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Short Note

Converted-wave common-azimuth migration

Daniel A. Rosales and Biondo BioAdi

INTRODUCTION

Multicomponent seismic data may hold a wealth of inforrmafiar oil exploration and reser-
voir characterization. Multicomponent seismic containsrgy from converted waves that is
not seen in conventional seismic; therefore, the developrokenew techniques to process
converted-wave data is important. Much progress has bede manany areas of converted-
wave seismic processing, such as stacking, DMO, migratihvalocity analysis (Tessmer
and Behle, 1988; Iverson et al., 1989; Huub Den Rooijen, 18%araj, 1992; Harrison and
Stewart, 1993). However, more advanced techniques fotesmgde PP seismic still have
few converted-wave counterparts.

Common-azimuth migration is an efficient and robust techaitpr obtaining accurate
single-mode PP 3-D seismic images. This technique takesndéalye of the reduced dimen-
sionality of the computational domain. It assumes that tite tiave only the zero cross-line
offset; that is, all the traces in the data share the sameusizifBiondi and Palacharla, 1996).
Due to the growing number of 3-D multicomponent seismic data in areas where an accu-
rate processing is required to obtain better subsurfacgaesand/or estimate rock properties,
wavefield-based continuation methods, such as commona#izimigration, for converted-
mode data are of great importance and are very much needeel ail industry today.

Converted-wave common-azimuth migration is very similarconventional common-
azimuth migration. However, it uses different propagatietocities for different wavefields.
We compare the differences between single-mode and ceaverode common-azimuth mi-
gration.

CONVERTED-WAVE COMMON-AZIMUTH MIGRATION

Point-scatterer geometry is a good starting point to dscaaverted-waves prestack common-
azimuth migration. The equation for the travel time is thengi a downgoing travel path with

lemail: daniel@sep.stanford.edu, biondo@sep.stanford.edu

279



280 Rosales and Biondi SEP-120

P-velocity @) and an upcoming travel path with S-velociiy),

t

_ VP HIs=XI” V2 +Ig—xI?
Up Vs '

(1)

wheresandg represent the source and receiver vector locations &the point-scatterer sub-
surface position. Common-azimuth migration is a wavefteded, downward-continuation
algorithm. The algorithm is based on a recursive solutiothef one-way wave equation
(Claerbout, 1985). The basic continuation step used to aterthe wavefield at depth+ Az

from the wavefield at depthcan be expressed in the frequency-wavenumber domain as fol-
lows:

Pzaz(w,Km,Kn) = Pz(w,km,kn) gkzAz, (2)

After each depth-propagation step, the propagated wadaet¢quivalent to the data that
would have been recorded if all sources and receivers waeeglat the new depth level
(Schultz and Sherwood, 1980). The wavefields are propagatkdwo different velocities, a
P-velocity for the downgoing wavefield and an S-velocitytfer upcoming wavefield. The ba-
sic downward continuation for converted waves is perforimgdpplying the Double-Square-
Root (DSR) equation:

w? 2 w? 2
kz (CU, ks, kg) = DSR(CU, ks, kg) = — m - ks - Uz(g Z) - kg ’ (3)
p\> s\

or in midpoint-offset coordinates,

w2 1 2

v3(s,2) 4

— 2k +Kn)- ( +Ki).
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The common-azimuth downward-continuation operator taklwantage of the reduced dimen-
sionality of the data space, which results from using a comammuth resorting of the data.
Rosales and Biondi (2004) discuss how to do this resortingdémverted-wave data. The
general continuation operator can then be expressed a/f{Biondi and Palacharla, 1996):

(K —Kh) - (K —kh)—\/ o
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dkyhe—iszZ}
~ Py (w,Kmi ke Yn = 0) A(@,km, kxh) eikdz, (5)

Since common-azimuth data is independenknf the integral can be pulled inside and an-
alytically approximated by the stationary-phase methdei(Btein, 1984). The application
of the stationary-phase method is based on a high-frequamaroximation. By geometrical
means we derive the stationary-path approximation for edad waves.
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The expression fok, comes from substituting the stationary-path approxinmaitibo the

expression for the full DSR of equation (4):

Kz = DSR[w, K, ki, kn, (2), 7] 6)

where

\/z(gz) o oo \/vz(sz) 2(Kem— kxn)?

()

T(\hy(z) = kym

w2

\/2(92) 4(kxm+kxh) +\/ 2(s2) 4(kxm th)2

IMPUL SE RESPONSE

Figure 1 presents the summation surfaces [equation (1Hrfampulse response at a depth of
500 m, a P-velocity of 3000 m/s, an S-velocity of 1500 m/s, andn-line offset of 3000 m.
The left panel shows the single-mode PP summation surfackthe right panel shows the
converted-mode PS summation surface. Similarly, Figuteofs the spreading surfaces; that
is, the theoretical solution for depth of equation (1), Apgie A shows the calculations. The
left panel presents the single-mode PP spreading surfexeenter panel shows the converted-
mode PS spreading surface, and the right panel comparesrtauc lines for both spreading

surfaces.

Figure 3 shows the common-azimuth impulse response forg@atP-velocity of 2500 m/s,
and a constant S-velocity of 1250 m/s, and an in-line off§200 m. The left panel exhibits
the response for the single-mode PP common-azimuth nograperator, and the right panel
exhibits the response for the converted-mode PS migrapenador.

CONCLUSIONS

We presented the converted-mode PS 3-D common-azimutlatimgroperator. The differ-
ence between this operator and the single-mode PP opesdlar uise of two different veloc-
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Figure 2: Spreading surfaces for an impulse at 0.320 s P8ltirae and 0.480 s PS traveltime,
an offset of 200 m, and assuming constant P-velocity of 250ihthS-velocity of 1250 m.
Left: PP spreading surface. Center: PS spreading surfaighit: Rontour lines comparison
from both spreading surfaceslaniell-imptheory[CR]

Figure 3: Impulse response for a
point diffractor at 0.320 s PP trav-
eltime and 0.480 s PS traveltime, °
and in a constant-velocity medium
with a P-velocity of 2500 m/s and
S-velocity of 1250 mi/s. Left: £
presents the single-mode PP. Right: :
panel presents the converted-mode
PS. daniel1-imp.reshCR]

ity fields. Therefore, a more careful implementation is regetb ensure the correct velocity
model. We demonstrate that the subsurface area coverea [BSftommon-azimuth migra-
tion operator is different than that covered by the PP comammuth migration operator;

therefore, only the area that the two surfaces share candekfasrock-properties analysis
based on the two complementary images. This might have tapampacts on the reservoir-
characterization process.

APPENDIX A

This section derives the exact solution for the common attimpuestack migration for a re-
flecting point within an homogeneous Earth. The total tréave¢ is

JZ+6y—m+hol2 /2 + gy —m—ho|?

tp = + . (A-1)
Vs Up
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The following procedure shows how to go frdg(z:, m, h) to z (tp, m, h):

tpvp = ¢\/Z§+ ||-§xy—m+hD||2+\/Z§+ &y —m—hp |2, (A-2)

where¢ represents the P-to-S velocities ratio. If we make the ¥ahg definitions,

2A = tDvp,
a = Z+|&—m+hol?
B = Z+l&—m—hol? (A-3)
(A-2) becomes
2A=pJa+/B. (A-4)
We square both sides to get a new equation with only one sqoate
—(¢%a+B) =2¢/ap (A-5)

Squaring again to eliminate the square root, and combirigments, we obtain
16A" —8A%(¢%a + B) + (¢« — B)* = 0. (A-6)
This expression is a2 degree polynomial iz ; which is:

0 = 16A"—8A*((¢%+1)Z +¢*(llEy — M+hp ) + (16 — M —hp %))
+ (%12 + (6 —m+hp 2% = (&g —m—hp 12?2 (A-7)
This can also be writen as follows
0 = (¢°—1YZ
+ (20%(l&y —m+hp|)? — (Il —m — hp |)4(¢? — 1) — 8(tpo vp)*(¢2 + 1)) 22

+  16(tpvp)* — 8(tovp)’e(llExy — M +hp |22+ (lléxy — M — hp [12)?
+ (@l —M+hp )% = (llEy — M — hp [|2)?)? (A-8)

This polynomial equation has 4 solutions, which take thiefahg well known form:

—b+ b2 —4ac
=4+ , A-9
2 / % (A-9)

where

a = (¢2—1)2,
b = 2¢%(ll&y —m+hpl?)> = (l&y —m—hp[2)A($? — 1) — 8(tovp) (¢ + 1),
¢ = 16(pvp)* —8(tovp)?¢*(llEy — M+hp %) + (6 —m —hp |?)?
+ (@*(l&y —m+hp[%)? = (l&y —m—hp[?)?)>. (A-10)
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