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Dataregularization: inversion with azimuth move-out

Robert G. Clapp

ABSTRACT

Data regularization is cast as a least-squares inversiginlggn. The model space is

five-dimensional (t,cmpx, cmpy, hx, hy) hypercube. The fagzation minimizes the dif-
ference between various (t, cmpx, cmpy) cubes by applyingex that acts in (hx,hy)
plane. Azimuth Move-out is used transform the cubes to theesghx,hy) before apply-
ing the filter. The methodology is made efficient by a Foudemain implementation,
and preconditioning the problem. The methodology, alonip wivo approximations is
demonstrated on 3-D dataset from the North Sea. The inversgult proves superior at
a reasonable cost.
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INTRODUCTION

The irregularity of seismic data, particularly 3-D datapwth the model domain (in terms of
subsurface position and reflection angle) and the data ao(materms of midpoint, offset,
and time) cause imaging problems. The most effectively faofi multiple removal meth-
ods, SRME (Verschuur et al., 1992) rely on data regularitye $tandard marine acquisition
technology results in empty bins in the cross-line direttio

Migration methods also desire a greater level of reguldhiéyn is often present in seismic
surveys. There are two general approaches to deal withribldgan. One approach is to treat
the imaging problem as inverse problem. In this case is tf@rdaf the migration operator.
Ronen and Liner (2000); Duquet and Marfurt (1999); Pruchal.€R000) cast the problem as
such and then try to solve it with an iterative solver. Thgg@eaches have shown promise but
are in many cases prohibitively expensive, and rely on aorate subsurface velocity model.

Another approach is to try to regularize the data. AMO presidn effective regularization
tool (Biondi et al., 1998). AMO is generally applied as ancaulj to create a more regularized
volume. These regularized volumes still often contain aglasition footprint’ or more subtle
amplitude effects. Chemingui (1999) used a logstretchstoam to make the AMO operator
stationary in time. He then cast the regularization probéena frequency by frequency in-
version problem using a Kirchoff-style AMO operator. He wied that acquisition footprint
could be significantly reduced. The downside of this apgraacelatively high cost of Kir-
choff implementation and the difficulty with a frequency-fsgquency approach to a global
inversion problem.
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Biondi and Vlad (2001) built on the work of Fomel (2001). Thsst up an inverse prob-
lem relating the irregular input data to a regular model spddey regularized the problem
by enforcing consistency between the various (t,cmpx,Qneppes. The consistency took
two forms. In the first a simple difference between two adpage-line offset cubes was
minimized. In the second the difference was taken afteistcaming the cubes to the same
offset AMO. For efficiency the model was preconditioned witb inverse of the regulariza-
tion operator (Fomel et al., 1997). Instead of solving tlestesquares inverse problem, the
Hessian is approximated by a diagonal operator computed droceference model (Claerbout
and Nichols, 1994; Rickett, 2001; Clapp, 2003a).

In this paper | examine and extend the work in Biondi and VD) and Clapp (2003b).
I compare the result of using the AMO operator as an adjoisipgia diagonal operate to
approximate the Hessian, and doing a full inverse. | showapplying the inverse proves to
be significantly better. In the paper | begin the paper by gtive general methodology, | then
discuss how to implement it effectively on a Beowulf cluster

ADJOINT IMPLEMENTATION

To map the irregular recorded seismic data onto the reguéshnms a far from trivial. A
common approach in industry is to think of the problems instuime way we approach Kirch-
hoff migration, namely to loop over data space and spreadauat regular model space. The
spreading operation can be governed by something like AMON@ et al., 1998), which
maps data from one offset vector to another. If we think of AMO operatorT as map-
ping from the regular model space to the irregular data spack our estimation procedure
becomes,

m=T'd. (1)

The wavenumber domain AMO operator works on a regular saimulbe, so the problem
is more complicated. We first must map the data to a regulapleshspace by applying the
interpolation operatok’. The regular sampled culsds now a full five dimensional volume
(t,cmpx,cmpy, hx, hy). We can produce the monteét a given (hx,hy) by summing nearby
cubes (t, cmpx, cmpy) that have transformed to our desireghyhthrough AMO. To write
this in a mathematical form we need to make some definitiorsswMV defineihx andihy as
the offset indicies of the expanded spac&hese indicies correspond to the half-offset hx and
hy. The output spacen, is defined as a coralaix’ andihy‘ which also correspond to hx
and hy. The notatiom(ihx’,ihy’) correspond to the 3-D subcube (t,cmpx,cmpy) at the given
ihx” andihy’. Finally Ty,—y, refers to transforming the cube through AMO from the offset
vectorx; to X, nx andny is the region in sampling of that we wish to sum over; and dhx
and dhy is the sampling of the cube in hx and hy respectiveéyo®Wain

ny nx

m(ihx',ihy’) = Z Z T (hx+ixdhx, hy+iydhy)= (hx,hy)S(X + ihX, Ty + ihy). 2

iy=—ny ix=—nx
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In we to write our regularization problem in the form of eqoat(2), Sis a spraying operation
where the columns of the matrix are defined by equation (1).thWa obtain or model by

applying
m=SL'd. (3)

The formulation suffers from all of the usual problems agsed with applying an adjoint
operation. We are spraying into a regular mesh, but the datatiregular. Areas with higher
concentration of data traces will tend to map to artificiddlgher amplitudes in the model
space. In the Kirchoff formulation we can do some divisiorhitycount to help minimize this
effect. Because we are operating in the wave number domasamwenormalize by something
as simple as hit count. We can accomplish something simyldollowing the approach of
Claerbout and Nichols (1994) and Rickett (2001). We appnaxé the Hessian of the least
squares solution,

m=(SL'LS) 'SLd, 4)
by the diagonal operata/. We formW by
Wt = diag[(SL'LSL+a)], (5)

wherel is a vector of 1sg is a stabilization term, and diag[] map the vector to the ol
of the matrix. We scale our adjoint solution Wy obtaining

m=WSL'd. (6)

Implementation

There are several issues that must be considered when i@pliexgy AMO in this form. The
large volume of data that we are dealing with means that tbbl@m must be parallelized.
The problem can be parallelized in several different wayshil&\it is possible to split in
the (cmpx,cmpy) plane, boundary effect are a concern bedhaesoperator is applied in the
wave-number domain. Because the operator is applied inr¢geéncy domain parallelizing
over frequency seems a natural choice. The problem witldidigithe problem along the
frequency axis is that the intermediate spa@an become enormous, even for fairly small
datasets, which would require some level of patching aldhgraaxes. In addition it requires
a troubling transpose. The input data has its inner axigas, tivhile we want the outer axis
to be frequency. For multi-gigabyte this can be quite timestoning. For this reason | chose
to parallelize offset. Each process is assigned an outpuftyhrange. It takes the input that
range plus the additional summation range implied by eqondg).

The parallel job is controlled by the library described i (2005). Each node receives
a SEP3D (Biondi et al., 1996) volume corresponding to itpouspace and the summation
region implied by (2). The serial code first NMOs, log-sthegs, and converts to frequency
its data volume. The data volume is transposed and equ&jas épplied. The regularized
frequency slices are transposed, inverse Fourier transidrand has inverse NMO applied to
it. Finally the data is recombined to form the regularizethute.
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Figure 1: Five CMP gathers from the regularized datasete @ overall smoothness of the

result.|bob2-adj.cmp[CR]

Results

The methodology was applied on a 3-D marine dataset from trthNbea. The output model
space was limited to hx 0, ny of equation 2 was set to the entire hy range, ardvas set to
1. Figure 1 shows five CMP gathers from a relatively simpldagio portion of the dataset.
The overall result is satisfactory and event continuityugejgood. Note the brightening and
dimming as a function of offset in the lower portion of the @ed and third panels. The
correction factor, equation (5) does not sufficiently erteithe inverse Hessian to remove all
of acquisition artifacts.

REGULARIZING OVER OFFSET

There is a notable drawback from the approach describedcalte operato can be quite
costly, We are doing nx*ny AMO transforms for every outpwt,fty). If we are only interested
in a common azimuth dataset By0, the cost is acceptable as longwgsds fairly small. If we
want any cross line offset output offset the cost isn't ataiele. In additiorSis a modified
version (because of the AMO transform) of a small 2-D box darfilf you desire additional
smoothness in the in-line offset direction (to suppresslandge variations) we must try a
different approach.
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Biondi and Vlad (2001) proposed reducing the dimensiopalithe problem by ignoring
the azimuth direction. They added a smoothness constmititet problem by applying a
Leaky derivativeD operator between AMO transformed (t,cmpx,cmpy) cubesnggettp the
minimization,

Q(m) = ||d —Lm||?+€?|[Dm||3, 7

wheree controls the weighting between the two goals. They predmmd the problem with
the inverse oD, leaky integration between AMO transformed cukizand applied the same
Hessian approximation to obtain the approximation

m = CWC'L’d, (8)
whereC is the inverse ob and
Wt = diag[C'L'LC1+¢€?]. 9)

Clapp (2003b) noted that ignoring the azimuth removed sohtkeoadvantage of using the
AMO operator and suggested tiashould be applying polynomial division with a 2-D filter
operating in the the (hx,hy) plane. For this exercise | cteoseall helical derivative for my

2-D filter (Claerbout, 1999).

Implementation

Implementing this method proves to be more problematic theradjoint case. The added
difficulty is caused by the 2-D filter. In order to parallelioger offset we would have to
have significant inter-processor communication. This @ébf@matic from both stability, we
must rely all of the nodes remaining up, and efficiency, bb&hdost of sending the data and
the delay caused by machine A needing data from B which nesdsfiom C. As a result |
decided to parallelize over frequency. As mentioned beftsealso has drawbacks. An entire
(cmpx,cmpy,hx,hy) hypercube can not be held in memory fidagroblems, so we must do
patching along some other axes.

The necessary transposes (to move from an inner time axa twuter frequency and
back) complicate matters. The data are initially brokemglihe trace axis. The local datasets
are NMOed, FFTed, and transposed. The transposed datanisstt@mbined with frequency
the outer axis. The procedure is significantly faster thefopming the transpose on a single
machine where disk 10 dominates. By using multiple nodestwvban each do the transpose
in-core, or nearly core, the entire processing drops tommaily more than distributing and
collecting the data.

Frequency blocks are then distributed to the nodes andiequ&) is applied. The data
is then collected and re-split along the cmpx axis. The n@ulegized frequency slices are
transposed, inverse FFTed, inverse NMOed, and recombirfedn the output volume.
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Figure 2: The same five CMP gathers from Figure 1 estimategplying equation (8). Note
the reduced frequency content in the imagleobz-approxo.cmﬁCR]

Results

Equation 8 was applied to the 3-D marine dataset. Figure @shtite same five CMP gathers
as Figure 1. The CMP gathers were created by AMO stackingrtolae

m(hy = 0,ihx) =Y " T (a hysiydhy) (r0M(ihy, ihx). (10)
hy

The resulting CMP gathers show a reduction in the dimming lamghtening as function
of offset but also show notable reduction in frequency cointdhe approximation is more
economical in forming a full 5-D space then the adjoint folation and produces a greater
continuity in the offset plane. On the other hand, noticedioightening and dimming can still
be seen. In addition transfer times, due to the transposeasndte the processing time.

INVERSION

Instead of approximating the Hessian with a diagonal matexcan attempt to estimate the
least squares inverse using a conjugate gradient solvermbdel is preconditioned by using
polynomial division to apply the helical derivative and thew preconditioned variable is
estimated through

Q(p) = |ld —LCpl12+€2|Ipl/?, (11)
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wherem = Cp.

Implementation

The implementation follows the same form as the approxirsaligion. The data is converted
to frequency and distributed to the nodes. The inversionieadn the distributed files. Vector
operations (scale, add, dot product) are calculated withbaBed routines. After the model
has been estimated the data is redistributed for convebsiok to time.

Results

Ten conjugate gradient iterations witl= 0 were applied. Figure 3 shows the same five CMP
gathers show in the previous two sections. The frequencyeobrs restored compared to
the result seen in Figure 2. In addition the brightening anthang seen in the result of the
previous two methods are almost completely removed.

CONCLUSION

Three different methods to regularize seismic data with eewamber based AMO opera-
tor are described. The adjoint implementation is the mdstieit for creating a Common

Azimuth but inefficient for creating multi-azimuth data. & hdjoint approach also shows no-
ticeable amplitude dimming and brightening due to acqoisigeometry. Formulating the

regularization problem as an inverse problem and then appating the Hessian with a di-

agonal operator provides better results. The cost and nmyeraquirements are significantly
increased but multi-azimuth data comes for free. Estingatiie model with a conjugate gra-
dient solver produces the best results. Amplitude arsface virtually eliminated and the

frequency content is noticeably improved.
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Figure 3: The result of ten iterations minimizing equatiaf) Note the improved frequency
content compared to Figure 2 and the decreased dimming agtatdning of both Figure 1
and Figure 2{bob2-inv0.cmp[CR]




