric equation is:

(Ls+ L) singscosp, + sinf, cosBs
b 2 COSfr + COSPs
_ (Ls+Ly) sin(Bs+angr)

2 2COS(@> cos(ﬁ';zﬁs)
B (Ls+Lr) sin()
2 2C0sx cosy
(Ls+ L) 2sine cosx
2 2C0sx cosy
(Ls+ L) sina
-~ T2
2 cosy

ms =

= mD




