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Data regularization: inversion with azimuth move-out

Robert G. Clapp1

ABSTRACT

Data regularization is cast as a least-squares inversion problem. The model space is a
five-dimensional (t,cmpx, cmpy, hx, hy) hypercube. The regularization minimizes the dif-
ference between various (t, cmpx, cmpy) cubes by applying a filter that acts in (hx,hy)
plane. Azimuth Move-out is used transform the cubes to the same ( hx,hy) before apply-
ing the filter. The methodology is made efficient by a Fourier-domain implementation,
and preconditioning the problem. The methodology, along with two approximations is
demonstrated on 3-D dataset from the North Sea. The inversion result proves superior at
a reasonable cost.

INTRODUCTION

The irregularity of seismic data, particularly 3-D data, inboth the model domain (in terms of
subsurface position and reflection angle) and the data domain (in terms of midpoint, offset,
and time) cause imaging problems. The most effectively family of multiple removal meth-
ods, SRME (Verschuur et al., 1992) rely on data regularity. The standard marine acquisition
technology results in empty bins in the cross-line direction.

Migration methods also desire a greater level of regularitythan is often present in seismic
surveys. There are two general approaches to deal with this problem. One approach is to treat
the imaging problem as inverse problem. In this case is the adjoint of the migration operator.
Ronen and Liner (2000); Duquet and Marfurt (1999); Prucha etal. (2000) cast the problem as
such and then try to solve it with an iterative solver. These approaches have shown promise but
are in many cases prohibitively expensive, and rely on an accurate subsurface velocity model.

Another approach is to try to regularize the data. AMO provides an effective regularization
tool (Biondi et al., 1998). AMO is generally applied as an adjoint to create a more regularized
volume. These regularized volumes still often contain in ‘acquisition footprint’ or more subtle
amplitude effects. Chemingui (1999) used a logstretch transform to make the AMO operator
stationary in time. He then cast the regularization problemas a frequency by frequency in-
version problem using a Kirchoff-style AMO operator. He showed that acquisition footprint
could be significantly reduced. The downside of this approach is relatively high cost of Kir-
choff implementation and the difficulty with a frequency-by-frequency approach to a global
inversion problem.
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Biondi and Vlad (2001) built on the work of Fomel (2001). Theyset up an inverse prob-
lem relating the irregular input data to a regular model space. They regularized the problem
by enforcing consistency between the various (t,cmpx,cmpy) cubes. The consistency took
two forms. In the first a simple difference between two adjacent in-line offset cubes was
minimized. In the second the difference was taken after transforming the cubes to the same
offset AMO. For efficiency the model was preconditioned withthe inverse of the regulariza-
tion operator (Fomel et al., 1997). Instead of solving the least squares inverse problem, the
Hessian is approximated by a diagonal operator computed from a reference model (Claerbout
and Nichols, 1994; Rickett, 2001; Clapp, 2003a).

In this paper I examine and extend the work in Biondi and Vlad (2001) and Clapp (2003b).
I compare the result of using the AMO operator as an adjoint, using a diagonal operate to
approximate the Hessian, and doing a full inverse. I show that applying the inverse proves to
be significantly better. In the paper I begin the paper by going the general methodology, I then
discuss how to implement it effectively on a Beowulf cluster.

ADJOINT IMPLEMENTATION

To map the irregular recorded seismic data onto the regular mesh is a far from trivial. A
common approach in industry is to think of the problems in thesame way we approach Kirch-
hoff migration, namely to loop over data space and spread into our regular model space. The
spreading operation can be governed by something like AMO (Biondi et al., 1998), which
maps data from one offset vector to another. If we think of theAMO operatorT as map-
ping from the regular model spacem to the irregular data spaced, our estimation procedure
becomes,

m = T′d. (1)

The wavenumber domain AMO operator works on a regular sampled cube, so the problem
is more complicated. We first must map the data to a regular sampled space by applying the
interpolation operatorL′. The regular sampled cubes is now a full five dimensional volume
(t ,cmpx,cmpy,hx,hy). We can produce the modelm at a given (hx,hy) by summing nearby
cubes (t, cmpx, cmpy) that have transformed to our desired (hx,hy) through AMO. To write
this in a mathematical form we need to make some definitions. We will defineihx andihy as
the offset indicies of the expanded spaces. These indicies correspond to the half-offset hx and
hy. The output space,m, is defined as a coralaryihx′ andihy‘ which also correspond to hx
and hy. The notationm(ihx′, ihy′) correspond to the 3-D subcube (t,cmpx,cmpy) at the given
ihx′ andihy′. Finally Tx1⇒x2 refers to transforming the cube through AMO from the offset
vectorx1 to x2, nx andny is the region in sampling ofs that we wish to sum over; and dhx
and dhy is the sampling of the cube in hx and hy respectively. We obtain

m(ihx′, ihy′) =

ny
∑

iy=−ny

nx
∑

ix=−nx

T(hx+ixdhx,hy+iydhy)⇒(hx,hy)s(ix+ ihx, iy+ ihy). (2)
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In we to write our regularization problem in the form of equation (2),S is a spraying operation
where the columns of the matrix are defined by equation (1). Wethen obtain or model by
applying

m = S′L′d. (3)

The formulation suffers from all of the usual problems associated with applying an adjoint
operation. We are spraying into a regular mesh, but the data is not regular. Areas with higher
concentration of data traces will tend to map to artificiallyhigher amplitudes in the model
space. In the Kirchoff formulation we can do some division byhit count to help minimize this
effect. Because we are operating in the wave number domain wecan’t normalize by something
as simple as hit count. We can accomplish something similar by following the approach of
Claerbout and Nichols (1994) and Rickett (2001). We approximate the Hessian of the least
squares solution,

m =
(

SL′LS
)−1 S′L′d, (4)

by the diagonal operatorW. We formW by

W−1 = diag
[(

S′L′LS1+α

)]

, (5)

where1 is a vector of 1s,α is a stabilization term, and diag[] map the vector to the diagonal
of the matrix. We scale our adjoint solution byW obtaining

m = WS′L′d. (6)

Implementation

There are several issues that must be considered when implementing AMO in this form. The
large volume of data that we are dealing with means that the problem must be parallelized.
The problem can be parallelized in several different ways. While it is possible to split in
the (cmpx,cmpy) plane, boundary effect are a concern because the operator is applied in the
wave-number domain. Because the operator is applied in the frequency domain parallelizing
over frequency seems a natural choice. The problem with dividing the problem along the
frequency axis is that the intermediate spaces can become enormous, even for fairly small
datasets, which would require some level of patching along other axes. In addition it requires
a troubling transpose. The input data has its inner axis as time, while we want the outer axis
to be frequency. For multi-gigabyte this can be quite time consuming. For this reason I chose
to parallelize offset. Each process is assigned an output (hx,hy) range. It takes the input that
range plus the additional summation range implied by equation (2).

The parallel job is controlled by the library described in Clapp (2005). Each node receives
a SEP3D (Biondi et al., 1996) volume corresponding to its output space and the summation
region implied by (2). The serial code first NMOs, log-stretches, and converts to frequency
its data volume. The data volume is transposed and equation (6) is applied. The regularized
frequency slices are transposed, inverse Fourier transformed, and has inverse NMO applied to
it. Finally the data is recombined to form the regularized volume.
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Figure 1: Five CMP gathers from the regularized dataset. Note the overall smoothness of the
result. bob2-adj.cmp[CR]

Results

The methodology was applied on a 3-D marine dataset from the North Sea. The output model
space was limited to hx= 0, ny of equation 2 was set to the entire hy range, andnx was set to
1. Figure 1 shows five CMP gathers from a relatively simple geologic portion of the dataset.
The overall result is satisfactory and event continuity is quite good. Note the brightening and
dimming as a function of offset in the lower portion of the second and third panels. The
correction factor, equation (5) does not sufficiently emulate the inverse Hessian to remove all
of acquisition artifacts.

REGULARIZING OVER OFFSET

There is a notable drawback from the approach described above. The operatorS can be quite
costly, We are doing nx*ny AMO transforms for every output (hx,hy). If we are only interested
in a common azimuth dataset hy= 0, the cost is acceptable as long asny is fairly small. If we
want any cross line offset output offset the cost isn’t acceptable. In additionS is a modified
version (because of the AMO transform) of a small 2-D box car filter. If you desire additional
smoothness in the in-line offset direction (to suppress amplitude variations) we must try a
different approach.
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Biondi and Vlad (2001) proposed reducing the dimensionality of the problem by ignoring
the azimuth direction. They added a smoothness constraint to the problem by applying a
Leaky derivativeD operator between AMO transformed (t,cmpx,cmpy) cubes setting up the
minimization,

Q(m) = ||d−Lm||2 + ε
2||Dm||2, (7)

whereε controls the weighting between the two goals. They preconditioned the problem with
the inverse ofD, leaky integration between AMO transformed cubesC and applied the same
Hessian approximation to obtain the approximation

m = CWC′L′d, (8)

whereC is the inverse ofD and

W−1 = diag
[

C′L′LC1+ ε
2] . (9)

Clapp (2003b) noted that ignoring the azimuth removed some of the advantage of using the
AMO operator and suggested thatC should be applying polynomial division with a 2-D filter
operating in the the (hx,hy) plane. For this exercise I chosea small helical derivative for my
2-D filter (Claerbout, 1999).

Implementation

Implementing this method proves to be more problematic thenthe adjoint case. The added
difficulty is caused by the 2-D filter. In order to parallelizeover offset we would have to
have significant inter-processor communication. This is problematic from both stability, we
must rely all of the nodes remaining up, and efficiency, both the cost of sending the data and
the delay caused by machine A needing data from B which needs data from C. As a result I
decided to parallelize over frequency. As mentioned beforethis also has drawbacks. An entire
(cmpx,cmpy,hx,hy) hypercube can not be held in memory for large problems, so we must do
patching along some other axes.

The necessary transposes (to move from an inner time axis, toan outer frequency and
back) complicate matters. The data are initially broken along the trace axis. The local datasets
are NMOed, FFTed, and transposed. The transposed data is then recombined with frequency
the outer axis. The procedure is significantly faster then performing the transpose on a single
machine where disk IO dominates. By using multiple nodes which can each do the transpose
in-core, or nearly core, the entire processing drops to minimally more than distributing and
collecting the data.

Frequency blocks are then distributed to the nodes and equation (8) is applied. The data
is then collected and re-split along the cmpx axis. The new regularized frequency slices are
transposed, inverse FFTed, inverse NMOed, and recombined to form the output volume.
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Figure 2: The same five CMP gathers from Figure 1 estimated by applying equation (8). Note
the reduced frequency content in the image.bob2-approx0.cmp[CR]

Results

Equation 8 was applied to the 3-D marine dataset. Figure 2 shows the same five CMP gathers
as Figure 1. The CMP gathers were created by AMO stacking to zero hy,

m(hy = 0, ihx)=
∑

hy

T(hx,hy+iydhy)⇒(hx,0)m(ihy, ihx). (10)

The resulting CMP gathers show a reduction in the dimming andbrightening as function
of offset but also show notable reduction in frequency content. The approximation is more
economical in forming a full 5-D space then the adjoint formulation and produces a greater
continuity in the offset plane. On the other hand, noticeable brightening and dimming can still
be seen. In addition transfer times, due to the transposes, dominate the processing time.

INVERSION

Instead of approximating the Hessian with a diagonal matrixwe can attempt to estimate the
least squares inverse using a conjugate gradient solver. The model is preconditioned by using
polynomial division to apply the helical derivative and thenew preconditioned variablep is
estimated through

Q(p) = ||d−LCp||2 + ε
2||p||2, (11)
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wherem = Cp.

Implementation

The implementation follows the same form as the approximatesolution. The data is converted
to frequency and distributed to the nodes. The inversion is done on the distributed files. Vector
operations (scale, add, dot product) are calculated with MPI based routines. After the model
has been estimated the data is redistributed for conversionback to time.

Results

Ten conjugate gradient iterations withε = 0 were applied. Figure 3 shows the same five CMP
gathers show in the previous two sections. The frequency content is restored compared to
the result seen in Figure 2. In addition the brightening and dimming seen in the result of the
previous two methods are almost completely removed.

CONCLUSION

Three different methods to regularize seismic data with a wavenumber based AMO opera-
tor are described. The adjoint implementation is the most efficient for creating a Common
Azimuth but inefficient for creating multi-azimuth data. The adjoint approach also shows no-
ticeable amplitude dimming and brightening due to acquisition geometry. Formulating the
regularization problem as an inverse problem and then approximating the Hessian with a di-
agonal operator provides better results. The cost and memory requirements are significantly
increased but multi-azimuth data comes for free. Estimating the model with a conjugate gra-
dient solver produces the best results. Amplitude artifacts are virtually eliminated and the
frequency content is noticeably improved.
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Figure 3: The result of ten iterations minimizing equation (11). Note the improved frequency
content compared to Figure 2 and the decreased dimming and brightening of both Figure 1
and Figure 2.bob2-inv0.cmp[CR]


