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Converted-mode angle-domain common-image gathers for
migration velocity analysis

Daniel A. Rosales and Biondo Biondi1

ABSTRACT

Common-image gathers are very useful for velocity and petrophysical analysis.
Wavefield-extrapolation methods produce Angle-Domain Common-Image Gathers (AD-
CIGs). For the conventional PP case, ADCIGs are a function ofthe opening angle. The
representation of ADCIGs for PS data (PS-ADCIGs) is more elaborate than for conven-
tional ADCIGs. In PS-ADCIGs, the P-to-S velocity ratio is a major variable in transform-
ing the subsurface offset to the opening angle, and in transforming this opening angle to
either the P-incidence or the S-reflection angle. Numericalstudies show that when the
P-to-S velocity ratio and image midpoint information are not incorporated the error in
computing PS-ADCIGs is enough to introduce artifacts in thevelocity model.

INTRODUCTION

Imaging is the combined process of migration and velocity analysis. The final image provides
two important pieces of information about the subsurface: its structure and some of its rock
properties. To obtain a reliable image, we need a reliable velocity model. Therefore, the image
process becomes a combined procedure between migration andmigration velocity analysis.

The final image by itself provides information about the accuracy of the velocity model.
This information is present in the redundancy of the seismicdata, that is in non-zero-offset
images. The information is distributed along a 3-dimensional image space, for 2D seismic
data; the coordinates of this space areI (zξ ,mξ ,h). The subsets of this image for a fixed
image point (mξ ) with coordinates (zξ ,h) are known as common-image gathers (CIG), or
common-reflection-point gathers (CRP). If the CIGs are a function of (zξ ,h), the gathers are
also referred to offset-domain common-image gathers (ODCIG). These gathers can also be
expressed in terms of an opening angleγ , by transforming the offset axis (h) into the opening
angle (γ ) to obtain a common image gather with coordinates (zξ ,γ ); these gathers are known
as Angle-Domain Common-Image Gathers (ADCIG) (de Bruin et al., 1990; Prucha et al.,
1999; Brandsberg-Dahl et al., 1999; Rickett and Sava, 2002;Sava and Fomel, 2003; Biondi
and Symes, 2004).
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There are two kinds of ODCIGs: those produced by Kirchhoff migration, and those pro-
duced by wavefield-extrapolation migration, referred to from now on as wave-equation mi-
gration. There is a conceptual difference in the offset dimension between these two kinds of
gathers. For Kirchhoff ODCIGs, the offset is a data parameter (h = hD), and involves the
concept of flat gathers. For wave-equation ODCIGs, the offset dimension is a model parame-
ter (h = hξ ), and involves the concept of focused events. In this paper,we will refer to these
gathers as subsurface offset-domain common-image gathers(SODCIG).

There are problems observed with ODCIGs, which can be alleviated by parameterizing the
offset axis into an angle axis to form angle-domain common image-gathers. Unlike ODCIGs,
ADCIGs produced with either method have similar characteristics, since they describe the
reflectivity as a function of the angle at the reflector.

Depending on the seismic experiment we are analyzing, the coordinates of the image space
possess different information relevant to the experiment.We refer to a conventional seismic
reflection experiment, where the source and the receiver have the same type of wave, assingle-
modecase. The transformation from ODCIGs to ADCIGs is a well-known process in the
literature, and in this case the angle axis represents the true reflection angle.

A seismic experiment where the source and the receiver process different types of waves
is known as multi-component seismic, throughout this paper, we refer to this experiment as
converted-modecase, as for example the conversion from P wave into an S wave at the re-
flection point. This paper discusses the common-image gathers for this kind of experiment,
focusing mainly on SODCIGs and their accurate transformation into ADCIGs. We validate
our results by generalizing the concepts of Kirchhoff migration.

A final side product of our analysis is the ability to separatethe final image into two parts,
each one corresponding to a distinctive wave. Throughout this process, the velocity ratio
between the different velocities plays an important role inthe transformation. We present and
analyze the kinematics of our equations and present some synthetic results.

KINEMATIC EQUATIONS

This section describes the kinematic equation that transforms a subsurface offset-domain CIG
to an opening-angle-domain CIG, for the converted-mode case. The derivation follows the
well-known equations for apparent slowness in a constant-velocity medium in the neighbor-
hood of the reflection/conversion point. Our derivation is consistent with those presented by
Fomel (1996);Sava and Fomel (2000); and Biondi (2005).

The expressions for the partial derivatives of the total traveltime with respect to the image
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point coordinates are as follows (Rosales and Rickett, 2001a):

∂t

∂mξ

= Sssinβs + Sr sinβr ,

∂t

∂hξ

= −Sssinβs + Sr sinβr ,

−
∂t

∂zξ

= Sscosβs + Sr cosβr . (1)

WhereSs and Sr are the slowness (inverse of velocity) at the source and receiver locations.
Figure 1 illustrates all the angles in this discussion. The angleβs is the direction of the wave
propagation for the source, and the angleβr is the direction of the wave propagation for the
receiver. Through these set of equations, we obtain:

−
∂zξ

∂hξ

=
Sr sinβr − Sssinβs

Sr cosβr + Sscosβs
,

−
∂zξ

∂mξ

=
Sssinβs + Sr sinβr

Sscosβs + Sr cosβr
. (2)

We define two angles,α andγ , to relateβs andβr as follows:

α =
βr +βs

2
, and γ =

βr −βs

2
. (3)

The meaning of the anglesα andγ will become clear later in the paper; for now, we will refer
to γ as thefull-apertureangle. Through the change of angles presented on equation (3), and
by following basic trigonometric identities, we can rewrite equations (2) as follows:

−
∂zξ

∂hξ

=
tanγ +S tanα

1−S tanα tanγ
,

−
∂zξ

∂mξ

=
tanα +S tanγ

1−S tanγ tanα
(4)

where,

S =
Sr − Ss

Sr + Ss
=

φ −1

φ +1
, (5)

Figure 1: Angle definition for
the kinematic equation of converted
mode ADCIGsdaniel2-angles[NR]
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Figure 2: Slant stack angle trans-
formation from SODCIGs to AD-
CIGs. This transformation allows
lateral and vertical variation ofS.
daniel2-sketch[NR]
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andφ is the velocity ratio, as for example the P-to-S velocity ratio. This leads to quadratic
equations for tanα and tanγ as follows:

[

∂zξ

∂mξ

S −
∂zξ

∂hξ

S
2
]

tan2γ +
[

1−S
2] tanγ +

∂zξ

∂mξ

S −
∂zξ

∂hξ

= 0,
[

∂zξ

∂hξ

S −
∂zξ

∂mξ

S
2
]

tan2α +
[

1−S
2] tanα +

∂zξ

∂hξ

S −
∂zξ

∂mξ

= 0. (6)

Each equation has two solutions, which are:

− tanγ =

S
2 −1±

√

(1−S2)2 −4
[

∂zξ

∂mξ
S −

∂zξ

∂hξ
S2

][

∂zξ

∂mξ
S −

∂zξ

∂hξ

]

2
[

∂zξ

∂mξ
S −

∂zξ

∂hξ
S2

] ,

− tanα =

S
2 −1±

√

(1−S2)2 −4
[

∂zξ

∂hξ
S −

∂zξ

∂mξ
S2

][

∂zξ

∂hξ
S −

∂zξ

∂mξ

]

2
[

∂zξ

∂hξ
S −

∂zξ

∂mξ
S2

] . (7)

The first of equation (7) provides the transformation from subsurface offset-domain CIG into
angle-domain CIG for the converted-mode case. This theory is valid under the assumption
of constant velocity. However, it remains valid in a differential sense in an arbitrary-velocity
medium, by considering thathξ is the subsurface half offset. Therefore, the limitation of
constant velocity is on the neighborhood of the image. ForS(mξ ,zξ ), it is important to consider
that every point of the imageI (zξ ,mξ ,hξ ) is related to a point on the velocity model with the
same coordinates.

In order to implement this equation, we observe that this canbe done by an slant-stack
transformation as presented on Figure 2. Note that the contribution along the midpoints is
a correction factor needed in order to perform the transformation. This allows us to do the
transformation from SODCIGs to ADCIGs including the lateral and vertical variations ofS.

A Fourier domain look

It is also possible to implement the transformation to full-aperture angle in the Fourier domain.
Although this transformation does not take into account thelateral and vertical variations of
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S, it’s still an interesting exercise. We can link this theorywith Fourier transform by knowing
that:

∂t

∂mξ

=
kmξ

ω
,

∂t

∂zξ

=
kzξ

ω
, and

∂t

∂hξ

=
khξ

ω
(8)

From equations (8), it is well known that

∂zξ

∂hξ

=
khξ

kzξ

, and
∂zξ

∂mξ

=
kmξ

kzξ

. (9)

Therefore, the Fourier equivalent for equations (7) is

− tanγ =

S
2 −1±

√

(1−S2)2 −4
[ kmξ

kzξ
S −

khξ

kzξ
S2

][kmξ

kzξ
S −

khξ

kzξ

]

2
[kmξ

kzξ
S −

khξ

kzξ
S2

] ,

− tanα =

S
2 −1±

√

(1−S2)2 −4
[ khξ

kzξ
S −

kmξ

kzξ
S2

][khξ

kzξ
S −

kmξ

kzξ

]

2
[khξ

kzξ
S −

kmξ

kzξ
S2

] . (10)

Equations (10) can be used to transform SODCIGs intofull-apertureADCIGs through stretch-
ing of the offset and midpoint axes, but this is only valid fora velocity-ratio functionS that is
constant along the image (I (zξ ,mξ ,hξ )).

Transformation into independent angles

From equation (3) we established a relation between the propagation angles for the down-
going and up-going plane-waves,βs andβr , respectively. Now, from Figure 1 it is easy to
see that the propagation angles are related to: 1) the incidence angle of the down-going plane
wave into the reflector (γi ); 2) the reflection angle of the up-going plane wave (γr ); and the
structural dip (αx). The relation among all the angles is

βs = αx −γi , and βr = αx +γr . (11)

Combining equation (3) and (11), we can see the direct relation between the angles that we
compute with relations (7) and/or (10) and the real structural dip, the incidence angle, and the
reflection angle. That is:

2γ = γr +γi ,

2α = 2αx + (γr −γi ). (12)

It is easy to note that the opening angleγ is the reflection angle andα is the geological dip
whenγi = γr , which is only valid for the single-mode case.
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With these equations and Snell’s law, we can convert thefull-apertureangle (γ ) obtained
with equation (7) or (10) into the incidence angle (γi ) or the reflection angle (γr ):

tanγi =
φ sin2γ

1+φ cos2γ
,

tanγr =
sin2γ

φ +cos2γ
. (13)

Appendix A presents a full derivation of the same equations but with the perspective of the
Kirchhoff approach. The reader is encourage to follow that demonstration.

NUMERICAL ANALYSIS

First, we analyze which one of the two solutions for tanγ is appropriate. For this, we plot
both solutions for different values of the velocity ratioφ. Figure 3 presents such result. The
right panel presents the positive solution surface, the left panel presents the negative one.
The positive solution is more stable than the negative solution. Note that the solution for the
quadratic system (7) is singular whenφ = 1. Thus, system (7) reduces to the known relation
for single-mode case. The solid blue line atφ = 1 represents this case The negative solution is
not well behaved for any of the values ofφ. Figure 4 shows the first of equations (4), that is the
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Figure 3: Both solutions for tanγ on equation (7). Left: Positive solution, the blue line atφ = 1
corresponds to the single-mode case. Right: Negative solution. daniel2-ang_cwv_2sols[CR]

expression for thefull-apertureangle as a function ofα and the velocity ratio,φ. Remember
that for the converted-mode case,α is related to the geologic dip (equation (12), but it’s not
the dip itself. In order to understand better the previous plot, we take a look at Figure 5. This
figure is a cut alongφ = 2 on Figure 4 (dotted line) and it’s compared against the conventional
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approach, which is tanγ equals the partial derivative of depth with respect to offset. If we
omit the contribution ofα andφ, we introduce a considerable error in the transformation from
SODCIGs into ADCIGs for the converted-mode case. The first ofequations (4) establishes

Figure 4: Full-aperture angle
(γ ) as a function of α and φ,
from the first of equation (4).
daniel2-ang_cwv_alpha[CR]
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Figure 5: Difference between the
conventional approach for tanγ
(solid line) versus the transformation
with the correction for α and φ

(dotted line). This is a cut forφ = 2
on Figure 4. daniel2-ang_cwv_diff
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a relationship between tanγ and the partial derivative of depth with respect to offset. We
derive this relation following a wave-equation approach. Appendix A shows that we can
arrive at the same conclusion following an integral summation approach. Figure 6 summarizes
both approaches. This figure presents two surfaces, both of them correspond to∂z/∂h. The
color surface represents the computation with the integralsummation approach (Appendix B);
and the black surface represents the computation with the wave-equation approach (equation
(4)). Both surfaces have a perfect match, this strongly suggests that equations (4) is accurate,
and must be followed for an appropriate transformation fromSODCIGs into ADCIGs for
converted-mode seismic.

Synthetic model

A simple synthetic was created with constant velocity ofvp = 2000 andvs = 1000, and varying
dips. Figure 7 shows on the left the reflectivity model, and onthe middle and right panels, one



292 Rosales and Biondi SEP–120

Figure 6: Wave-equation ap-
proach compared with Integral
summation approach. Both of
them arrive to the same surface.
daniel2-ang_cwv_wei_surf_comp
[CR]
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single mode PP CMP gather and one converted mode PS CMP gather. The PP-CMP gather
presents four reflection hyperbolas, all of them centered atzero-offset. The PS-CMP gather
also presents the four reflection hyperbolas, corresponding to the same events as in the PP-
CMP gather, however, they are not centered at zero-offset, as it is expected for the coverted-
mode case. Also, the time axis for both synthetic data sets isdifferent. The events on the PS
CMP gather take longer to arrive, this is also a characteristic for the converted-mode case. The
polarity flip is not included in this model, since it has been already discussed by Rosales and
Rickett (2001b).

After wave-equation migration with the correct velocity model, the image is perfectly
focused at zero subsurface offset, displayed on the left panel of Figure 8. Note, that both PP
and PS sections, had the same SODCIG.

The middle and right panels of Figures 8 present the result ofthe transformation from
SODCIGs into the single-mode ADCIG (center panel), and the the converted-mode ADCIG
(right panel). It is possible to observe that the angle range(i.e. before the start of the artifacts
due to the transformation in the Fourier domain) for the converted-mode ADCIG is longer
than for the single-mode ADCIG, as it is expected, since the angle-information contains both
the incidence and reflection angle information.

CONCLUSIONS AND FUTURE WORK

The accurate transformation from subsurface offset-domain CIGs into angle-domain CIGs for
the converted-mode case requires both the information along the midpoint axis and the velocity
ratio. Omitting this information yields to errors in the transformation that might transforms in
wrong velocity updates. Two separate approaches to obtain the relation between the subsurface
offset and thefull-apertureangle corroborates the accuracy of our formulation.

For the converted-mode case, the angle axis of the final image(I (zξ ,mξ ,γ )), after the
transformation, is neither the incidence nor reflection angle, but the average of both. Thefull-
apertureangle gathers can be transformed into two separate angle gathers, each one represent-



SEP–120 PS-ADCIG 293

Figure 7: Synthetic data. Left: reflectivity model. Right panels: One single-mode PP CMP
gather, and one converted-mode PS CMP gather.daniel2-data[CR]

ing the incidence and reflection angle. This transformations might bring useful information
for the analysis of rock properties or velocity updates for the two different velocity models.

The transformation from SODCIGs into ADCIGs with a Fourier domain approach is ac-
curate only for constant velocity. The general transformation needs to be done in the image
space. Radon Transforms may provide to be a solution for thissituation. The method will use
the information along both the midpoint and subsurface offset axes in order to map the image
into thefull-apertureangle axis.

The next step is to analyze how errors in either P or S velocitymodels are transformed in
the PS-ADCIGs. This will result in both a formulation for theresidual moveout of converted
mode data, and a methodology for vertical velocity updates of both P and S velocity models.
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APPENDIX A

In this part, we obtain the relation to transform subsurfaceoffset-domain common-image gath-
ers into angle-domain common-image gathers for the case of PS data. To perform this deriva-
tion, we use the geometry in Figure 1 in order to obtain the parametric equations for migration
on a constant velocity medium.

Following the derivation of Fomel (1996) and Fomel and Prucha (1999), and applying sim-
ple trigonometry and geometry to Figure A-1, we obtain parametric equations for migrating
an impulse recorded at timetD, midpointmD and surface offsethD as follows:

Figure A-1: Parametric formu-
lation of the impulse response.
daniel2-angles2[NR]

α

α

2γ

β βs r

2hD

x

x

2hξ

Ls L r

zξ m
ξ

hξI(     ,    ,     )

zξ mξI(     ,    ,       )h=0

Z

X

zξ = (Ls + Lr )
cosβr cosβs

cosβr +cosβs
,

2hξ = 2hD + (Ls + Lr )
sinβscosβr −sinβr cosβs

cosβr +cosβs
,

mξ = mD −
(Ls + Lr )

2

sinβs cosβr +sinβr cosβs

cosβr +cosβs
. (A-1)

where the total path length is:

tD = SsLs + Sr Lr ,

zs − zr = Ls cosβs − Lr cosβr . (A-2)

From that system of equations, Biondi (2005) shows that the total path length is

L =
tD

2

cosβr +cosβs

Sscosβr + Sr cosβs
. (A-3)

Appendix A shows that we can rewrite system (A-1) as:

zξ =
(Ls + Lr )

2

cos2α −sin2γ

cosα cosγ
,

2hξ = 2hD − (Ls + Lr )
sinγ

cosα
,

mξ = mD −
(Ls + Lr )

2

sinα

cosγ
. (A-4)
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whereα andγ follow the same definition as in equation (3). where,L in terms of the angles
α andβ is:

L(α,β) =
tD

(Sr + Ss)+ (Sr − Ss) tanα tanγ
(A-5)

Tangent to the impulse response

Following the demonstration done by Biondi (2005), the derivative of the depth with respect
to the subsurface offset, at a constant image point, and the derivative of the depth with respect
to the image point, at a constant subsurface offset are givenby the following:

∂zξ

∂hξ

∣

∣

∣

∣

mξ =Smξ

= −

∂T
∂hξ

∣

∣

∣

mξ =Smξ

∂T
∂zξ

∣

∣

∣

mξ =Smξ

= −

∂zξ

∂α

∂mξ

∂γ
−

∂zξ

∂γ

∂mξ

∂α

∂mξ

∂α

∂hξ

∂γ
−

∂mξ

∂γ

∂hξ

∂α

, (A-6)

and

∂zξ

∂mξ

∣

∣

∣

∣

hξ =Shξ

= −

∂T
∂mξ

∣

∣

∣

hξ =Shξ
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∂γ
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∂mξ

∂γ

∂hξ
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, (A-7)

where the partial derivatives are:

∂zξ

∂α
= −

L

cosα cosγ

[

tanα(cos2α +sin2γ )+
(Sr − Ss) tanγ (cos2α −sin2γ )

cos2α

]

,

∂zξ

∂γ
= −

L

cosα cosγ

[
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cos2γ

]

,

∂mξ

∂α
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L
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[
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]

,

∂mξ

∂γ
= −

L sinα

cos2γ

[
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]

,

∂hξ

∂α
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[
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]

,

∂hξ

∂γ
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L
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[

cosγ −
(Sr − Ss) tanα sinγ

cos2γ

]

. (A-8)

Figure A-2 presents the analytical solutions for the tangent to the impulse response. This was
done for an impulse at a PS-travel time of 2 s, and aφ value of 2. The left panel shows
the solution for equation (A-6). The right panel shows the solution for equation (A-7). The
solid lines superimpose on both surfaces represents one section of the numerical derivative to
the impulse response. The perfect correlation between the analytical and numerical solution
validates our analytical formulations. This results supports the analysis presented with the
kinematic equations.
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Figure A-2: Validation of the analytical solutions for the tangent to the impulse response,
the surface represents the analytical solutions and superimpose is the cut with the numerical
derivative. Left: For equation (A-6). Right: For equation (A-7) analytical solutions for the
tangent of the spreading surface for different values ofφ daniel2-ang_cwv_wei_surf[CR]

APPENDIX B

This section proofs the equivalence between the parametricequations A-1, that is a direct
result of trigonometry and geometry on the Figure A-1, with the parametric equations A-4,
which the same equations presented by previous authors.

It is important to note that even though both parametric equations A-1 and A-4 are equiv-
alent, the difference relies on the conceptual definitions of the angles involved.

The proof of this section is pure trigonemetry, and the reader can safely skip this entire
Appendix. However, this Appendix is here to show that the useof our equations is valid.

First, we rewriteβs andβr as function ofα andγ by simple algebraic manipulation of
equations 3.

βs = α −γ , and βr = α +γ . (B-1)
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The first proof is the first parametric equation:

zξ = (Ls + Lr )
cosβr cosβs

cosβr +cosβs

= (Ls + Lr )
cos(α +γ )cos(α −γ )

cos(α +γ )cos(α −γ )

= (Ls + Lr )
(cosα cosγ −sinα sinγ )(cosα cosγ +sinα sinγ )

2cosα cosγ

= (Ls + Lr )
cos2α cos2γ −sin2α sin2γ

2cosα cosγ

= (Ls + Lr )
cos2α cos2γ −sin2γ +sin2γ cos2α

2cosα cosγ

= (Ls + Lr )
cos2α(cos2γ +sin2γ )−sin2γ

2cosα cosγ

=
(Ls + Lr )

2

cos2α −sin2γ

cosα cosγ

The second parametric equation is:

2hξ = 2hD + (Ls + Lr )
sinβs cosβr −sinβr cosβs

cosβr +cosβs

= 2hD + (Ls + Lr )
sin(βs −βr )

2cos
(

βs+βr
2

)

cos
(

βr −βs
2

)

= 2hD + (Ls + Lr )
sin(−2γ )

2cosα cosγ

= 2hD + (Ls + Lr )
−2sinγ cosγ

2cosα cosγ

= 2hD − (Ls + Lr )
sinγ

cosα

The third parametric equation is:

mξ = mD −
(Ls + Lr )

2

sinβscosβr +sinβr cosβs

cosβr +cosβs

= mD −
(Ls + Lr )

2

sin(βs +angr)

2cos
(

βs+βr
2

)

cos
(

βr −βs
2

)

= mD −
(Ls + Lr )

2

sin(2α)

2cosα cosγ

= mD −
(Ls + Lr )

2

2sinα cosα

2cosα cosγ

= mD −
(Ls + Lr )

2

sinα

cosγ


