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Fourier-domain imaging condition for shot-profile migrati on

Brad Artman and Sergey Fondel

ABSTRACT

Cross-correlating up-coming and down-going wavefieldsiiahtly applies a spatial mul;
tiplication. This multiplication could be performed in tin@ve-number domain as a cor
volution. However, the full imaging condition, includingissurface offset, transforms
to a Fourier domain equivalent that is also a lagged mutpion. This fact allows for
the simple analysis of anti-aliasing criteria. Migratiomgh synthetic data with flat and
dipping reflectors in a homogeneous medium are produceditaae the Fourier domain
algorithm and shots from the Marmousi data set are shown asi@es of its efficacy.
Periodic replications in the image space are introducedhwvgbéving the imaging condi-
tion in the Fourier domain which make results unsatisfgct®he cost of computing the
imaging condition in the Fourier domain is much higher tharspace domain equivalen
since very few subsurface offsets need to be imaged if thecitglmodel is reasonably,
accurate. Analysis of the Fourier domain imaging conditeads to the conclusion that
anti-aliasing efforts can be implemented post-migration.

—

INTRODUCTION

Artman et al. (2003) introduced the advantages of a Fouoenain imaging condition for
shot-profile migration in order to address aliasing proldetae to unequal discretization of
source and receiver acquisition geometries. It was pagitedgh not rigorously proven, that
the details of the obvious implementation were also a laggeltiplication of the wavefields
in the Fourier-domain.

When subsurface offset is introduced to the space-domaagimg condition, it is not a
strict multiplication across the space axis. The laggedipiidation of the up- and down-
going wavefields exist somewhere between simple multifiinaand cross-correlation. By
summing over the offset axis we are generating, we would Henmeing a rigorous correlation
in space. Maintaining this axis invalidates the converaioalationships of operations in dual
spaces that, in this case, results in symmetric (though adegtly), imaging conditions in
both the space and Fourier-domains.

In the theory below, we develop the imaging condition in temmhky, andk,. We then
present synthetic migrations with the Fourier-domain imggondition to show its equiva-
lence with the space-domain imaging condition. There aveelver, several key differences,
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associated with aliased replications, between the twdteethat can be seen by viewing the
results in thex — h plane at the depth of an imaging point. These have imporémifications
for the use of this form of the imaging condition at shallovpties. Finally, by inspecting the
form of the equation, we can see how the implementation afadiaising criteria can be ap-
propriately applied post-migration. This happy fact is éfial because the Fourier-domain
imaging condition is much more expensive to calculate tkespace-domain equivalent.

THEORY

The space-domain shot-profile imaging condition includingsurface offset for shot-profile
migration (Rickett and Sava, 2002) is

1(X,M)]w,z =U(Xx+h) D*(x—h), 1)

Wherel is the migrated image produced by cross-correlating theamping,U, and down-
going, D, wavefields at every depth and frequency. Bathndh can be areal vectors:
represents complex conjugation. To derive the Fourieradoraquivalent, we will perform a
piece-wise proof and begin with the Fourier transfdirhto D* (neglecting Fourier scaling)

[ (x,h) = U (x+h) f D*(ks) €M g, . 2)
Continue by Fourier transforming the variald¢o find
[ (ke,h) = f U(x+h) / D*(ks)e' ks M dkse™ ¥ kx dx . (3)
By reordering variables, the equivalent form
I (ke,h) = /f)*(ks)e—‘ksh/U(x—h)e—‘x("x—"s)dxdks

_ f[‘)*(ks)eih(kx—st)fU(X/)e—ix’(kx—ks)dx/dks @)

is achieved. From here, we can recognize the inner integithlei Fourier transform of the
wavefieldU which can be replaced directly to yield

(e, ) = f 0 (ky — k) B*(ke) € =29 i 5)

With the use of the definition of offsek, = kx — 2ks, we can replace several of the above
arguments with equivalent expressions to find

[(ke,h) = 1/0 <kx+k“) 5*(‘“;2kh> gk g, (6)

2 2
The last integral is recognized as an inverse Fourier toamsfthis time over the, vari-

able. Using this fact, we arrive at the multi-dimensionalgjox andh, which can be two-
dimensional themselves) Fourier transform of the genéattprofile imaging condition

ook =50 (25 ) 6 (55 ™
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From this equation, the result that the Fourier-domainwdent to the conventional space-
domain imaging condition for shot-profile migration is agai lagged multiplication of the
up-coming and down-going wavefields at each frequency apthdevel. Evaluating the ar-
guments inside the wavefields to produce a component of thgarshows that the wavefields,
in the wavenumber domain, will need to be interpolated byctofeof two to calculate the im-
age space output. The Table 1 showing example calculatidhe components of the image
space looks like

Kn

-1 0 1
—1| U(%)D*(0) | U(3H)D*(F) | U(0)D*(R)
ke 0| U(FH)D*(3)| U0)D*0) |U(3)D )
1] 00)DB*(3) | UZ)D*3) | UEZ)D*0)
2| UDB*3) | URD 3 | UE)D*(3)

Table 1: Layout of wavenumber components in Fourier-donmaaging conditions

SYNTHETIC TESTS

To test the above algorithm, synthetic data was generatdagrated with both the conven-
tional space-domain and Fourier-domain imaging condstibmages were created by migrat-
ing a single shot produced over a single reflecting layeriwighconstant velocity medium.
The location,x, and offseth, axes had the same extent and sampling. This is true for both
implementations of the imaging condition.

Figure 1 shows the comparison of the space-domain impupense to the Fourier equiv-
alent developed above for the zero dip reflector. Both segonawide identical results when
viewed at subsurface offsht= 0 at thex — z plane. The smile shapes are due to the limited
extent of the acquisition along the surface. However, Egucompares the algorithms across
thex — h plane at the depth of a correctly migrated image point. Wdiileero offset the two
images are the same, the Fourier-domain implementatioolhasus replications at the end
of the dog-bone shaped energy distribution. Aliased enisrgiso introduced into the upper-
right and lower-left corners of the image space. This péeigdis not encountered with the
space-domain implementation.

By adding dip to the reflection point, the dog-bone shape @éxth- h plane becomes
skewed. Figures 3 and 4 are produced with a reflector witha2@ 40 dip respectively.
While the zero-offset image of the— z plane remains the same, the periodicity of the Fourier-
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Figure 1: Migration impulse response
through a constant velocity medium
of both space-domain and Fourier
domain implementation of the shot-
profile imaging condition viewed at
h =0 on the x — z image plane.
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Figure 2: Migration impulse re-
sponse through a constant velocity
medium of both space-domain and
Fourier domain implementation of
the shot-profile imaging condition
viewed at the depth of a focused im-
age point on the« — h image plane.
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domain algorithm is again visible as compared to the contiputaf the imaging condition in
the space-domain. Notice that as dip increases, the sadufieqs the dog-bone has moved
away from zero offset and the image gives the sense of tigptoghe page.
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comparison. Left is Fourier-domain
implementation.  Right is space-
domain implementation. Image is ex-
tracted at the depth of a focused im-
age point on the« — h image plane. :
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Figure 3: 20 dip reflector image h"‘
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The onset of the replications are at precisely half the btise surface location axes. To
remove this type of artifact in the Fourier domain, integtimin of both axes by a factor of
two would be required. From equation 7, we note that the waldsfihave already required
a factor of two interpolation to facilitate the algorithrmtérpolating the image by a factor
of two again substantially increases memory consumptiahcamputational effort for this
implementation.

The first shot from the Marmousi synthetic data was migratezkamine the effects of the
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Figure 4: 40 dip reflector image

comparison. Left is Fourier-domain
implementation.  Right is space-
domain implementation. Image is ex-
tracted at the depth of a focused im-
age point on the« — h image plane. :
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above periodicity injected into the image using the Foudi@main imaging condition. Figure
5 compares the image from the first shot in the data computddbeth space-domain and
Fourier-domain imaging conditions. At great depth, thegeware largely comparable, while
at less than 1000 meters, the images are completely diffefidns is due to the combined
effects of periodicity of the Fourier computed image anddieep dips of the model.
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Figure 5: Images from the first shot

in the Marmousi data set. Left panel
computed with the Fourier-domain
imaging condition, and the right 3
panel with the conventional space do-
main algorithm. [brad3-marm.nef
[CR]

Deeper in the section, the problem is less apparent and théeFdomain imaging condi-
tion is much closer to the space-domain result. Figure 6 dsimates how the zeroing of the
evanescent waves through the course of the migration eééclimits the range of wavenum-
ber energy allowed into the image. After the evanescentdiions are more restrictive than
the effects of the Fourier domain periodicity, the artiloegin to diminish.

However, the images for a complex medium are definitely mattlt equivalent for the
two alternative imaging condition implementations. Byenolating theky andky axes, it is
possible to remove the limitation imposed by the periogliaitthe memory/disk cost ofn4
per depth level.

ANTI-ALIASING IMPLICATIONS

Figure 7 shows the impact on the image space of subsampkrghiht axis by a factor of ten
while migrating the flat reflector synthetic data describbdve. The left panel imaged with
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Figure 6: Images from the first shot
in the Marmousi data set. Depth
slices, computed with the Fourier
domain imaging condition, are ex-
tracted fromz = 250m and z=1188m.
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only every tenth shot, while right panel migrated shots argveceiver location. The shot-
axis, which could be drawn at a4&ngle up and to the right, shows inappropriate replications
(Rickett and Sava, 2002). The data are modeled with sufticeaiver density, that this level
of decimation does not alias the receiver gathers. Thigi®borated by the absence of aliased
energy in the upper-left and lower right quadrants.
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Figure 7: Left panel shows the
wavenumber energy for a migrated
flat reflector when using sources at |
every tenth receiver location. On
the left, and all source locations.
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From this simple example, we can see that the anti-aliagstiction required for the
decimated migration are sloped lines to remove energy fleemupper-right and lower-left
guadrants. In general, any of the four corners may expeziahased replications depending
on the inequality between receiver and source samplingidw@acquisition. The form of the
imaging condition in the Fourier domain as shown in equafigrovides important insight
into how to implement anti-aliasing criteria for shot-plefinigration.

Limiting the image by neither constak{ nor k,, will appropriately remove the aliased
energy of Figure 7. Instead, one should limit the maximundbadth of both theJ and D*
wavefields. Table 1 provides a convenient display of this. fatis will maintain the center
diamond of appropriate energy. If the anti-aliasing bandlis applied to the image space
instead of the two wavefields used to calculate it, there &eeimportant conclusions: 1)
the bandlimit should be the same for both the offset and iocatxes, and 2) the limit is a
diamond shaped, not circular, filter on the— k, plane.
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CONCLUSION

The calculation of subsurface offset in the conventionatspdomain imaging condition con-
dition for shot-profile migration requires a series of lagigeultiplications of the up-coming
and down-going wavefields. Because it is not a simple midagbn, the development of its
Fourier is required rather than axiomatically assuming itake the form of a convolution.
The result shown above has a very similar lagged multipboatorm to its space-domain
equivalent.

Several interpolations are required to implement the imggiondition as a function of
wave number. First, the input wavefields, and then the catledlmodel space, must be twice
finer sampled in wavenumber. Completely inadequate reatdtebtained for complex earth
models if both interpolation steps are not honored. Thespssincrease the memory and
computational demands of the method to unacceptable leteigher, an equal number of
offset-wavenumbers must be calculated to avoid aliasingpp®sed toO(10) for a space-
domain implementation where one is reasonably confidenheénaccuracy of the velocity
model.

Analyzing the form of the imaging condition allows us to makeortant conclusions
about how to mitigate migration aliasing problems inheweitih shot-profile migrations when
the source and receiver sampling is unequal. Most impdyteemti-aliasing strategies can
be implemented in the image domain after migration withaegding to resort to the very
expensive Fourier-domain imaging condition.

While the development of a Fourier-domain imaging condifior shot-profile migration
has been presented, the periodicity of the process intesdunwanted artifacts into the im-
age result. The form of the equation, however, provides g understanding as to how to
design anti-aliasing filters for data sets that do not hawalesampling of the source and re-
ceiver data axes. Further, these bandlimits can be apptisthaller post-migration volumes,
possibly even during the course of converting subsurfaiseto angle in the Fourier-domain
at little to no additional cost.
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