Stanford Exploration Project, Report 120, May 3, 2005, m4e-62

40

Stanford Exploration Project, Report 120, May 3, 2005, m4e-62

Inversion and fault tolerant parallelization using Python

Robert G. Clapp

ABSTRACT

Many current areas of research at SEP involve large-scadesion problems that must
be parallelized in order to be tractable. Writing faultet@int, parallel code requires sig
nificant programming expertise and overhead. In this papkirary, written in Python,
is described that effectively simulates a fault-toleraauatiel code, using simple serial
programs. In addition, the library provides the ability teeuthese parallel objects in
out-of-core inversion problems in a fault-tolerant manner

INTRODUCTION

The large size of today’s oil industry problems necesstasnessing the power of clusters.
The problem is that as we add nodes, we increase our odds effaddre. Inversion on
large-scale problems is even more problematic. Operasorsake days to weeks to run (Sava
and Biondi, 2003; Clapp and Clapp, 2005) and can involve ipialinstances of complex
operations (Clapp, 2003). Running these problems on Bdadusters poses a problem as
the odds of a multi-week job running without a node failing bow.

In Clapp (2004a), | described a library, written in Pythdrgttallows auto-parallelization
with a high-level of fault tolerance for almost any SEPlilogram. Instead of handling par-
allelization within a compiled code at the library leveletparallelization is done at the script
level which sits on top of the executables. The Python lipdistributes and collects the
datasets, keeps track of what portions of the parallel jebdane, and monitors the state of
the nodes. The distribution and collection are done thradh but individual jobs are all
serial codes. The code is written using Python’s objectrieid capabilities so it is easily
expandable. A parallel job is described by a series of filelssaseries of tasks.

For inversion problems, Clapp (2004b) describes a Pytheersion library which uses
abstract vector and operator descriptions. From theseaabstasses | derive specific classes
to handle out-of-core problems. Operators become wrapgersd SEPIib programs and
vectors wrappers around SEPIib files.

In this paper | introduce an improved version of the libraggctibed in Clapp (2004a) and
Clapp (2004b). The new version provides significant addgidlexibility. Multiple programs
can be combined into single executables. Parallel files oartxe SEP3D files, and/or involve

lemail: bob@sep.stanford.eda

41

42 R. Clapp SEP-120

overlapping patches. Inversion can be done on parallel fitestead of collected on some
master node), saving disk space and transfer time.

In the first portion of the paper I will cover the basic Pyth@madlel and inversion objects.
In the second portion | will show several examples on how tothese objects to accomplish
tasks that are both memory and computationally intensive.

BASIC BUILDING BLOCKS

Before delving into parallel and inversion objects, it i®fus to go over some core objects
that are used extensively by the more advanced parallelraedsion objects. These objects
provide interaction with the command line, SEP files, angkeack of what the program has
accomplished and what needs to be done.

Parameter

The SEP. par anet er . par anet er iS a holding class for information about a parameter that can
be described by an ASCII string. It can store documentatimutithe parameter, its current
value, and/or some default value for the parameter. In madib providing a simple mech-
anism for accessing arbitrary objects, it is also usefubfmeumenting programs/objects and
checking to make sure all parameters required for a givetin@have been set.

Parameters

The SEP. ar gs. basi ¢ 0bject can be thought of as a collection of parameters aibbessing
SEP programming conventions. You can request a paramdteg s . par ("tag"), Op-
tionally with a default value, and an error if it doesn’t éxi¥ou can also add a parameter
par . add_par an("tag", val ue) to the collection. TheEP. ar gs. basi ¢ can be initialized from

a file, another collection of parameters, or an empty set eacréated. It has the ability to
output its contents in various manners. For example, it eaurm a simple dictionary linking
parameters to their values or can return the parametersap-atgle convention (par=val) in
either a list or string form. It can also write its contentia file.

Sepfile

A SEPIib file objecEP. sepfil e. sep_fil e is built from one to thregEep. ar gs. basi ¢ objects
(history file, header format file, and grid format file). Youncaccess the collection of param-
eters directly through the history, headers, and grid dbjézg. sep. hi story. par("n1")).

In addition it has the concept of axes and keys (if the dataEB3® and possesses head-
ers). You can get the number of dimensions, retrieve andxest @,0,d,label,unit) and keys
(name,format,type), and return the size of the dataset.

SEP-120 Python and programming 43

Status

The status obje®EP. st at _sep. st at us keeps track of the progress of a job. It is a dictionary
linking a job descriptor to a list of properties of that jobsdaptor. For example, when doing
a parallel job, the list will include the status of the jmialo, sent, running, finished, collected
the machine the job is run on, the progress of the job,whexestitlerr and stdout of the job
is stored, and how many times the job has failed to run cdyweche status information is
written to an ASCII file that enables a job to be restarted mataally. The class also has
the ability to store parameter information in the statusvilltech can be automatically read at
startup.

Options, Flows, and Programs

Programs generally follow a fairly standard flow. First yead in parameters from the com-
mand line, then process these parameters, potentialljirmgyesew parameters, and finally you
run the algorithm. You can think of a flow as series of progranigere you run through these
basic steps for each program. An example is wave-equatigration. To perform wave-
equation migration a typical flow would be to choose the egiee velocities, convert the data
to the frequency domain, migrate the data, transpose tlag aadl create angle gathers. All of
these steps could be independent programs, combined imtigla program, or a multitude of
other possible variations. The advantage of combiningetsteps into a single program is that
many times they share parameters, so you are simplifyingdges jobs. The disadvantage is
the code becomes more difficult to manage.

The options, flow, and program objects attempt to allow thepscity of simple programs
that perform a single operation, with the advantage of aeshparameter space. #ep-
. opt _base. opti ons IS an extension of theep. ar gs. basi ¢ class. It has several additional
abilities:

e It can output self-documentation based on its set of parenset
e Itintroduces five additional functions:

— Theread_par ans(args,prefix extracts from theep. ar gs. basi ¢ object all of the
parameters that the options group has been initialized. witthe parameter is
required and doesn’t exist it returns an error with the delf-for the parameter.
The prefix argument will limit the search afgs to parameters that begin with
prefix, everything after the prefix will be assumed to be the nambeparameter
for the object.

— bui | d_check_par ans() which builds additional parameters and checks parameter
validity based on command line arguments.

— The functionprep_run(restart) runs the task associated with the parameter
group. Examples might be running a serial code or a paraltel j

44 R. Clapp SEP-120

— Finallycl ean_fil es() is meant to remove any unneeded files after the execution
of the job.

The SEP. opt _base. opt i ons iS currently inherited by four classes. TBEP. opt _none-
.options is for a group of options that aren’t associated with a job.e phep_run and
clean_fil es routines are by default empty. TISEP. opt _prog. opti ons is for a set of op-
tions associated with a serial code. Thep_run function executes the code with the pa-
rameters associated with the object. The final two childsen, par _j ob. par _j ob andSep-
.sol v_base. sol ver, are discussed later.

ThesEeP. 1 ow. f | ow Object is a collection of parameter groups and flows. In thgration
example we might have the velocity selection and migrat®mdependent programs, where
each has a parameter group associated with them. The atigézgaight be a flow composed
of transposing the data and then creating the angle gathieesEP. opt _f | ow. f | ow Object is
initialized with a set of flows, a set of parameter groups,drder in which to run them, and
potentially prefixes associated with the individual flowsl gg@arameter groups. Thwefixes
argument is a dictionary linking a given parameter group @~ flo the prefix that all of its
parameters will be initialized with.

The flow object has two basic functionsdd_opti ons andprep_run. The first function
takes in a set of parametengsand runs ead_par ans(args,prefix. Itthen runsui | d_check-
_parans on each parameter group and flow.

Theprep_run call in a flowprep_run andcl ean_fi | es parameter groups and flows. It is
also regulated by sEP. st at _sep. st at us object that allows that job to be restarted.

The final object,SEP. prog. prog inherits from the flow object. In addition, it has the
concept of description and usage blocks for documentadios by default uses the command
line arguments when parsing parameters.

PARALLEL OBJECTS

The library is currently designed for coarse-grain pafgles that fit on a single processor (no
inter-process communication necessary). The user wrgesa code that works on a portion
or all of the dataset. Each parallel job is broken up into eeseftasks Thesetaskscan have
the same, or different parameters, and the various inpubatplit files can be distributed in
several different manners. There are three basic clasgesalfel objects: core objects that
handle communication, parallel file objects that describve b given file is distributed and
parallel job objects that handle distributing the varicasks.

Parallel building blocks

There are several basic objects that are needed to do anterprocessing. You need to know
how to execute remote commands, what machines to run on,dhewecute commands that

SEP-120 Python and programming 45

run on multiple machines at once, and how to send messagesdrethe master process and
remote processes.

The sep. rc is the simplest of these build blocks. It defines two varig/sepr. r c. shel |
andsep. r c. cp, which is the shell for a remote process and the copy commadedfaults to
usingr sh andr cp for these variables but can be set to using the secure diteggalt also pro-
vides the functionsp_t o(mach, file_in,file_out) andcp_from(mach,file_in, file_out)
which return the command strings needed for transferrinig a fi

The SEP. mach_base. mach provides the framework for keeping track of what machines
are available. It inherits from thgep. st at _sep. st at us Object to store its current state. It
provides a mechanism for testing whether a node is fundtidhaequires that its children
provide a mechanism to create an initial list of machinesitoon. It identifies each proces-
sor on a machine throughmachine labelwhich takes the fornrach- X, wheremach is the
machine name andis a processor number associated with that machine. The clai$ses
SEP. mach_fil e. mach andSEP. mach_l i st. mach are the simplest two examples, which read
their list of available machines from a file or from a supplistl A future module might in-
teract with a master server allowing a job to shrink or grosdshon current computer usage.

In an environment where a master node isn’'t exporting a distyhen you don’t want to
rely on that master node being up, itis necessary to copygrgmoto all the slave nodes. The
classsep. di st ri but e_prog. di stri bute provides a mechanism to distribute a given program
to these nodes. It copies an executable ta tg directory with a uniqgue name, and returns
that name to the calling program. It also has a cleaning ndetihoemove the program from
the nodes.

The classsEP. pc_base. communi cat or provides framework for running a job on multi-
ple machines simultaneously. It is initialized with the speof the network. It expects its
children to override the functioprep_run which defines how to run a parallel job given
the list of nodes, the command line arguments, and how matestgre going to be pro-
cessed. The last argument is used as a mechanism to calcovateng a job should take,
therefore a mechanism to test whether a job is hung and sheuldlled. The classer-

. pc_npi ch. comuni cat or is the only current example. It uses MPICH as its commuroaoati
model.

Communicating with a series of remote processes can bekg proposition. The stan-
dard Unix approach, a socket, has an important limitatiothat it can not have more than
X, where X is a small number, of processes waiting to estaldiconnection. This limi-
tation can be reached either by having to many processesdgabk a given socket or by
the actions brought on by the socket communication takioglaag. The library accounts
for both these limitations. The basic concept is that a pErgdb might spawn several
sockets simultaneously. Each socket will communicate wittnaximum number of pro-
cesses (60 by default). The actions taken after receivingssage will be limited writing
to a text file. The classeP. par _nsg. msg_obj ect has the ability to read and write a mes-
sage. Its childsep. par _nsg. server _nmsg_obj , receives the message over a socket usiarg
. sep_socket . sep_server class.

46 R. Clapp SEP-120

Parallel files

As mentioned at the beginning of this section we are goingetoumning a series of remote
processes with local versions of SEPIib files. The paralleldbjects control these local
versions. They store not only the names of the files but aledlkealistributing and collecting
the files.

The base parallel clasgP. pf _base. parfi | e inherits from both theep. sepfile.sep_file
and theseP. st at _sep. stat us classes. It is initialized wittat leastan ASCII description,
name the usage of the filesage("INPUT" or "OUTPUT"), and thdag that the program uses
to access it (e.g. <, data=, >). In addition, it must be eithitialized with the list oftasks
mentioned above, or have its status loaded from disk usmtpéd argument. In addition the
user can specify

add Whether we are adding the results contained in the pardéebfia preexisting file.

remove Whether (default) or not the local versions of the parallelshould be removed once
the jobs is finished.

collect_it Whether (default) or not an output file should be collecte@émthe parallel job is
finished.

The two most important functions are the abilitycto | ect all of the portions of the parallel

file onto the master node, amdgs which returns the tag that should be used when accessing
a local version of the file. Theags function is passed in a dictionary linkingskwith the
machine it will be run on. A local name for the section of théadia found or created and,

if needed, a local version of the file is distributed to theeaodhe inheritance chart for the
parallel file objects can be seen in Figure 1.

Parallel file

Figure 1: The inheritance chart for /’\

the parallel file object$hobl-parfile Irregular Split Copy

[NR] ‘

Patch

The classsep. pf _copy. parfil e is the simplest of the parallel files. It only works with a
regular SEPIib cube. If the named file is an input fHER. pf _copy. parfil e copies the entire
file to each node. If the named file is an output file, n collecad of the local version will
be summed to produce the final output. This class has thei@dliinitialization argument
reuse_paywhich tells how to signify to the program that the file alrgadtists. This argument

SEP-120 Python and programming 47

is added to the returned parameters #gs when dealing with an output file that already
exists. An example of &eEP. pf _copy. parfil e is the velocity and image files in migration.
Thereuse_patargument would be needed when the image file is already creatthe node,
to signify that we need to add to rather than replace, the @n@gansferring the data is done
in megabyte-sized chunks from one node to the next to builth@gmage usin@opy_j oi n or

to distribute usingopy_split.

The classsepr. pf _split.parfile allows a parallel file to be split along one or more
axes. It is initialized with the additional paramet#f_axis the axis or axes we are split-
ting along, andhblock the number of portion that axis will be split into. An exammf a
SEP. pf _split.parfile file would be the frequencies in downward-continuation riigm.
The same principal is used to transfer the data. Megabye&stsihunks are passed from one
node to the next usineat ch_spl i t andPat ch_j oi n. When a node contains a given chunk, it
is read from or written to disk, otherwise it just passes whaceived.

The classser. pf _pat ch. parfi | e inherits fromsSEP. pf _split.parfile. Itis used when
overlapping patches of a dataset are needed. It adds th&oaddinitialization argument
noverlap which tells how much overlap between the patches along agish An example
would be the image space in shot-profile migration. Wherectilhg, it applies a triangle in
the overlapped region.

The last type of parallel file is the clasep. pf _irreg. parfile. It currently can only be
used as input. It is defined for irregular datasets (aka SEEFABDas the ability to be split
along multiple axes and have overlapping patches. ltsaggd_split for distribution. The
distribution is fairly smart. It does not attempt to sort thetaset but instead makes sure that
each local version of the data contains an updaied_r ecor d_nunber. As a result, it can be
a very effective method to handle large-sized sorts.

PARALLEL JOBS

The controlling process for running a parallel job comesTthesEP. pj _base. par _j ob class

or its children. It is derived from theer. opt _base. opti ons class for parameter handling.
There are also numerous optional parameters that can tepetformance on a cluster. There
are two required parameters to initialize a parallel jobe Tihst is a dictionaryfiles whose
values are the parallel files needed for the job. A secondigtimaarysect_pardinking tasks

to parameters. In addition, most parallel jobs will hgwegram the executable that will be
run on each node, arglobal_pars a list of parameters that each job will need in addition to
those described isect_pars There is a number of other options suchias ce (which tells
what Ethernet device the cluster is connected to) that carsétil to tune performance on a
given cluster.

At the start of a parallel job, several communication theeack forked. Each of these
threads’ purpose will be to handle communication betweegt afsslave processes (the jobs
on remote machines) and the master machine. The masted tivarequests a list of all of
the machines that are available. It checks to make sure dahbse machines is functional.

48 R. Clapp SEP-120

It then begins a loop that runs until each job has run to conaple

The loop begins by requesting from the machine object afistailablemachine labelslt
has to parse this list if any of the parallel files are of tgge. pf _copy. parfil e and are being
used as output. Only a single process can be started on ameknuntil the file has been
created. It then matches available jobs to the remaimaghine labelsand requests from
each parallel file object a local version of that file. It takies parameters iglobal_pars the
task parameters sect_parsand adds in parameters telling the jobs how to communicglte w
the socket it has been assigned to. Then the command linedigea job is constructed by
thecommand_funoutine. By default this routine builds the command linedzhsnprogram
defined in the initialization. This function can be oventart for more complex tasks. It forks
a new thread for each job, and records that a job has beenl$erse forked threads will exit
when the job has been completed. If the exit status of thesjolot O, the job will be listed as
failing.

Once a series of jobs has been started, the master threaheagkries of files written to
by theseP. par _nsg. server _nmsg_obj objects, and updates the status of each job. The status
messages come in several forms:

running A task has successfully started. Notification that a job tadesl successfully is
important in the case of an outpseP. pf _copy. parfile. The signal is sent when the
output file has been successfully created and notifies tiverstrat it is safe to start
other jobs on the node.

finished The task has completed successfully. When a job has finigiedhachine is marked
available. If all jobs are finished the loop is exited.

progress The task has completed a certain portion of its job. If a jolesdarted this informa-
tion is included in the command line options for the job.

failed The task failed. The machine status is checked. If it is ngéorworking, all jobs
that have completed on that node are marked as needing toure felf the node is
working, the task is guaranteed to be assigned to anothes. niddt fails more than
twice (also configurable) the job is exited.

The process then sleeps and restarts the loops. Every femtaniit checks to see if any nodes
have failed or if any previously failed nodes now work. If job loop exits successfully, the
sockets are shut down and the parallel files are collected@esnary.

There are two extensions to ther. pj _base. par _j ob object. ThesEP. pj _si npl e. par _j ob
class is all that is needed for most parallel jobs. It takesatiditional command line argu-
ments:

command The name of the program to run.

2It is possible to tell the parallel job to not rerun these jalith the assumption that the problems with the
node will be fixed.

SEP-120 Python and programming 49

files The list of files the jobs needs.

tags The list of tags associated with thel es described above.
usage The usage for each of the files.

nblock The number of parts to break the files into.

axis The axis in which each file is split along.

file_type The file type for each distributed fil®(STRIBUTEor COPY).

The object then builds all of the appropriate parallel filgeols.

The final parallel job classsep. pj _split. par_j ob, is useful for many inversion prob-
lems. Itis initialized with a dictionaryssi gn_map linking the job with the machine, or more
precisely a machine label, specifying where the jobs shbeldin. By always running a spe-
cific portion of the dataset on a given node, you can avoicecbhg the dataset at each step
in the inversion process. It can also be useful in thingswhkee-equation migration velocity
analysis where a large file, in the velocity analysis casewee-field, is needed for calcula-
tions. The downside of this approach is, if a node goes ddwerjob can not run to completion
but must terminate when it has accomplished the work on ali¢maining nodes.

INVERSION OBJECTS

There are three class trees in the inversion library. Théovextass tree defines how to do
mathetical functions on a stream of numbers. An operatowknts domain (model space)
and range (data space) and how to map a vector from one toltée &inally, the solver class
defines how to estimate a model vector given an operator.

Vector objects

Vectors are simply a stream of numbers that exist in someesp@bhe base vector class is
SEP. vec_base. vect or. The base class defines a series of functions that must beduer
by its children.

clone() Return a copy of the vector.

clone_space()Return a copy of the space the vector exists in.
zero() Zero the vector.

random() Put random numbers into the vector.

scale(val) Scale the vector by the numbeail.

50 R. Clapp SEP-120

add(vec) Add vecto the vector.

scale_add_scale(scalel,vec,scale2}ale the vector bgcaleland then addrecscaled by
scale2

multiply(vec) Multiply the vector by the vectorec

dot(vec) Return the dot product of the vector with the veotec
load(name) Load the vectoname

size() Return the size of the vector.

clean() Clean the vector, remove it from memory and/or disk.

The SEP. vec_super. vector class is derived from theep. vec_base. vect or class. It is
simply a collection of more than one vector. It applies altineanatical operations on each
vector independently.

The SEP. vec_oc. vector class is an out-of-core vector that exists in a file. Hre-
.vec_sep. vect or class is inherited from th&ep. vec_oc. vect or class and theep. sepfi | e-
.sep_file class. Itis vectors that are stored in SEPIib files. It usesSEPIlib program
Sol ver _ops to perform mathematical operations. T$EP. vec_oc. vect or should not be used
by a programmer because the data type (complex or float) Haseeo defined. Theep-
.vec_sfloat.vector andseP. vec_scnpl x. vect or classes define the float and complex ver-
sion of the a SEP out-of-core dataset.

There are six additional vector classes for use with pdradles. The current inheri-
tance tree for the vector is shown in Figure 2. T8®e. pv_copy. cnpl x_vect or and SEP-
.pv_copy. fl oat _vector classes are for files that are shared among the nodes (dé&ved
the SEP. pf _copy. parfil e) class and are distributed and collected, before and adtdr par-
allel operation. TheseP. pv_spli.cnpl x_vector and SEP. pv_spli.float_vector vectors
are also distributed and collected, but are split among thdes and inherited fromsep-
.pf_split.parfile. The final two vectorsser. pv_al ways_split.cnpl x_vect or andSEP-
.pv_al ways_split.float_vector, alsoinherit from theEep. pf _split.parfil e class. These
two classes are never collected or distributed and existysoh the nodes. Parallel operators
using these vector need to be derived fromgshbe pj _split. par_j ob class. Mathematical
operations are done in parallel using 8eever _ops_spl it program.

Operator

The base operator classSEP. op_base. operator. It is initialized with a name (an ASCII
string) and by a domain and range vector that are derived fr@nser. vec_base. vect or
class. It can also be initialized with a verbosity flagrb, on whether to print out a message
messagemsg(which defaults to the program name), when applying the &odnor adjoint.
The forward and adjoint functions require model and dat@epactors, which are tested to
make sure that they correspond to the domain and range sdotdhe operator.

SEP-120 Python and programming 51

Vector

N

Array Outofre Chain
|
Sepfile
Figure 2: \ector inheritance tree.

[bob1-vecto}[NR] Complex Float

AR AN

Parallel vector ~ Parallel vector Parallel vector ~ Parallel vector Parallel vector Parallel vector
Conplceoy Gt 0 OB mi Pty

Parallel file Parallel file
Copy Split

In addition, the forward and adjoint functions have sevemlonal arguments. Thadd
is used in to signify that the output of the operation showddabdded to an existing vector.
The restart can be used to signify that we are restarting the operatoreriihe operator is
being used an inversion problem, two additional argumeiit®e/passed. Thaer argument
corresponds to the current iteration. T$tatusargument is &EP. st at us_sep. st at us object
used to keep track of the progress of the inversion. If passdtie starting and finishing of
the operation will be recorded in the status file. The forwamd adjoint functions only deal
with keeping track of the progress of the inversion. The vaak is done by thedj oi nt _op
andf or war d_op functions. These two functions must be overridden by itklcéin. Thesep-
. oc_base. oper at or defines a functiodot _t est which tests to make sure the operator passes
the dot product test. Theni t _op(restart) function is defined to perform operations needed
before the operator is initialized for the first time. Tiestart argument is used to signify
whether the job is being restarted.

The simplest operator that is derived from $EP. op_base. operat or class is thesep-
. op_scal e. operat or operator. This operator is simply a diagonal operator wieégements
along the diagonal are constant. It usesdtre vec_base. vect or vector operations to run the
forward and adjoint. It is used by the solver to applwhen doing regularized or precondi-
tioned inversion.

Two classes for combining operator are also derived. Thiestrs op_conbo. chai n class
chains two or more operators together (éd3) , whereA andB are both operators. When
initialized, it checks to make sure that the domaiaind the range dB are the same space.
Thei nit _op function is overridden to create the temporary vector ofgshared space. The
SEP. op_conbo. array class is used to define an array of operators. The number omcs
and rows, along with the operators, are passed in durin@lizdtion. It can be useful for

52 R. Clapp SEP-120

regularized problems and building complex inversion ofpesa The range and domain vectors
are constructed from th&epP. op_super . vect or vector class.

The current operator tree can be seen in Figure 3. An oubx-operator classer-
. op_oc. oper at or, iS also derived from theepr. op_base. oper at or class. This class expects
its inputs and outputs will be stored on disk. T$EP. op_oc_seri al . operat or is used for
operators that are applied by a serial code. The class igedeefiom both thesep. op_oc. -
oper at or and SEP. opt _par _group. par _group. It is initialized by the location of the se-
rial codeprog and optionally thename a description of the operator (defaulting to the pro-
gram name), a verbosity flagdrb), and the message to print when applying the operator
(msg. Other operator’s parameters are set usingsHreopt _par _gr oup. par _gr oup parame-
ter methodology.

domain and range The domain and range vectors. These are expected to bedigovethe
SEP. op_oc. vect or class.

domain_tag and range_tagThe tags the program uses for the domain and range vectors,
defaults tarodel = anddat a=.

restart_com The command line argument to specify a restart, defaultete n
adj_com The command line argument when running the adjoint, defaakdj =y.

add_com The command line argument when adding to the output, defandtid=y.

Thef orwar d_op andadj oi nt _op become calls to the serial code.

Operator
Figure 3: The inheritance class for Scale Out of core Array Chain

operatorshobl-operato{NR]
o Serdl Pl Perelel sl

The final two operator classeSEP. op_oc_par. operat or and SEP. op_oc_par _split-
. operat or, are for parallel jobs. They are derived from #$&p. pj _base. par _j ob andSepr-
.pj _split.par_job class along with theep. op_oc. oper at or class. ThesEP. op_oc_par . oper at or
class is designed for jobs where the domain and range vewibrise distributed and col-
lected before and after the parallel job. T$E®. op_oc_par _split.operator class is useful

SEP-120 Python and programming 53

for problems where distributing and collecting the filessakvery operation is not practi-
cal. All of the initialization and parameters are generaiindled the same as for tisep-
.op_oc_serial . operator. The domain and range vectors are eitbEr. pv_copy. vect or Or
SEP. pv_split.vector in the case OBEP. op_oc_par. operator operator. In the case of the
SEP. op_oc_par _spl i t. operator object, the vectors must be of tlseP. pv_al ways_spl it -
.vect or type. To run the operator, a parallel job is executed ratiear tunning a serial code.

Solvers

The base solver classgpP. sol v_base. sol ver, is inherited fromsEP. opt _base. opti ons. The
solver keeps track of its progress using #e. st at _sep. st at us module. It expects that the
parametersiter, the number of iterations, arsleppey the class that calculates the step to be
set by the timer ep_run is called. The functiomt er iteratesniter times. To make expanding
the solver easier, it includes a dummy functiem_iter (iter) that is run at the end of
each iteration. This function can be overwritten to do tkitige write out the model at each
iteration.

There are three classes derived fromdbe sol v_base. sol ver class. TheEP. sol v_snp. -
sol ver class is designed for solving problems of the form

Q(m) =||d —Lm|? (1)

whered is the datal is the operator, anth is the model. It expects that its children set the
operatorop, the datadata the modelmodelbefore itsprep_run function is invoked. It will
also look for a weighting operatevop, a a model vectov, an initial modelmQ, and an initial
residual vectoresd From this information, an initial residual model vectoe aalculated and
SEP. sol v_base. sol ver’ s prep_run is invoked.

The SEP. sol v_reg. sol ver class is also derived frorser. sol v_base. sol ver class. Itis
used for regularized inversion problems of the form,

Q(m) = [|[d —Lm||?+€?]|Am||?,)

whereA is the regularization operator. It expects all of the argnt®ief SEP. sol v_snp. -
sol ver with the addition of regularization operat@g and the relative weighting parameter
eps In addition accepts the optional residual model spaceovessm

The final solver derived fronser. sol v_base. sol ver IS SEP. sol ve_prec. sol ver. It is
used from regularized problems with model preconditiorafithe form,

Q(p) = |ld —LBm|[*+€?||pl|3, ®3)

whereB is the preconditioning operator apds the preconditioned variable, where= Bp.
It expects all of the same parameterssap. sol v_r eg. sol ver, with reg removed ancreg
the preconditioning operator, added.

All of the solvers are currently linear solvers. Adding norear solvers would be fairly
easy. They all require a step function. Currently only a agaje gradient step function is
available inseP. cgst ep. cgst ep.

54 R. Clapp SEP-120

PROGRAM FUNCTIONS

There are two required and three optional functions avisitetthe programmer. The required
functions go near the beginning and ending of the prograne. fifst, sep_begi n_pr og, tells

the server that the program has started successfully. lWidHhe used when it is safe to start
another instance of the program on the same node. This tatfairement is important when
sharing an output spacecpy) on a node. If you are adding to the output space you need
insure that the output file has been created by the first iostahthe program. The other
required function isep_end_prog. This should be used after all of the output files have been
completely written to. The server interprets it as a signashpletion for the job.

The sep_progress function enables effective job restarting. The programoaer use
this function to signify a checkpoint in the code. When rdastg a job, both the restart
flag and the last progress message will be passed as argufoeti® restarting job. In
the case when you are sharing an output space, you shouldhisderiction whenever you
write to the shared file. The final two functions are when yoel slraring an output space.
The sep_open_l ock(tag) locks (if already locked waits for the file to become avaigld
SEPIib tag. The sep_cl ose_l ock(tag) function frees a tag so another process can safely
read or write to it. All of these commands perform no functigmen they are not a portion of
a parallel job.

EXAMPLES

Examples are the most effective way to learn how to use a pieseftware. In this section,
| will go over several examples. | will begin by showing howhuoild a flow of multiple
programs. | then will give an example of how to run a simpleafjaljob. The third example
will show how to an out-of-core inversion using serial cqdee the final example will show
how to do an inversion using parallel objects.

Creating a flow

Creating a wrapper to a serial code involves creating tweaibj The first object is a class
that knows the parameters for the program and how to execufeiexample isscal e. py
which tells how to run a simple scaling program.

i mport SEP. opt _prog #handl e the paraneters for the program
cl ass scal e(SEP. opt _prog.options): #inherit from both
def __init__(self,nane="scale"): #initialization nethod
SEP. opt _prog.options. __init__(self,nane) #initialize paraneters
sel f.set_prog("Scal e. x")
def add_doc_parans(self):
"""Add the paraneters for scaling a dataset"""
sel f. add_doc_paran("stdout", doc="CQutput file")

SEP-120 Python and programming 55

sel f. add_doc_paran("scal e", doc="Scal e the dataset by a given val ue")

The second object will use the above class as in input to a@nmo¢sEP. pr og. pr og) object.
The scriptscal e. py is an example of using the aboweal e object.

#!/usr/ bin/env python

i mport scal e #t he scal e obj ect code
i mport SEP. prog #t he program obj ect code
scal e=scal e. scal e(" Scal e") #initialize the scal e object
progran=SEP. prog. prog("Scale.py ", #the nane of the program for self-doc
"Scale.py pars ", #Usage for self-doc
[scale], #the components of the program
["Scale wusing the SEP python library"]) #description doc
program get _options() #read the command |ine argunents
program prep_run() #run the program

The script functions the same way as normal SEPIlib progranmo larguments are given,
self-doc is returned. If an argument that is needed isn'$gmean error is given (in this case
including the self-doc for the parameter).

Things get more interesting when we add a second programhidrcase, we will add a
simple program that will create a 2-D array with a plane ofssaesome location. The script
| i ne. py provides the wrapper for the program.

i mport SEP.opt_prog #paraneters
cl ass |ine(SEP. opt_prog. options):
def __init__(self,nane="scale"):
SEP. opt _prog.options. __init__(self, nane)
sel f. add_prog("Line.x")
def add_doc_parans(self):
"""Add the paraneters for scaling a dataset
#add paraneters with default val ues
sel f. add_doc_paran("stdout", doc="CQut put file")
sel f. add_doc_paran("nl", 10, doc="The nunber of sanple first axis ")
sel f. add_doc_paran("ol",0.,doc="Origin of the first axis")
sel f. add_doc_paran("dl", 1., doc="Sanpling of the first axis")
sel f. add_doc_paran("n2", 10, doc="The nunber of sanple second axis ")
sel f. add_doc_paran("02",0.,doc="Origin of the second axis")

sel f. add_doc_paran("d2", 1., doc="Sanpli ng of the second axis")
sel f. add_doc_paran("sanpl e", 5, doc="Sanpl e number at which to create |ine")

We can write a script that combines these two programs. TihepnegramLi ne_scal e. py
will first create the array with the program line, then use thaput as input to the scaling

56 R. Clapp SEP-120

program. Combining the programs involves three additistegs. First, we will need to create
a parameter objecsgP. opt _pr og. opt i ons, that will be responsible for storing the input and
output file information. Second, we will need to inherit frdaoth thel i ne andscal e objects.
We will change the initialization of these object is to indduthe new parameter object. We
will remove from the documentation the input and output fdguests. We will set the input
and output file names based on the new parameter object. Tielfianges involve how to
recognize the parameters for the various programs. Wentiitiduce a new dictionagyrefixes
which maps a prefix to the parameter objects. In the exambe/pgou will now usdline_n1l

to set the number of samples in the output space.

#!/usr/ bin/env python

i mport scale,line #i mport both objects
i mport SEP. opt _prog

i mport SEP. prog

class mai n_args(SEP. prog): #the main paraneters
def __init_ (self):
SEP. opt _prog.options. __init__(self,"MAIN')
sel f. add_doc_paran("stdout", doc="CQutput file")

class ny_line(line.line): #inherit fromthe |ine object

def __init__(self, main_pars, nane)
line.line.__init__(self,name) #initialize the line.line structure
sel f. mai n=mai n_pars #store the main prograns paraneter class

def add_doc_parans(sel f):
line.line.add_doc_parans(self) #add the paraneters described in line
self.del _par("stdout")a #delete the |ine paraneter

def prep_run(self,restart):
#set the stdout a tenp file based on the stdout of the main program
sel f.add_paran("stdout","%.tenp" %el f. mai n. paran("stdout"))
line.line.prep_run(self,restart)

cl ass ny_scal e(scal e. scal e): #inherit the scale calss
def __init__(self, main_pars, nane)
scale.scale. __init__(self,name) #initialize the scale class

sel f. mai n=mai n_pars
def add_doc_parans(self):

scal e. scal e. add_doc_par ans(sel f)

sel f.del _par("stdin") ;self.del_par("stdout") #delete in and out
def prep_run(self,restart):

#add in out (inis tenmp file fromline)

sel f.add_paran("stdin","%.inter"%el f. main. paran("stdout"))

sel f. add_paran{"stdout", sel f. mai n. param"stdout"))

scal e. scal e. prep_run(sel f)

SEP-120 Python and programming 57

mai n=mai n_ar gs() #create the main argunents
line=ny_line(main,"Line") #create the line argunents
scal e=nmy_scal e(mai n, "Scal e") #create the scal e argunents
prefixes={} #prefix dictionary
prefixes["Line"]="line_" #prefix for all line paraneters
prefixes["Scal e"]="scale_" #prefix for all scale paraneters
pr ogr aneSEP. prog. prog("Scal e_l i ne
"Scale_line.py pars outtag= ",
[line,scale], #now we have two objects in the flow
["Create a line and then scale it using the SEP python library"],

prefixes=prefixes #the prefixes associated with the objects

program get _options() #get the options
program prep_run() #run the fl ow

Simple parallel jobs

For many parallel jobs, the prograraral | el is all that is neededParal | el is meant for
parallel jobs where the input and output are either distetdseEP. pf _splist. parfile, Or
share inputsep. pf _copy. parfil e, and the data is partitioned along a single axis for each file.
It also requires that you are running a single program on eade (rather than some more
complex operation) and you aren’t wanting to add the outpurtother file. The required
arguments tear al | el are composed of the program namemmangdthe number of blocks

to break the program intoblock and a series of lists (comma separated).

files The name of the parallel file(s).
tags The tags associated with each file.
axis The axis that each file is split along. If the file is shared akis is ignored for this file.

usage The usage for each file "INPUT" or "OUTPUT".

file_type The parallel file type for each file ("DISTRIBUTE" or "COPY").

All arguments that aren’t part of thrar al | el program are passed as command line arguments
to parallelized serial code.

The program is effective for parallelizing code where thenpatational cost is signifi-
cantly more than the cost of transferring the data (mignaiod modeling for example). It
is also effective when handling problems that benefit fromdpéeld in memory (operations
such as transposes). For example, a multi-gigabyte 2-Ddu&de transposed at marginally
more than the cost of distributing and collecting the datdseugh

58 R. Clapp SEP-120

Parallel files="in.H out.H' tags="stdin, stdout" axis="2,1" usage="1NPUT, QUTPUT"\
file_type="Dl STRI BUTE, DI STRI BUTE"

Complex parallel job

The scriptf dmod. py in the report directory parallelizes 2-D finite differenceaeling using

the SEPIlib progranfdrod. The general form is the same as seen in the scripts in the flow
example. The dnod_par object extends theep. pj _base. par_j ob class. The user describes

a regular spaced set of shot locations using the paranoatedxs,nxs,0zand the number
different blocks to break the problem into usinglock Each job process a different set of
shot locations and needs its own set of parameters. Thedancii | d_sect _par s calculates

the parameters that vary as a function of job and stores tiiteists in the dictionargect_pars

def buil d_sect_parans(self):

"""Build parameters for parallel job"""

sect _pars={}

nxs=i nt (sel f. paran("nxs"))

oxs=fl oat (sel f. paranm("oxs"))

dxs=fl oat (sel f. paranm("dxs"))

ozs=fl oat (sel f. paranm("ozs"))

nbl ock=sel f . par an(" nbl ock")

i f not nbl ock: nbl ock=nxs

nbl ock=i nt (bl ock)

i m n=i nt (n/ nbl ock)

nextra=n-nbl ock*i m n

itot=0

for i in range(nbl ock):
sect _pars[str(i)]=SEP. args. basi c(nanme=str(i))
ol =o+d*i t ot
dl =d
nl=imn
if i <nextra: nl=nl+1
i tot=itot+nl
sect_pars[str(i)].add_string("nzs=1 0zs=% dzs=1."% 0zs))
sect_pars[str(i)].add_string("nxs=% oxs=% dxs=%"%nl,ol,dl))

return sect_pars

Theprep_run function creates the list of parameters and defines a daryoof parallel
files. The velocity space is copied to all of the nodes usimgsH®. pf _copy. parfil e class,
the output shot gather files are spread accross the clustey e SEP. pf _split.parfile
obj ect .

par _files={}

SEP-120 Python and programming 59

par_files["vel "] =SEP. pf _copy. parfil e(name=sel f.paran{"intag"),
tag="i ntag=", usage="1 NPUT", nj obs=l en(sect _pars. keys()),restart=restart)

par_files["hsfile"]=SEP. pf_split.parfil e(name=sel f.paran("hsfile"),
df f _axi s=3,tag="hsfil e=", usage="OUTPUT", nj obs=l en(sect _pars. keys()),
restart=restart, nbl ock=l en(sect _pars. keys()))

The section parameters, the parallel files, and the modeliagram are then added to the
objects parameters and the parallel job is initialized.

sel f.add_paran("files", par_files)

sel f. add_par an{"sect _pars", sect _pars)

sel f. add_par an(" progrant, "%/ Fdnod" %SEP. pat hs. sepbi ndi r)
SEP. pj _base. par _j ob. prep_run(sel f)

Inversion example

The script nt er p. py does out-of-core interpolation. The progranaer p. x interpolates from
an irregular to a regular mesh. The progresn. x convolves with a three point filter. We then
can turn these program into operators.

i nter p_op=SEP. op_oc_serial.operator("Interp.x")
reg =SEP. op_oc_seri al . operator("reg. x")

We then extend the solver object. We require the opemi@nd regularization operatoeg.
(n1,01,d).

cl ass sol ver (SEP. sol v_reg. sol ver):
def __init__ (self,op,reg):
SEP.solv_reg.solver.__init__("SOLVER")
sel f. add_par an{"op", op)
sel f. add_paran("reg", reg)

We require the user to specify the modebde| the datadata ¢ eps and the number of
iterationsniter, and the dimensions of the output space

def add_doc_parans(self):
sel f. add_doc_paran("eps", 1., "Epsilon")
sel f.add_doc_paran("niter", 1, " Nunber of iterations")
sel f. add_doc_paran(" nodel ", doc="Model (output)")
sel f. add_doc_paran("data", doc="Data (input)")
sel f. add_doc_paran("nl", doc="nunber of sanples (axis 1)")
sel f. add_doc_paran("ol", doc="First sanple (axis 1)")
sel f. add_doc_paran("dl", doc="Sanpling (axis 1)")

60 R. Clapp SEP-120

We create the data vector from a file and create the modelwecto

def prep_run(self,restart=None):
sel f. add_par an{"dat a", SEP. vec_sfl oat . vector (tag="data"))
sel f. add_par an{"nodel ", SEP. vec_sfl oat . vect or (nane="nodel "))
sel f. paran("nodel ").set_axis(1, self.param"nl").
sel f. paran("ol", sel f.param("d1")))
sel f. paran("nodel "). zero()

We add the domain and range vectors for the operator anddh&areation operator.

sel f. paran("op").add_param("donai n", sel f. mai n. paran{ " nodel "))
sel f. paran("op").add_param("range", sel f. mai n. paranm("data"))

sel f.paran("reg").add_paran("domai n", sel f. mai n. paran("nodel "))
sel f.paran("reg").add_paran("range", sel f. mai n. paran{ " nodel "))

Finally we create the step operator and runghep_r un function for the operators and the
regularization solver.

sel f. add_par an{("cgst ep", SEP. cgst ep. cgst ep("cgstep"))
sel f.paran("op").prep_run(restart)
self.paranm("reg").prep_run(restart)

SEP. sol v_reg. sol ver. prep_run(sel f,restart)

We create the solver object, the program object, read thanpeters, and run the job.

sol v=sol ver (i nterp_op, reg_op)
progr ameSEP. opt _prog. prog("Interpolate ",
"Interp. py nodel = data= ",
[interp_op, reg_op, sol v],
["Interpolatation using the SEP python library"])
program get _options()
program prep_run()

CONCLUSIONS

In this paper | present simple serial codes that can be usetede much more complex
objects with minimal additional coding overhead. Theseotg can take the form of complex
program chains. In addition the serial codes can be usedettecicoarse-grained parallel
programs. A further option is to use simple serial codes immlfel out-of-core inversion,
using both serial and parallel operators. Examples demaiastow to accomplish each of
these goals.

SEP-120 Python and programming 61

REFERENCES

Clapp, M. L., and Clapp, R. G., 2005, 3-d subsalt imaging egufarized inversion with
model preconditioning: SER-20, 1-22.

Clapp, M. L., 2003, Directions in 3-D imaging - Strike, dimth?: SEP413 363-368.
Clapp, R. G., 20044a, Fault tolerant parallel SEPIib: SEF-175-182.

Clapp, R. G., 2004b, A python solver for out of core, fauletaint inversion: SEP17, 183—
190.

Sava, P., and Biondi, B., 2003, Wave-equation MVA: Born Ryamd beyond: SEP14
83-94.

