
Stanford Exploration Project, Report 120, May 3, 2005, pages 41–62

40

Stanford Exploration Project, Report 120, May 3, 2005, pages 41–62

Inversion and fault tolerant parallelization using Python

Robert G. Clapp1

ABSTRACT

Many current areas of research at SEP involve large-scale inversion problems that must
be parallelized in order to be tractable. Writing fault-tolerant, parallel code requires sig-
nificant programming expertise and overhead. In this paper,a library, written in Python,
is described that effectively simulates a fault-tolerant parallel code, using simple serial
programs. In addition, the library provides the ability to use these parallel objects in
out-of-core inversion problems in a fault-tolerant manner.

INTRODUCTION

The large size of today’s oil industry problems necessitates harnessing the power of clusters.
The problem is that as we add nodes, we increase our odds of node failure. Inversion on
large-scale problems is even more problematic. Operators can take days to weeks to run (Sava
and Biondi, 2003; Clapp and Clapp, 2005) and can involve multiple instances of complex
operations (Clapp, 2003). Running these problems on Beowulf clusters poses a problem as
the odds of a multi-week job running without a node failing are low.

In Clapp (2004a), I described a library, written in Python, that allows auto-parallelization
with a high-level of fault tolerance for almost any SEPlib program. Instead of handling par-
allelization within a compiled code at the library level, the parallelization is done at the script
level which sits on top of the executables. The Python library distributes and collects the
datasets, keeps track of what portions of the parallel job are done, and monitors the state of
the nodes. The distribution and collection are done throughMPI but individual jobs are all
serial codes. The code is written using Python’s object-oriented capabilities so it is easily
expandable. A parallel job is described by a series of files and a series of tasks.

For inversion problems, Clapp (2004b) describes a Python inversion library which uses
abstract vector and operator descriptions. From these abstract classes I derive specific classes
to handle out-of-core problems. Operators become wrappersaround SEPlib programs and
vectors wrappers around SEPlib files.

In this paper I introduce an improved version of the library described in Clapp (2004a) and
Clapp (2004b). The new version provides significant additional flexibility. Multiple programs
can be combined into single executables. Parallel files can now be SEP3D files, and/or involve

1email: bob@sep.stanford.eda

41

42 R. Clapp SEP–120

overlapping patches. Inversion can be done on parallel files(instead of collected on some
master node), saving disk space and transfer time.

In the first portion of the paper I will cover the basic Python parallel and inversion objects.
In the second portion I will show several examples on how to use these objects to accomplish
tasks that are both memory and computationally intensive.

BASIC BUILDING BLOCKS

Before delving into parallel and inversion objects, it is useful to go over some core objects
that are used extensively by the more advanced parallel and inversion objects. These objects
provide interaction with the command line, SEP files, and keep track of what the program has
accomplished and what needs to be done.

Parameter

TheSEP.parameter.parameter is a holding class for information about a parameter that can
be described by an ASCII string. It can store documentation about the parameter, its current
value, and/or some default value for the parameter. In addition to providing a simple mech-
anism for accessing arbitrary objects, it is also useful fordocumenting programs/objects and
checking to make sure all parameters required for a given routine have been set.

Parameters

TheSEP.args.basic object can be thought of as a collection of parameters accessible using
SEP programming conventions. You can request a parameter using par.par("tag"), op-
tionally with a default value, and an error if it doesn’t exist. You can also add a parameter
par.add_param("tag",value) to the collection. TheSEP.args.basic can be initialized from
a file, another collection of parameters, or an empty set can be created. It has the ability to
output its contents in various manners. For example, it can return a simple dictionary linking
parameters to their values or can return the parameters in a sep-style convention (par=val) in
either a list or string form. It can also write its contents into a file.

Sepfile

A SEPlib file objectSEP.sepfile.sep_file is built from one to threeSEP.args.basic objects
(history file, header format file, and grid format file). You can access the collection of param-
eters directly through the history, headers, and grid objects (e.g. sep.history.par("n1")).
In addition it has the concept of axes and keys (if the data is SEP3D and possesses head-
ers). You can get the number of dimensions, retrieve and set axes (n,o,d,label,unit) and keys
(name,format,type), and return the size of the dataset.

SEP–120 Python and programming 43

Status

The status objectSEP.stat_sep.status keeps track of the progress of a job. It is a dictionary
linking a job descriptor to a list of properties of that job descriptor. For example, when doing
a parallel job, the list will include the status of the jobtodo, sent, running, finished, collected,
the machine the job is run on, the progress of the job,where the stderr and stdout of the job
is stored, and how many times the job has failed to run correctly. The status information is
written to an ASCII file that enables a job to be restarted automatically. The class also has
the ability to store parameter information in the status filewhich can be automatically read at
startup.

Options, Flows, and Programs

Programs generally follow a fairly standard flow. First you read in parameters from the com-
mand line, then process these parameters, potentially creating new parameters, and finally you
run the algorithm. You can think of a flow as series of programs, where you run through these
basic steps for each program. An example is wave-equation migration. To perform wave-
equation migration a typical flow would be to choose the reference velocities, convert the data
to the frequency domain, migrate the data, transpose the data, and create angle gathers. All of
these steps could be independent programs, combined into a single program, or a multitude of
other possible variations. The advantage of combining these steps into a single program is that
many times they share parameters, so you are simplifying theuser’s jobs. The disadvantage is
the code becomes more difficult to manage.

The options, flow, and program objects attempt to allow the simplicity of simple programs
that perform a single operation, with the advantage of a shared parameter space. ASEP-
.opt_base.options is an extension of theSEP.args.basic class. It has several additional
abilities:

• It can output self-documentation based on its set of parameters.

• It introduces five additional functions:

– Theread_params(args,prefix) extracts from theSEP.args.basic object all of the
parameters that the options group has been initialized with. If the parameter is
required and doesn’t exist it returns an error with the self-doc for the parameter.
The prefix argument will limit the search ofargs to parameters that begin with
prefix, everything after the prefix will be assumed to be the name of the parameter
for the object.

– build_check_params() which builds additional parameters and checks parameter
validity based on command line arguments.

– The functionprep_run(restart) runs the task associated with the parameter
group. Examples might be running a serial code or a parallel job.

44 R. Clapp SEP–120

– Finally clean_files() is meant to remove any unneeded files after the execution
of the job.

The SEP.opt_base.options is currently inherited by four classes. TheSEP.opt_none-
.options is for a group of options that aren’t associated with a job. The prep_run and
clean_files routines are by default empty. TheSEP.opt_prog.options is for a set of op-
tions associated with a serial code. Theprep_run function executes the code with the pa-
rameters associated with the object. The final two children,SEP.par_job.par_job andSEP-
.solv_base.solver, are discussed later.

TheSEP.flow.flow object is a collection of parameter groups and flows. In the migration
example we might have the velocity selection and migration as independent programs, where
each has a parameter group associated with them. The angle gathers might be a flow composed
of transposing the data and then creating the angle gathers.TheSEP.opt_flow.flow object is
initialized with a set of flows, a set of parameter groups, theorder in which to run them, and
potentially prefixes associated with the individual flows and parameter groups. Theprefixes
argument is a dictionary linking a given parameter group or flow to the prefix that all of its
parameters will be initialized with.

The flow object has two basic functions:add_options andprep_run. The first function
takes in a set of parametersargsand runsread_params(args,prefix). It then runsbuild_check-
_params on each parameter group and flow.

Theprep_run call in a flowprep_run andclean_files parameter groups and flows. It is
also regulated by aSEP.stat_sep.status object that allows that job to be restarted.

The final object,SEP.prog.prog inherits from the flow object. In addition, it has the
concept of description and usage blocks for documentation,and by default uses the command
line arguments when parsing parameters.

PARALLEL OBJECTS

The library is currently designed for coarse-grain parallel jobs that fit on a single processor (no
inter-process communication necessary). The user writes aserial code that works on a portion
or all of the dataset. Each parallel job is broken up into a series oftasks. Thesetaskscan have
the same, or different parameters, and the various input andoutput files can be distributed in
several different manners. There are three basic classes ofparallel objects: core objects that
handle communication, parallel file objects that describe how a given file is distributed and
parallel job objects that handle distributing the various tasks.

Parallel building blocks

There are several basic objects that are needed to do any remote processing. You need to know
how to execute remote commands, what machines to run on, how to execute commands that

SEP–120 Python and programming 45

run on multiple machines at once, and how to send messages between the master process and
remote processes.

TheSEP.rc is the simplest of these build blocks. It defines two variables, SEP.rc.shell
andSEP.rc.cp, which is the shell for a remote process and the copy command.It defaults to
usingrsh andrcp for these variables but can be set to using the secure alternatives. It also pro-
vides the functionscp_to(mach,file_in,file_out) andcp_from(mach,file_in,file_out)
which return the command strings needed for transferring a file.

The SEP.mach_base.mach provides the framework for keeping track of what machines
are available. It inherits from theSEP.stat_sep.status object to store its current state. It
provides a mechanism for testing whether a node is functional. It requires that its children
provide a mechanism to create an initial list of machines to run on. It identifies each proces-
sor on a machine through amachine label, which takes the formmach-X, wheremach is the
machine name andX is a processor number associated with that machine. The child classes
SEP.mach_file.mach andSEP.mach_list.mach are the simplest two examples, which read
their list of available machines from a file or from a suppliedlist. A future module might in-
teract with a master server allowing a job to shrink or grow based on current computer usage.

In an environment where a master node isn’t exporting a disk,or when you don’t want to
rely on that master node being up, it is necessary to copy a program to all the slave nodes. The
classSEP.distribute_prog.distribute provides a mechanism to distribute a given program
to these nodes. It copies an executable to the/tmp directory with a unique name, and returns
that name to the calling program. It also has a cleaning method to remove the program from
the nodes.

The classSEP.pc_base.communicator provides framework for running a job on multi-
ple machines simultaneously. It is initialized with the speed of the network. It expects its
children to override the functionprep_run which defines how to run a parallel job given
the list of nodes, the command line arguments, and how many bytes are going to be pro-
cessed. The last argument is used as a mechanism to calculatehow long a job should take,
therefore a mechanism to test whether a job is hung and shouldbe killed. The classSEP-
.pc_mpich.communicator is the only current example. It uses MPICH as its communication
model.

Communicating with a series of remote processes can be a tricky proposition. The stan-
dard Unix approach, a socket, has an important limitation inthat it can not have more than
X, where X is a small number, of processes waiting to establish a connection. This limi-
tation can be reached either by having to many processes talking on a given socket or by
the actions brought on by the socket communication taking too long. The library accounts
for both these limitations. The basic concept is that a parallel job might spawn several
sockets simultaneously. Each socket will communicate witha maximum number of pro-
cesses (60 by default). The actions taken after receiving a message will be limited writing
to a text file. The classSEP.par_msg.msg_object has the ability to read and write a mes-
sage. Its child,SEP.par_msg.server_msg_obj, receives the message over a socket usingSEP-

.sep_socket.sep_server class.

46 R. Clapp SEP–120

Parallel files

As mentioned at the beginning of this section we are going to be running a series of remote
processes with local versions of SEPlib files. The parallel file objects control these local
versions. They store not only the names of the files but also handle distributing and collecting
the files.

The base parallel classSEP.pf_base.parfile inherits from both theSEP.sepfile.sep_file
and theSEP.stat_sep.status classes. It is initialized withat leastan ASCII description,
name, the usage of the fileusage("INPUT" or "OUTPUT"), and thetag that the program uses
to access it (e.g. <, data=, >). In addition, it must be eitherinitialized with the list oftasks,
mentioned above, or have its status loaded from disk using the load argument. In addition the
user can specify

add Whether we are adding the results contained in the parallel file to a preexisting file.

remove Whether (default) or not the local versions of the parallel file should be removed once
the jobs is finished.

collect_it Whether (default) or not an output file should be collected when the parallel job is
finished.

The two most important functions are the ability tocollect all of the portions of the parallel
file onto the master node, andtags which returns the tag that should be used when accessing
a local version of the file. Thetags function is passed in a dictionary linkingtaskwith the
machine it will be run on. A local name for the section of the data is found or created and,
if needed, a local version of the file is distributed to the node. The inheritance chart for the
parallel file objects can be seen in Figure 1.

Figure 1: The inheritance chart for
the parallel file objects.bob1-parfile
[NR]

The classSEP.pf_copy.parfile is the simplest of the parallel files. It only works with a
regular SEPlib cube. If the named file is an input file,SEP.pf_copy.parfile copies the entire
file to each node. If the named file is an output file, n collection all of the local version will
be summed to produce the final output. This class has the additional initialization argument
reuse_par, which tells how to signify to the program that the file already exists. This argument

SEP–120 Python and programming 47

is added to the returned parameters intags when dealing with an output file that already
exists. An example of aSEP.pf_copy.parfile is the velocity and image files in migration.
Thereuse_parargument would be needed when the image file is already created on the node,
to signify that we need to add to rather than replace, the image. Transferring the data is done
in megabyte-sized chunks from one node to the next to build upthe image usingCopy_join or
to distribute usingCopy_split.

The classSEP.pf_split.parfile allows a parallel file to be split along one or more
axes. It is initialized with the additional parameterdff_axis, the axis or axes we are split-
ting along, andnblock, the number of portion that axis will be split into. An example of a
SEP.pf_split.parfile file would be the frequencies in downward-continuation migration.
The same principal is used to transfer the data. Megabyte-sized chunks are passed from one
node to the next usingPatch_split andPatch_join. When a node contains a given chunk, it
is read from or written to disk, otherwise it just passes whatit received.

The classSEP.pf_patch.parfile inherits fromSEP.pf_split.parfile. It is used when
overlapping patches of a dataset are needed. It adds the additional initialization argument
noverlap, which tells how much overlap between the patches along eachaxis. An example
would be the image space in shot-profile migration. When collecting, it applies a triangle in
the overlapped region.

The last type of parallel file is the classSEP.pf_irreg.parfile. It currently can only be
used as input. It is defined for irregular datasets (aka SEP3D). It has the ability to be split
along multiple axes and have overlapping patches. It useSep3d_split for distribution. The
distribution is fairly smart. It does not attempt to sort thedataset but instead makes sure that
each local version of the data contains an updateddata_record_number. As a result, it can be
a very effective method to handle large-sized sorts.

PARALLEL JOBS

The controlling process for running a parallel job comes from theSEP.pj_base.par_job class
or its children. It is derived from theSEP.opt_base.options class for parameter handling.
There are also numerous optional parameters that can tune the performance on a cluster. There
are two required parameters to initialize a parallel job. The first is a dictionaryfiles whose
values are the parallel files needed for the job. A second is a dictionarysect_parslinking tasks
to parameters. In addition, most parallel jobs will haveprogram, the executable that will be
run on each node, andglobal_pars, a list of parameters that each job will need in addition to
those described insect_pars. There is a number of other options such asdevice (which tells
what Ethernet device the cluster is connected to) that can beuseful to tune performance on a
given cluster.

At the start of a parallel job, several communication threads are forked. Each of these
threads’ purpose will be to handle communication between a set of slave processes (the jobs
on remote machines) and the master machine. The master thread then requests a list of all of
the machines that are available. It checks to make sure each of these machines is functional.

48 R. Clapp SEP–120

It then begins a loop that runs until each job has run to completion.

The loop begins by requesting from the machine object a list of availablemachine labels. It
has to parse this list if any of the parallel files are of typeSEP.pf_copy.parfile and are being
used as output. Only a single process can be started on a givennode until the file has been
created. It then matches available jobs to the remainingmachine labels, and requests from
each parallel file object a local version of that file. It takesthe parameters inglobal_pars, the
task parameters insect_pars, and adds in parameters telling the jobs how to communicate with
the socket it has been assigned to. Then the command line for agiven job is constructed by
thecommand_funcroutine. By default this routine builds the command line based onprogram
defined in the initialization. This function can be overwritten for more complex tasks. It forks
a new thread for each job, and records that a job has been sent.These forked threads will exit
when the job has been completed. If the exit status of the job is not 0, the job will be listed as
failing.

Once a series of jobs has been started, the master thread reads the series of files written to
by theSEP.par_msg.server_msg_obj objects, and updates the status of each job. The status
messages come in several forms:

running A task has successfully started. Notification that a job has started successfully is
important in the case of an outputSEP.pf_copy.parfile. The signal is sent when the
output file has been successfully created and notifies the server that it is safe to start
other jobs on the node.

finished The task has completed successfully. When a job has finished,the machine is marked
available. If all jobs are finished the loop is exited.

progress The task has completed a certain portion of its job. If a job isrestarted this informa-
tion is included in the command line options for the job.

failed The task failed. The machine status is checked. If it is no longer working, all jobs
that have completed on that node are marked as needing to be rerun. 2 If the node is
working, the task is guaranteed to be assigned to another node. If it fails more than
twice (also configurable) the job is exited.

The process then sleeps and restarts the loops. Every few minutes it checks to see if any nodes
have failed or if any previously failed nodes now work. If thejob loop exits successfully, the
sockets are shut down and the parallel files are collected as necessary.

There are two extensions to theSEP.pj_base.par_job object. TheSEP.pj_simple.par_job
class is all that is needed for most parallel jobs. It takes the additional command line argu-
ments:

command The name of the program to run.

2It is possible to tell the parallel job to not rerun these jobswith the assumption that the problems with the
node will be fixed.

SEP–120 Python and programming 49

files The list of files the jobs needs.

tags The list of tags associated with thefiles described above.

usage The usage for each of the files.

nblock The number of parts to break the files into.

axis The axis in which each file is split along.

file_type The file type for each distributed file (DISTRIBUTEor COPY).

The object then builds all of the appropriate parallel file objects.

The final parallel job class,SEP.pj_split.par_job, is useful for many inversion prob-
lems. It is initialized with a dictionaryassign_map linking the job with the machine, or more
precisely a machine label, specifying where the jobs shouldbe run. By always running a spe-
cific portion of the dataset on a given node, you can avoid collecting the dataset at each step
in the inversion process. It can also be useful in things likewave-equation migration velocity
analysis where a large file, in the velocity analysis case thewave-field, is needed for calcula-
tions. The downside of this approach is, if a node goes down, the job can not run to completion
but must terminate when it has accomplished the work on all the remaining nodes.

INVERSION OBJECTS

There are three class trees in the inversion library. The vector class tree defines how to do
mathetical functions on a stream of numbers. An operator knows its domain (model space)
and range (data space) and how to map a vector from one to the other. Finally, the solver class
defines how to estimate a model vector given an operator.

Vector objects

Vectors are simply a stream of numbers that exist in some space. The base vector class is
SEP.vec_base.vector. The base class defines a series of functions that must be overridden
by its children.

clone() Return a copy of the vector.

clone_space()Return a copy of the space the vector exists in.

zero() Zero the vector.

random() Put random numbers into the vector.

scale(val) Scale the vector by the numberval.

50 R. Clapp SEP–120

add(vec) Add vecto the vector.

scale_add_scale(scale1,vec,scale2)Scale the vector byscale1and then addvecscaled by
scale2.

multiply(vec) Multiply the vector by the vectorvec.

dot(vec) Return the dot product of the vector with the vectorvec.

load(name) Load the vectorname.

size() Return the size of the vector.

clean() Clean the vector, remove it from memory and/or disk.

The SEP.vec_super.vector class is derived from theSEP.vec_base.vector class. It is
simply a collection of more than one vector. It applies all mathematical operations on each
vector independently.

The SEP.vec_oc.vector class is an out-of-core vector that exists in a file. TheSEP-

.vec_sep.vector class is inherited from theSEP.vec_oc.vector class and theSEP.sepfile-

.sep_file class. It is vectors that are stored in SEPlib files. It uses the SEPlib program
Solver_ops to perform mathematical operations. TheSEP.vec_oc.vector should not be used
by a programmer because the data type (complex or float) has not been defined. TheSEP-
.vec_sfloat.vector andSEP.vec_scmplx.vector classes define the float and complex ver-
sion of the a SEP out-of-core dataset.

There are six additional vector classes for use with parallel jobs. The current inheri-
tance tree for the vector is shown in Figure 2. TheSEP.pv_copy.cmplx_vector andSEP-

.pv_copy.float_vector classes are for files that are shared among the nodes (derivedfrom
theSEP.pf_copy.parfile) class and are distributed and collected, before and after each par-
allel operation. TheSEP.pv_spli.cmplx_vector and SEP.pv_spli.float_vector vectors
are also distributed and collected, but are split among the nodes and inherited fromSEP-
.pf_split.parfile. The final two vectors,SEP.pv_always_split.cmplx_vector andSEP-
.pv_always_split.float_vector, also inherit from theSEP.pf_split.parfile class. These
two classes are never collected or distributed and exist solely on the nodes. Parallel operators
using these vector need to be derived from theSEP.pj_split.par_job class. Mathematical
operations are done in parallel using theSolver_ops_split program.

Operator

The base operator class isSEP.op_base.operator. It is initialized with a name (an ASCII
string) and by a domain and range vector that are derived fromthe SEP.vec_base.vector

class. It can also be initialized with a verbosity flag,verb, on whether to print out a message
message,msg(which defaults to the program name), when applying the forward or adjoint.
The forward and adjoint functions require model and data space vectors, which are tested to
make sure that they correspond to the domain and range vectors for the operator.

SEP–120 Python and programming 51

Figure 2: Vector inheritance tree.
bob1-vector[NR]

In addition, the forward and adjoint functions have severaloptional arguments. Theadd
is used in to signify that the output of the operation should be added to an existing vector.
The restart can be used to signify that we are restarting the operator. When the operator is
being used an inversion problem, two additional arguments will be passed. Theiter argument
corresponds to the current iteration. Thestatusargument is aSEP.status_sep.status object
used to keep track of the progress of the inversion. If passedin, the starting and finishing of
the operation will be recorded in the status file. The forwardand adjoint functions only deal
with keeping track of the progress of the inversion. The realwork is done by theadjoint_op
andforward_op functions. These two functions must be overridden by its children. TheSEP-
.oc_base.operator defines a functiondot_test which tests to make sure the operator passes
the dot product test. Theinit_op(restart) function is defined to perform operations needed
before the operator is initialized for the first time. Therestart argument is used to signify
whether the job is being restarted.

The simplest operator that is derived from theSEP.op_base.operator class is theSEP-
.op_scale.operator operator. This operator is simply a diagonal operator whereelements
along the diagonal are constant. It uses theSEP.vec_base.vector vector operations to run the
forward and adjoint. It is used by the solver to applyε when doing regularized or precondi-
tioned inversion.

Two classes for combining operator are also derived. The first SEP.op_combo.chain class
chains two or more operators together (eg.AB) , whereA andB are both operators. When
initialized, it checks to make sure that the domain ofA and the range ofB are the same space.
Theinit_op function is overridden to create the temporary vector of theshared space. The
SEP.op_combo.array class is used to define an array of operators. The number of columns
and rows, along with the operators, are passed in during initialization. It can be useful for

52 R. Clapp SEP–120

regularized problems and building complex inversion operators. The range and domain vectors
are constructed from theSEP.op_super.vector vector class.

The current operator tree can be seen in Figure 3. An out-of-core operator class,SEP-
.op_oc.operator, is also derived from theSEP.op_base.operator class. This class expects
its inputs and outputs will be stored on disk. TheSEP.op_oc_serial.operator is used for
operators that are applied by a serial code. The class is derived from both theSEP.op_oc.-
operator and SEP.opt_par_group.par_group. It is initialized by the location of the se-
rial codeprog and optionally thename, a description of the operator (defaulting to the pro-
gram name), a verbosity flag (verb), and the message to print when applying the operator
(msg). Other operator’s parameters are set using theSEP.opt_par_group.par_group parame-
ter methodology.

domain and range The domain and range vectors. These are expected to be derived from the
SEP.op_oc.vector class.

domain_tag and range_tagThe tags the program uses for the domain and range vectors,
defaults tomodel= anddata=.

restart_com The command line argument to specify a restart, defaults to none.

adj_com The command line argument when running the adjoint, defaults toadj=y.

add_com The command line argument when adding to the output, defaults toadd=y.

Theforward_op andadjoint_op become calls to the serial code.

Figure 3: The inheritance class for
operatorsbob1-operator[NR]

The final two operator classes,SEP.op_oc_par.operator and SEP.op_oc_par_split-

.operator, are for parallel jobs. They are derived from theSEP.pj_base.par_job andSEP-

.pj_split.par_job class along with theSEP.op_oc.operator class. TheSEP.op_oc_par.operator
class is designed for jobs where the domain and range vectorswill be distributed and col-
lected before and after the parallel job. TheSEP.op_oc_par_split.operator class is useful

SEP–120 Python and programming 53

for problems where distributing and collecting the files after every operation is not practi-
cal. All of the initialization and parameters are generallyhandled the same as for theSEP-
.op_oc_serial.operator. The domain and range vectors are eitherSEP.pv_copy.vector or
SEP.pv_split.vector in the case ofSEP.op_oc_par.operator operator. In the case of the
SEP.op_oc_par_split.operator object, the vectors must be of theSEP.pv_always_split-
.vector type. To run the operator, a parallel job is executed rather than running a serial code.

Solvers

The base solver class,SEP.solv_base.solver, is inherited fromSEP.opt_base.options. The
solver keeps track of its progress using theSEP.stat_sep.status module. It expects that the
parametersniter, the number of iterations, andstepper, the class that calculates the step to be
set by the timeprep_run is called. The functioniter iteratesniter times. To make expanding
the solver easier, it includes a dummy functionend_iter(iter) that is run at the end of
each iteration. This function can be overwritten to do things like write out the model at each
iteration.

There are three classes derived from theSEP.solv_base.solver class. TheSEP.solv_smp.-
solver class is designed for solving problems of the form

Q(m) = ||d−Lm ||2 (1)

whered is the data,L is the operator, andm is the model. It expects that its children set the
operatorop, the datadata, the modelmodelbefore itsprep_run function is invoked. It will
also look for a weighting operatorwop, a a model vectorv, an initial modelm0, and an initial
residual vectorresd. From this information, an initial residual model vector are calculated and
SEP.solv_base.solver’s prep_run is invoked.

TheSEP.solv_reg.solver class is also derived fromSEP.solv_base.solver class. It is
used for regularized inversion problems of the form,

Q(m) = ||d−Lm ||2 + ε
2||Am||2, (2)

whereA is the regularization operator. It expects all of the arguments of SEP.solv_smp.-
solver with the addition of regularization operatorregand the relative weighting parameterε

eps. In addition accepts the optional residual model space vector resm.

The final solver derived fromSEP.solv_base.solver is SEP.solve_prec.solver. It is
used from regularized problems with model preconditioningof the form,

Q(p) = ||d−LBm ||2 + ε
2||p||2, (3)

whereB is the preconditioning operator andp is the preconditioned variable, wherem = Bp.
It expects all of the same parameters ofSEP.solv_reg.solver, with reg removed andprec,
the preconditioning operator, added.

All of the solvers are currently linear solvers. Adding non-linear solvers would be fairly
easy. They all require a step function. Currently only a conjugate gradient step function is
available inSEP.cgstep.cgstep.

54 R. Clapp SEP–120

PROGRAM FUNCTIONS

There are two required and three optional functions available to the programmer. The required
functions go near the beginning and ending of the program. The first,sep_begin_prog, tells
the server that the program has started successfully. It should be used when it is safe to start
another instance of the program on the same node. This latterrequirement is important when
sharing an output space (COPY) on a node. If you are adding to the output space you need
insure that the output file has been created by the first instance of the program. The other
required function issep_end_prog. This should be used after all of the output files have been
completely written to. The server interprets it as a sign of completion for the job.

The sep_progress function enables effective job restarting. The programmercan use
this function to signify a checkpoint in the code. When restarting a job, both the restart
flag and the last progress message will be passed as argumentsfor the restarting job. In
the case when you are sharing an output space, you should use this function whenever you
write to the shared file. The final two functions are when you are sharing an output space.
The sep_open_lock(tag) locks (if already locked waits for the file to become available) a
SEPlib tag. The sep_close_lock(tag) function frees a tag so another process can safely
read or write to it. All of these commands perform no functionwhen they are not a portion of
a parallel job.

EXAMPLES

Examples are the most effective way to learn how to use a pieceof software. In this section,
I will go over several examples. I will begin by showing how tobuild a flow of multiple
programs. I then will give an example of how to run a simple parallel job. The third example
will show how to an out-of-core inversion using serial codes, and the final example will show
how to do an inversion using parallel objects.

Creating a flow

Creating a wrapper to a serial code involves creating two objects. The first object is a class
that knows the parameters for the program and how to execute it. An example isscale.py
which tells how to run a simple scaling program.

import SEP.opt_prog #handle the parameters for the program

class scale(SEP.opt_prog.options): #inherit from both

def __init__(self,name="scale"): #initialization method

SEP.opt_prog.options.__init__(self,name) #initialize parameters

self.set_prog("Scale.x")

def add_doc_params(self):

"""Add the parameters for scaling a dataset"""

self.add_doc_param("stdout",doc="Output file")

SEP–120 Python and programming 55

self.add_doc_param("scale",doc="Scale the dataset by a given value")

The second object will use the above class as in input to a program (SEP.prog.prog) object.
The scriptScale.py is an example of using the abovescale object.

#!/usr/bin/env python

import scale #the scale object code

import SEP.prog #the program object code

scale=scale.scale("Scale") #initialize the scale object

program=SEP.prog.prog("Scale.py ", #the name of the program for self-doc

"Scale.py pars ", #Usage for self-doc

[scale], #the components of the program

["Scale using the SEP python library"]) #description doc

program.get_options() #read the command line arguments

program.prep_run() #run the program

The script functions the same way as normal SEPlib program. If no arguments are given,
self-doc is returned. If an argument that is needed isn’t present an error is given (in this case
including the self-doc for the parameter).

Things get more interesting when we add a second program. In this case, we will add a
simple program that will create a 2-D array with a plane of ones at some location. The script
line.py provides the wrapper for the program.

import SEP.opt_prog #parameters

class line(SEP.opt_prog.options):

def __init__(self,name="scale"):

SEP.opt_prog.options.__init__(self,name)

self.add_prog("Line.x")

def add_doc_params(self):

"""Add the parameters for scaling a dataset"""

#add parameters with default values

self.add_doc_param("stdout",doc="Output file")

self.add_doc_param("n1",10,doc="The number of sample first axis ")

self.add_doc_param("o1",0.,doc="Origin of the first axis")

self.add_doc_param("d1",1.,doc="Sampling of the first axis")

self.add_doc_param("n2",10,doc="The number of sample second axis ")

self.add_doc_param("o2",0.,doc="Origin of the second axis")

self.add_doc_param("d2",1.,doc="Sampling of the second axis")

self.add_doc_param("sample",5,doc="Sample number at which to create line")

We can write a script that combines these two programs. The new programLine_scale.py

will first create the array with the program line, then use that output as input to the scaling

56 R. Clapp SEP–120

program. Combining the programs involves three additionalsteps. First, we will need to create
a parameter object,SEP.opt_prog.options, that will be responsible for storing the input and
output file information. Second, we will need to inherit fromboth theline andscale objects.
We will change the initialization of these object is to include the new parameter object. We
will remove from the documentation the input and output file requests. We will set the input
and output file names based on the new parameter object. The final changes involve how to
recognize the parameters for the various programs. We will introduce a new dictionaryprefixes
which maps a prefix to the parameter objects. In the example below, you will now useline_n1
to set the number of samples in the output space.

#!/usr/bin/env python

import scale,line #import both objects

import SEP.opt_prog

import SEP.prog

class main_args(SEP.prog): #the main parameters

def __init__(self):

SEP.opt_prog.options.__init__(self,"MAIN")

self.add_doc_param("stdout",doc="Output file")

class my_line(line.line): #inherit from the line object

def __init__(self,main_pars,name):

line.line.__init__(self,name) #initialize the line.line structure

self.main=main_pars #store the main programs parameter class

def add_doc_params(self):

line.line.add_doc_params(self) #add the parameters described in line

self.del_par("stdout")a #delete the line parameter

def prep_run(self,restart):

#set the stdout a temp file based on the stdout of the main program

self.add_param("stdout","%s.temp"%self.main.param("stdout"))

line.line.prep_run(self,restart)

class my_scale(scale.scale): #inherit the scale calss

def __init__(self,main_pars,name):

scale.scale.__init__(self,name) #initialize the scale class

self.main=main_pars

def add_doc_params(self):

scale.scale.add_doc_params(self)

self.del_par("stdin") ;self.del_par("stdout") #delete in and out

def prep_run(self,restart):

#add in out (in is temp file from line)

self.add_param("stdin","%s.inter"%self.main.param("stdout"))

self.add_param("stdout",self.main.param("stdout"))

scale.scale.prep_run(self)

SEP–120 Python and programming 57

main=main_args() #create the main arguments

line=my_line(main,"Line") #create the line arguments

scale=my_scale(main,"Scale") #create the scale arguments

prefixes={} #prefix dictionary

prefixes["Line"]="line_" #prefix for all line parameters

prefixes["Scale"]="scale_" #prefix for all scale parameters

program=SEP.prog.prog("Scale_line ",

"Scale_line.py pars outtag= ",

[line,scale], #now we have two objects in the flow

["Create a line and then scale it using the SEP python library"],

prefixes=prefixes #the prefixes associated with the objects

)

program.get_options() #get the options

program.prep_run() #run the flow

Simple parallel jobs

For many parallel jobs, the programParallel is all that is needed.Parallel is meant for
parallel jobs where the input and output are either distributed, SEP.pf_splist.parfile, or
share input,SEP.pf_copy.parfile, and the data is partitioned along a single axis for each file.
It also requires that you are running a single program on eachnode (rather than some more
complex operation) and you aren’t wanting to add the output to another file. The required
arguments toParallel are composed of the program name,command, the number of blocks
to break the program intonblock, and a series of lists (comma separated).

files The name of the parallel file(s).

tags The tags associated with each file.

axis The axis that each file is split along. If the file is shared, theaxis is ignored for this file.

usage The usage for each file "INPUT" or "OUTPUT".

file_type The parallel file type for each file ("DISTRIBUTE" or "COPY").

All arguments that aren’t part of theParallel program are passed as command line arguments
to parallelized serial code.

The program is effective for parallelizing code where the computational cost is signifi-
cantly more than the cost of transferring the data (migration and modeling for example). It
is also effective when handling problems that benefit from being held in memory (operations
such as transposes). For example, a multi-gigabyte 2-D file could be transposed at marginally
more than the cost of distributing and collecting the dataset through

58 R. Clapp SEP–120

Parallel files="in.H,out.H" tags="stdin,stdout" axis="2,1" usage="INPUT,OUTPUT"\

file_type="DISTRIBUTE,DISTRIBUTE"

Complex parallel job

The scriptfdmod.py in the report directory parallelizes 2-D finite difference modeling using
the SEPlib programFdmod. The general form is the same as seen in the scripts in the flow
example. Thefdmod_par object extends theSEP.pj_base.par_job class. The user describes
a regular spaced set of shot locations using the parametesoxs,dxs,nxs,ozsand the number
different blocks to break the problem into usingnblock. Each job process a different set of
shot locations and needs its own set of parameters. The function build_sect_pars calculates
the parameters that vary as a function of job and stores the contents in the dictionarysect_pars.

def build_sect_params(self):

"""Build parameters for parallel job"""

sect_pars={}

nxs=int(self.param("nxs"))

oxs=float(self.param("oxs"))

dxs=float(self.param("dxs"))

ozs=float(self.param("ozs"))

nblock=self.param("nblock")

if not nblock: nblock=nxs

nblock=int(block)

imin=int(n/nblock)

nextra=n-nblock*imin

itot=0

for i in range(nblock):

sect_pars[str(i)]=SEP.args.basic(name=str(i))

ol=o+d*itot

dl=d

nl=imin

if i < nextra: nl=nl+1

itot=itot+nl

sect_pars[str(i)].add_string("nzs=1 ozs=%f dzs=1."%(ozs))

sect_pars[str(i)].add_string("nxs=%d oxs=%f dxs=%f"%(nl,ol,dl))

return sect_pars

The prep_run function creates the list of parameters and defines a dictionary of parallel
files. The velocity space is copied to all of the nodes using the SEP.pf_copy.parfile class,
the output shot gather files are spread accross the cluster using theSEP.pf_split.parfile
object.

par_files={}

SEP–120 Python and programming 59

par_files["vel"]=SEP.pf_copy.parfile(name=self.param("intag"),

tag="intag=",usage="INPUT",njobs=len(sect_pars.keys()),restart=restart)

par_files["hsfile"]=SEP.pf_split.parfile(name=self.param("hsfile"),

dff_axis=3,tag="hsfile=",usage="OUTPUT",njobs=len(sect_pars.keys()),

restart=restart,nblock=len(sect_pars.keys()))

The section parameters, the parallel files, and the modelingprogram are then added to the
objects parameters and the parallel job is initialized.

self.add_param("files",par_files)

self.add_param("sect_pars",sect_pars)

self.add_param("program","%s/Fdmod"%SEP.paths.sepbindir)

SEP.pj_base.par_job.prep_run(self)

Inversion example

The scriptInterp.py does out-of-core interpolation. The programInterp.x interpolates from
an irregular to a regular mesh. The programreg.x convolves with a three point filter. We then
can turn these program into operators.

interp_op=SEP.op_oc_serial.operator("Interp.x")

reg =SEP.op_oc_serial.operator("reg.x")

We then extend the solver object. We require the operatorop and regularization operatorreg.
(n1,o1,d1).

class solver(SEP.solv_reg.solver):

def __init__(self,op,reg):

SEP.solv_reg.solver.__init__("SOLVER")

self.add_param("op",op)

self.add_param("reg",reg)

We require the user to specify the modelmodel, the datadata, ε eps, and the number of
iterationsniter, and the dimensions of the output space

def add_doc_params(self):

self.add_doc_param("eps",1.,"Epsilon")

self.add_doc_param("niter",1,"Number of iterations")

self.add_doc_param("model",doc="Model (output)")

self.add_doc_param("data",doc="Data (input)")

self.add_doc_param("n1",doc="number of samples (axis 1)")

self.add_doc_param("o1",doc="First sample (axis 1)")

self.add_doc_param("d1",doc="Sampling (axis 1)")

60 R. Clapp SEP–120

We create the data vector from a file and create the model vector.

def prep_run(self,restart=None):

self.add_param("data",SEP.vec_sfloat.vector(tag="data"))

self.add_param("model",SEP.vec_sfloat.vector(name="model"))

self.param("model").set_axis(1, self.param("n1").

self.param("o1",self.param("d1")))

self.param("model").zero()

We add the domain and range vectors for the operator and the regularization operator.

self.param("op").add_param("domain",self.main.param("model"))

self.param("op").add_param("range",self.main.param("data"))

self.param("reg").add_param("domain",self.main.param("model"))

self.param("reg").add_param("range",self.main.param("model"))

Finally we create the step operator and run theprep_run function for the operators and the
regularization solver.

self.add_param("cgstep",SEP.cgstep.cgstep("cgstep"))

self.param("op").prep_run(restart)

self.param("reg").prep_run(restart)

SEP.solv_reg.solver.prep_run(self,restart)

We create the solver object, the program object, read the parameters, and run the job.

solv=solver(interp_op,reg_op)

program=SEP.opt_prog.prog("Interpolate ",

"Interp.py model= data= ",

[interp_op,reg_op,solv],

["Interpolatation using the SEP python library"])

program.get_options()

program.prep_run()

CONCLUSIONS

In this paper I present simple serial codes that can be used tocreate much more complex
objects with minimal additional coding overhead. These objects can take the form of complex
program chains. In addition the serial codes can be used to create coarse-grained parallel
programs. A further option is to use simple serial codes in a parallel out-of-core inversion,
using both serial and parallel operators. Examples demonstrate how to accomplish each of
these goals.

SEP–120 Python and programming 61

REFERENCES

Clapp, M. L., and Clapp, R. G., 2005, 3-d subsalt imaging via regularized inversion with
model preconditioning: SEP–120, 1–22.

Clapp, M. L., 2003, Directions in 3-D imaging - Strike, dip, both?: SEP–113, 363–368.

Clapp, R. G., 2004a, Fault tolerant parallel SEPlib: SEP–117, 175–182.

Clapp, R. G., 2004b, A python solver for out of core, fault tolerant inversion: SEP–117, 183–
190.

Sava, P., and Biondi, B., 2003, Wave-equation MVA: Born Rytov and beyond: SEP–114,
83–94.

