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Short Note

Converted-wave common-azimuth migration

Daniel A. Rosales and Biondo Biondi1

INTRODUCTION

Multicomponent seismic data may hold a wealth of information for oil exploration and reser-
voir characterization. Multicomponent seismic contains energy from converted waves that is
not seen in conventional seismic; therefore, the development of new techniques to process
converted-wave data is important. Much progress has been made in many areas of converted-
wave seismic processing, such as stacking, DMO, migration and velocity analysis (Tessmer
and Behle, 1988; Iverson et al., 1989; Huub Den Rooijen, 1991; Alfaraj, 1992; Harrison and
Stewart, 1993). However, more advanced techniques for single-mode PP seismic still have
few converted-wave counterparts.

Common-azimuth migration is an efficient and robust technique for obtaining accurate
single-mode PP 3-D seismic images. This technique takes advantage of the reduced dimen-
sionality of the computational domain. It assumes that the data have only the zero cross-line
offset; that is, all the traces in the data share the same azimuth (Biondi and Palacharla, 1996).
Due to the growing number of 3-D multicomponent seismic datasets in areas where an accu-
rate processing is required to obtain better subsurface images and/or estimate rock properties,
wavefield-based continuation methods, such as common-azimuth migration, for converted-
mode data are of great importance and are very much needed in the oil industry today.

Converted-wave common-azimuth migration is very similar to conventional common-
azimuth migration. However, it uses different propagationvelocities for different wavefields.
We compare the differences between single-mode and converted-mode common-azimuth mi-
gration.

CONVERTED-WAVE COMMON-AZIMUTH MIGRATION

Point-scatterer geometry is a good starting point to discuss converted-waves prestack common-
azimuth migration. The equation for the travel time is the sum of a downgoing travel path with

1email: daniel@sep.stanford.edu, biondo@sep.stanford.edu

279



280 Rosales and Biondi SEP–120

P-velocity (vp) and an upcoming travel path with S-velocity (vs),

t =
√

z2 +‖s−x‖2

vp
+

√
z2 +‖g−x‖2

vs
, (1)

wheres andg represent the source and receiver vector locations andx is the point-scatterer sub-
surface position. Common-azimuth migration is a wavefield-based, downward-continuation
algorithm. The algorithm is based on a recursive solution ofthe one-way wave equation
(Claerbout, 1985). The basic continuation step used to compute the wavefield at depthz+1z
from the wavefield at depthz can be expressed in the frequency-wavenumber domain as fol-
lows:

Pz+1z (ω,km,kh) = Pz (ω,km,kh)eikz1z. (2)

After each depth-propagation step, the propagated wavefield is equivalent to the data that
would have been recorded if all sources and receivers were placed at the new depth level
(Schultz and Sherwood, 1980). The wavefields are propagatedwith two different velocities, a
P-velocity for the downgoing wavefield and an S-velocity forthe upcoming wavefield. The ba-
sic downward continuation for converted waves is performedby applying the Double-Square-
Root (DSR) equation:

kz
(
ω,ks,kg

)
= DSR

(
ω,ks,kg

)
= −

√
ω2

v2
p(s,z)

−ks
2 −

√
ω2

v2
s(g,z)

−kg
2, (3)

or in midpoint-offset coordinates,

DSR(ω,km,kh) = −

√
ω2

v2
p(s,z)

−
1

4
(km −kh) · (km −kh)−

√
ω2

v2
s(g,z)

−
1

4
(km +kh) · (km +kh).

(4)

The common-azimuth downward-continuation operator takesadvantage of the reduced dimen-
sionality of the data space, which results from using a common-azimuth resorting of the data.
Rosales and Biondi (2004) discuss how to do this resorting for converted-wave data. The
general continuation operator can then be expressed as follows (Biondi and Palacharla, 1996):

Pz+1z
(
ω,km,kxh, yh = 0

)
=

∫
+∞

−∞

dkyh Pz
(
ω,km,kxh, yh = 0

)
e−ikz1z

= Pz
(
ω,km,kxh, yh = 0

){∫
+∞

−∞

dkyhe−ikz1z

}

≈ Pz
(
ω,km,kxh, yh = 0

)
A

(
ω,km,kxh

)
e−i k̂z1z. (5)

Since common-azimuth data is independent ofkyh , the integral can be pulled inside and an-
alytically approximated by the stationary-phase method (Bleinstein, 1984). The application
of the stationary-phase method is based on a high-frequencyapproximation. By geometrical
means we derive the stationary-path approximation for converted waves.
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Figure 1: Summation surfaces for
a constant medium with a of P-
velocity of 3000 m/s, an S veloc-
ity of 1500 m/s, and an offset of
2 km. Left: PP summation sur-
face. Right: PS summation surface.
daniel1-impcheops[CR]
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The expression for̂kz comes from substituting the stationary-path approximation into the
expression for the full DSR of equation (4):

k̂z = DSR
[
ω,km,khx , k̂hy(z),z

]
(6)

where

k̂hy(z) = kym

√
ω2

v2
s(g,z)

− 1
4(kxm+kxh)2 −
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ω2

v2
p(s,z)

− 1
4(kxm−kxh)2

√
ω2

v2
s(g,z)

− 1
4(kxm+kxh)2 +

√
ω2

v2
p(s,z)

− 1
4(kxm−kxh)2

. (7)

IMPULSE RESPONSE

Figure 1 presents the summation surfaces [equation (1)] foran impulse response at a depth of
500 m, a P-velocity of 3000 m/s, an S-velocity of 1500 m/s, andan in-line offset of 3000 m.
The left panel shows the single-mode PP summation surface, and the right panel shows the
converted-mode PS summation surface. Similarly, Figure 2 shows the spreading surfaces; that
is, the theoretical solution for depth of equation (1), Appendix A shows the calculations. The
left panel presents the single-mode PP spreading surface, the center panel shows the converted-
mode PS spreading surface, and the right panel compares the contour lines for both spreading
surfaces.

Figure 3 shows the common-azimuth impulse response for a constant P-velocity of 2500 m/s,
and a constant S-velocity of 1250 m/s, and an in-line offset of 200 m. The left panel exhibits
the response for the single-mode PP common-azimuth migration operator, and the right panel
exhibits the response for the converted-mode PS migration operator.

CONCLUSIONS

We presented the converted-mode PS 3-D common-azimuth migration operator. The differ-
ence between this operator and the single-mode PP operator is the use of two different veloc-
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Figure 2: Spreading surfaces for an impulse at 0.320 s PP traveltime and 0.480 s PS traveltime,
an offset of 200 m, and assuming constant P-velocity of 2500 mand S-velocity of 1250 m.
Left: PP spreading surface. Center: PS spreading surface. Right: contour lines comparison
from both spreading surfaces.daniel1-imptheory[CR]

Figure 3: Impulse response for a
point diffractor at 0.320 s PP trav-
eltime and 0.480 s PS traveltime,
and in a constant-velocity medium
with a P-velocity of 2500 m/s and
S-velocity of 1250 m/s. Left:
presents the single-mode PP. Right:
panel presents the converted-mode
PS. daniel1-imp.resp[CR]

ity fields. Therefore, a more careful implementation is needed to ensure the correct velocity
model. We demonstrate that the subsurface area covered by the PS common-azimuth migra-
tion operator is different than that covered by the PP common-azimuth migration operator;
therefore, only the area that the two surfaces share can be used for rock-properties analysis
based on the two complementary images. This might have important impacts on the reservoir-
characterization process.

APPENDIX A

This section derives the exact solution for the common azimuth prestack migration for a re-
flecting point within an homogeneous Earth. The total traveltime is

tD =

√
z2
ξ +‖ξxy −m+hD‖2

vs
+

√
z2
ξ +‖ξxy −m−hD‖2

vp
. (A-1)
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The following procedure shows how to go fromtD(zξ ,m,h) to zξ (tD,m,h):

tDvp = φ

√
z2
ξ +‖ξxy −m+hD‖2 +

√
z2
ξ +‖ξxy −m−hD‖2, (A-2)

whereφ represents the P-to-S velocities ratio. If we make the following definitions,

2A = tDvp,

α = zξ +‖ξxy −m+hD‖2,

β = zξ +‖ξxy −m−hD‖2, (A-3)

(A-2) becomes

2A = φ
√

α +
√

β. (A-4)

We square both sides to get a new equation with only one squareroot:

4A2 − (φ2α +β) = 2φ
√

αβ. (A-5)

Squaring again to eliminate the square root, and combining elements, we obtain

16A4 −8A2(φ2α +β)+ (φ2α −β)2 = 0. (A-6)

This expression is a 4th degree polynomial inzξ ; which is:

0 = 16A4 −8A2((φ2 +1)z2
ξ +φ2(‖ξxy −m+hD‖2)2 + (‖ξxy −m−hD‖2)2)

+ ((φ2 −1)z2
ξ +φ2(‖ξxy −m+hD‖2)2 − (‖ξxy −m−hD‖2)2)2. (A-7)

This can also be writen as follows

0 = (φ2 −1)2z4
ξ

+ (2φ2(‖ξxy −m+hD‖2)2 − (‖ξxy −m−hD‖2)2(φ2 −1)−8(tDvp)2(φ2 +1))z2
ξ

+ 16(tDvp)4 −8(tDvp)2φ2(‖ξxy −m+hD‖2)2 + (‖ξxy −m−hD‖2)2

+ (φ2(‖ξxy −m+hD‖2)2 − (‖ξxy −m−hD‖2)2)2 (A-8)

This polynomial equation has 4 solutions, which take the following well known form:

zξ = ±

√
−b±

√
b2 −4ac

2a
, (A-9)

where

a =
(
φ2 −1

)2
,

b = 2φ2(‖ξxy −m+hD‖2)2 − (‖ξxy −m−hD‖2)2(φ2 −1)−8(tDvp)2(φ2 +1),

c = 16(tDvp)4 −8(tDvp)2φ2(‖ξxy −m+hD‖2)2 + (‖ξxy −m−hD‖2)2

+ (φ2(‖ξxy −m+hD‖2)2 − (‖ξxy −m−hD‖2)2)2. (A-10)
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