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Fourier-domain imaging condition for shot-profile migrati on

Brad Artman and Sergey Fomel1

ABSTRACT

Cross-correlating up-coming and down-going wavefields inherently applies a spatial mul-
tiplication. This multiplication could be performed in thewave-number domain as a con-
volution. However, the full imaging condition, including subsurface offset, transforms
to a Fourier domain equivalent that is also a lagged multiplication. This fact allows for
the simple analysis of anti-aliasing criteria. Migrationswith synthetic data with flat and
dipping reflectors in a homogeneous medium are produced to evaluate the Fourier domain
algorithm and shots from the Marmousi data set are shown as examples of its efficacy.
Periodic replications in the image space are introduced when solving the imaging condi-
tion in the Fourier domain which make results unsatisfactory. The cost of computing the
imaging condition in the Fourier domain is much higher than its space domain equivalent
since very few subsurface offsets need to be imaged if the velocity model is reasonably
accurate. Analysis of the Fourier domain imaging conditionleads to the conclusion that
anti-aliasing efforts can be implemented post-migration.

INTRODUCTION

Artman et al. (2003) introduced the advantages of a Fourier domain imaging condition for
shot-profile migration in order to address aliasing problems due to unequal discretization of
source and receiver acquisition geometries. It was posited, though not rigorously proven, that
the details of the obvious implementation were also a laggedmultiplication of the wavefields
in the Fourier-domain.

When subsurface offset is introduced to the space-domain imaging condition, it is not a
strict multiplication across the space axis. The lagged multiplication of the up- and down-
going wavefields exist somewhere between simple multiplication and cross-correlation. By
summing over the offset axis we are generating, we would be performing a rigorous correlation
in space. Maintaining this axis invalidates the conventional relationships of operations in dual
spaces that, in this case, results in symmetric (though not perfectly), imaging conditions in
both the space and Fourier-domains.

In the theory below, we develop the imaging condition in terms of kx andkh. We then
present synthetic migrations with the Fourier-domain imaging condition to show its equiva-
lence with the space-domain imaging condition. There are, however, several key differences,
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associated with aliased replications, between the two results that can be seen by viewing the
results in thex −h plane at the depth of an imaging point. These have important ramifications
for the use of this form of the imaging condition at shallow depths. Finally, by inspecting the
form of the equation, we can see how the implementation of anti-aliasing criteria can be ap-
propriately applied post-migration. This happy fact is beneficial because the Fourier-domain
imaging condition is much more expensive to calculate than its space-domain equivalent.

THEORY

The space-domain shot-profile imaging condition includingsubsurface offset for shot-profile
migration (Rickett and Sava, 2002) is

I (x,h)|ω,z = U (x +h) D∗(x −h) , (1)

Where I is the migrated image produced by cross-correlating the up-coming,U , and down-
going, D, wavefields at every depth and frequency. Bothx andh can be areal vectors.∗

represents complex conjugation. To derive the Fourier-domain equivalent, we will perform a
piece-wise proof and begin with the Fourier transformD∗ to D̂∗ (neglecting Fourier scaling)

Î (x,h) = U (x +h)
∫

D̂∗(ks)ei ks (x−h) dks . (2)

Continue by Fourier transforming the variablex to find

Î (kx,h) =

∫
U (x +h)

∫
D̂∗(ks)e

i ks (x−h) dkse
−i x kx dx . (3)

By reordering variables, the equivalent form

Î (kx,h) =

∫
D̂∗(ks)e−i ks h

∫
U (x −h)e−i x (kx−ks) dx dks

=

∫
D̂∗(ks)ei h (kx−2ks)

∫
U (x′)e−i x ′ (kx−ks) dx′ dks (4)

is achieved. From here, we can recognize the inner integral is the Fourier transform of the
wavefieldU which can be replaced directly to yield

Î (kx,h) =

∫
Û (kx −ks) D̂∗(ks)ei h (kx−2ks) dks . (5)

With the use of the definition of offset,kh = kx − 2ks, we can replace several of the above
arguments with equivalent expressions to find

Î (kx,h) =
1

2

∫
Û

(
kx +kh

2

)
D̂∗

(
kx −kh

2

)
ei h kh dkh . (6)

The last integral is recognized as an inverse Fourier transform, this time over thekh vari-
able. Using this fact, we arrive at the multi-dimensional (over x andh, which can be two-
dimensional themselves) Fourier transform of the general shot-profile imaging condition

Î (kx,kh) =
1

2
Û

(
kx +kh

2

)
D̂∗

(
kx −kh

2

)
. (7)
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From this equation, the result that the Fourier-domain equivalent to the conventional space-
domain imaging condition for shot-profile migration is again a lagged multiplication of the
up-coming and down-going wavefields at each frequency and depth level. Evaluating the ar-
guments inside the wavefields to produce a component of the image shows that the wavefields,
in the wavenumber domain, will need to be interpolated by a factor of two to calculate the im-
age space output. The Table 1 showing example calculations of the components of the image
space looks like

kh

kx

−1 0 1

−1 Û (−2
2 )D̂∗(0) Û (−1

2 )D̂∗(−1
2 ) Û (0)D̂∗(−2

2 )

0 Û (−1
2 )D̂∗(1

2) Û (0)D̂∗(0) Û (1
2)D̂∗(−1

2 )

1 Û (0)D̂∗(2
2) Û (1

2)D̂∗(1
2) Û (2

2)D̂∗(0)

2 Û (1
2)D̂∗(3

2) Û (2
2)D̂∗(2

2) Û (3
2)D̂∗(1

2)

Table 1: Layout of wavenumber components in Fourier-domainimaging conditions

SYNTHETIC TESTS

To test the above algorithm, synthetic data was generated and migrated with both the conven-
tional space-domain and Fourier-domain imaging conditions. Images were created by migrat-
ing a single shot produced over a single reflecting layer within a constant velocity medium.
The location,x, and offset,h, axes had the same extent and sampling. This is true for both
implementations of the imaging condition.

Figure 1 shows the comparison of the space-domain impulse response to the Fourier equiv-
alent developed above for the zero dip reflector. Both seem toprovide identical results when
viewed at subsurface offseth = 0 at thex − z plane. The smile shapes are due to the limited
extent of the acquisition along the surface. However, Figure 2 compares the algorithms across
thex −h plane at the depth of a correctly migrated image point. Whileat zero offset the two
images are the same, the Fourier-domain implementation hasobvious replications at the end
of the dog-bone shaped energy distribution. Aliased energyis also introduced into the upper-
right and lower-left corners of the image space. This periodicity is not encountered with the
space-domain implementation.

By adding dip to the reflection point, the dog-bone shape in the x − h plane becomes
skewed. Figures 3 and 4 are produced with a reflector with 20o and 40o dip respectively.
While the zero-offset image of thex−z plane remains the same, the periodicity of the Fourier-
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Figure 1: Migration impulse response
through a constant velocity medium
of both space-domain and Fourier
domain implementation of the shot-
profile imaging condition viewed at
h = 0 on the x − z image plane.
brad3-imp [CR]

Figure 2: Migration impulse re-
sponse through a constant velocity
medium of both space-domain and
Fourier domain implementation of
the shot-profile imaging condition
viewed at the depth of a focused im-
age point on thex − h image plane.
brad3-imp-comp[CR]

domain algorithm is again visible as compared to the computation of the imaging condition in
the space-domain. Notice that as dip increases, the saddle point of the dog-bone has moved
away from zero offset and the image gives the sense of tippinginto the page.

Figure 3: 20o dip reflector image
comparison. Left is Fourier-domain
implementation. Right is space-
domain implementation. Image is ex-
tracted at the depth of a focused im-
age point on thex − h image plane.
brad3-imp-dip-comp[CR]

The onset of the replications are at precisely half the offset and surface location axes. To
remove this type of artifact in the Fourier domain, interpolation of both axes by a factor of
two would be required. From equation 7, we note that the wavefields have already required
a factor of two interpolation to facilitate the algorithm. Interpolating the image by a factor
of two again substantially increases memory consumption and computational effort for this
implementation.

The first shot from the Marmousi synthetic data was migrated to examine the effects of the
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Figure 4: 40o dip reflector image
comparison. Left is Fourier-domain
implementation. Right is space-
domain implementation. Image is ex-
tracted at the depth of a focused im-
age point on thex − h image plane.
brad3-imp-dip-2-comp[CR]

above periodicity injected into the image using the Fourier-domain imaging condition. Figure
5 compares the image from the first shot in the data computed with both space-domain and
Fourier-domain imaging conditions. At great depth, the images are largely comparable, while
at less than 1000 meters, the images are completely different. This is due to the combined
effects of periodicity of the Fourier computed image and thesteep dips of the model.

Figure 5: Images from the first shot
in the Marmousi data set. Left panel
computed with the Fourier-domain
imaging condition, and the right
panel with the conventional space do-
main algorithm. brad3-marm.new
[CR]

Deeper in the section, the problem is less apparent and the Fourier domain imaging condi-
tion is much closer to the space-domain result. Figure 6 demonstrates how the zeroing of the
evanescent waves through the course of the migration effectively limits the range of wavenum-
ber energy allowed into the image. After the evanescent limitations are more restrictive than
the effects of the Fourier domain periodicity, the artifacts begin to diminish.

However, the images for a complex medium are definitely not strictly equivalent for the
two alternative imaging condition implementations. By interpolating thekx andkh axes, it is
possible to remove the limitation imposed by the periodicity at the memory/disk cost of 4n2

x
per depth level.

ANTI-ALIASING IMPLICATIONS

Figure 7 shows the impact on the image space of subsampling the shot axis by a factor of ten
while migrating the flat reflector synthetic data described above. The left panel imaged with
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Figure 6: Images from the first shot
in the Marmousi data set. Depth
slices, computed with the Fourier
domain imaging condition, are ex-
tracted fromz= 250m and z=1188m.
brad3-dslice[CR]

only every tenth shot, while right panel migrated shots at every receiver location. The shot-
axis, which could be drawn at a 45o angle up and to the right, shows inappropriate replications
(Rickett and Sava, 2002). The data are modeled with sufficient receiver density, that this level
of decimation does not alias the receiver gathers. This is corroborated by the absence of aliased
energy in the upper-left and lower right quadrants.

Figure 7: Left panel shows the
wavenumber energy for a migrated
flat reflector when using sources at
every tenth receiver location. On
the left, and all source locations.
brad3-alias-flat[CR]

From this simple example, we can see that the anti-aliasing restriction required for the
decimated migration are sloped lines to remove energy from the upper-right and lower-left
quadrants. In general, any of the four corners may experience aliased replications depending
on the inequality between receiver and source sampling during acquisition. The form of the
imaging condition in the Fourier domain as shown in equation7 provides important insight
into how to implement anti-aliasing criteria for shot-profile migration.

Limiting the image by neither constantkx nor kh will appropriately remove the aliased
energy of Figure 7. Instead, one should limit the maximum bandwidth of both theÛ and D̂∗

wavefields. Table 1 provides a convenient display of this fact. This will maintain the center
diamond of appropriate energy. If the anti-aliasing bandlimit is applied to the image space
instead of the two wavefields used to calculate it, there are two important conclusions: 1)
the bandlimit should be the same for both the offset and location axes, and 2) the limit is a
diamond shaped, not circular, filter on thekx −kh plane.
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CONCLUSION

The calculation of subsurface offset in the conventional space-domain imaging condition con-
dition for shot-profile migration requires a series of lagged multiplications of the up-coming
and down-going wavefields. Because it is not a simple multiplication, the development of its
Fourier is required rather than axiomatically assuming it to take the form of a convolution.
The result shown above has a very similar lagged multiplication form to its space-domain
equivalent.

Several interpolations are required to implement the imaging condition as a function of
wave number. First, the input wavefields, and then the calculated model space, must be twice
finer sampled in wavenumber. Completely inadequate resultsare obtained for complex earth
models if both interpolation steps are not honored. These steps increase the memory and
computational demands of the method to unacceptable levels. Further, an equal number of
offset-wavenumbers must be calculated to avoid aliasing asopposed toO(10) for a space-
domain implementation where one is reasonably confident in the accuracy of the velocity
model.

Analyzing the form of the imaging condition allows us to makeimportant conclusions
about how to mitigate migration aliasing problems inherentwith shot-profile migrations when
the source and receiver sampling is unequal. Most importantly, anti-aliasing strategies can
be implemented in the image domain after migration without needing to resort to the very
expensive Fourier-domain imaging condition.

While the development of a Fourier-domain imaging condition for shot-profile migration
has been presented, the periodicity of the process introduces unwanted artifacts into the im-
age result. The form of the equation, however, provides rigor and understanding as to how to
design anti-aliasing filters for data sets that do not have equal sampling of the source and re-
ceiver data axes. Further, these bandlimits can be applied on smaller post-migration volumes,
possibly even during the course of converting subsurface offset to angle in the Fourier-domain
at little to no additional cost.
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