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Angle-domain common image gather s for anisotropic migration

Biondo Biondt

ABSTRACT

| present a general methodology for computing and analyaimgje Domain Common
Image Gathers (ADCIGS) in conjunction with anisotropic e&&ld-continuation migra-
tion. | demonstrate that the aperture angles estimatedamgfsrming prestack image
using slant stacks along the subsurface-offset axis aree goproximation of the phase
aperture angles, and that they are exactly equal to the jpipe@stire angles for flat events
in VTI media.

| introduce a generalization of the concept of migrationufsp response for the compu
tation of prestack images function of the subsurface offs#tenables a straightforwar
analytical analysis of the reflector movements caused hyifiitions in anisotropic pa-
rameters. This analysis shows that the Residual MoveouJRiM migrated ADCIGs is
function of both the phase aperture angle and the groupwapeaahgle. The dependency
of the RMO function on the group angles adds some complexitigeg RMO analysis be-
cause the computation of group angles from phase angleshwane measured from the
ADCIGs, depends on the local background anisotropic vel@tithe reflector point.
Several numerical examples demonstrate the accuracy &Ni@ function predicted by
my kinematic analysis, and in contrast, that the approxonaif the group angles by the
phase angles may lead to substantial errors for eventsteaflatwide aperture angles.
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INTRODUCTION

Angle Domain Common Image Gathers (ADCIGS) are a useful flmoupdating migration
velocity after wavefield-continuation migration (Biondidh Sava, 1999; Clapp and Biondi,
2000). When the migration velocity is not accurate, the mststency of the migrated events
along the aperture-angle axis is proportional to the migmnatelocity errors and provides the
guantitative information necessary to update the veldaitgtion.

All the methods for computing ADCIGs currently availabletle literature are limited to
isotropic migration; this is true for both the methods apglduring downward continuation
before imaging (Prucha et al., 1999), and the methods apphehe prestack migrated image
as a post-processing operator (Sava and Fomel, 2003; Rak@tSava, 2002; Biondi and
Tisserant, 2004). Similarly, the quantitative analysisted residual moveout measured in
ADCIGs caused by migration-velocity errors is also limitedhe isotropic case (Biondi and
Symes, 2003; Biondi and Tisserant, 2004).

lemail: not available

77



78 Biondi SEP-120

In this paper | generalize the methodologies for computind analyzing ADCIGs to
prestack images obtained by wavefield-continuation ar@pat migration. This work is prac-
tically motivated by two current trends in the seismic exatmn industry: 1) data are recorded
with increasingly long offsets, improving the resolutiondareliability of the estimation of
anisotropic parameters from surface data, 2) anisotrastack depth migration is increas-
ingly being used in areas, like near or under salt bodiesyevtiee image quality, and conse-
guently the velocity estimation process, could benefit ftbmuse of wavefield-continuation
migration (Bear et al., 2003; Sarkar and Tsvankin, 2004abhik perspective, other papers in
this report present complementary work that is aimed atldpireg methods for cost-efficient
anisotropic 3-D prestack migration (Sen and Biondi, 2086y overturned-events anisotropic
3-D prestack migration (Shan and Biondi, 2005b,a).

Sarkar and Tsvankin (2003, 2004b) analyze the effect oftitglerrors on offset-domain
CIGs produced by Kirchhoff migration. They demonstrate eéffectiveness of their method
by successfully applying it to a West Africa data set (Saikad Tsvankin, 2004a). In this
paper, | provide the basic analytical tools necessary tmparanisotropic migration velocity
analysis for data sets that benefit from imaging with wavefcgintinuation migration instead
of Kirchhoff migration.

The main conceptual differences between isotropic ADCl@bsanisotropic ADCIGs are
related to the fact that in anisotropic wave-propagatianghase angles and velocities are
different from the group angles and velocities (TsvankBQD). Therefore, the first question
that | will address is: which aperture angles are we meagunrthe ADCIGs? | demon-
strate that the transformation to angle domain maps thectigiteinto the phase-angle domain.
Strictly speaking this mapping is exact only for events ralrim the isotropic axis of symmetry
(e.g. flat events for Vertical Transverse Isotropic (VTI)diag, because the presence of dips
skews the estimates in ways similar to when geological-tips the estimation of aperture
angles while computing ADCIGs for converted events (Rasaled Rickett, 2001; Rosales
and Biondi, 2005). Fortunately, in the anisotropic case,liases caused by geological dips
are less likely to create problems in practical applicatitran in the converted waves case.
The simple numerical examples shown in this paper seem tcatgdthat, for realistic values
of anisotropy, the errors caused by the geological dips &lsand can be neglected. This ap-
proximation greatly simplifies the computation of ADCIGdahus makes their application
more attractive.

The second question | address is: is the residual moveogedaay velocity errors only
function of the phase angles, or does it also depend on thggrogles? In the second part
of this paper | demonstrate that the residual moveout istiomof both the angles and that
neglecting its dependency on the group angles leads tossuladtinaccuracy in the predicted
RMO function.

PHASE AND GROUP ANGLESAND VELOCITIES

In anisotropic media the group angles and velocities do oioicade with the phase angles and
velocities. The transformation from phase velodityto group velocityV is conventionally
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defined as the following (Tsvankin, 2001):

~ dv
V= /v2+<£>, 1)

whered is the phase propagation angle. The associated transfomfedm phase angles to
group angle® is defined as:

tand + & 9%
tan9 - T\/d@m{ (2)
1- Jar tand

Notice that throughout this paper | use the tilde symbol stidguish between phase quantities
(with a tilde) and group quantities (without a tilde).

Dellinger and Muir (1985) propose, and heuristically mate; the following symmetric
relations for the inverse transforms:

~ ds
S= [+ — ), 3
(%) ©
whereSandSare respectively the phase slowness and the group slovaress,
~  tang4 148
tan@ - TSCIQ (4)
1- 35 tand

| use the heuristic relation in equation 4 to derive some efahalytical results presented in
this paper. Furthermore, | use all the above relationshig®mpute the kinematic numerical
results presented in this paper.

The numerical results, though not the analytical resutts aéso dependent on the choice
of a specific approximation of the anisotropic phase-v&joitinction. | used the following
VTI approximation for the phase velocity:

W 2cog0 + Vi 2sinto +\/(VV200§9 + Vi 2sin20)* + Wy 2 (V2 — Vi ?) sin? 20
2 )
®)

whereVy, Vy, Vn, are respectively the vertical velocity, the horizontdbegy and the NMO
velocity. Following Fowler (2003), the corresponding appmation for the group velocity is
the following:

Vi () =

<. o) S/2C0$0 + Sy2SiR0 +/(S,2C020 + Su2si0)* + 52 (Su? — Su?) sif 26.
TI\Y) = '
2

(6)

whereSy, Sy, Sy, are respectively the vertical slowness, the horizontalsess and the
NMO slowness.
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The numerical results obtained by modeling and migratinghsstic seismic data were
obtained by source-receiver depth continuation (upwaranodeling and downward for mi-
gration) using the following dispersion relation:

Ky = @?~ Vg 7)
T WY 02+ (W2 VR k2

wherew is the temporal frequency, amg andk; are respectively the horizontal and vertical
wavenumbers. The dispersion relation shown in equationriégponds to the velocity and
slowness functions in equations 5 and 6 (Fowler, 2003).

Anisotropic parametersused for numerical tests

To verify the accuracy of the results under realistic buiedént anisotropic conditions, in the
numerical examples | used three set of anisotropic Thomaeangeters representing three
different rocks described by Tsvankin (2001):

e Taylor Sand :e =0.110 6 = —0.035, — n = .155,
e Mesa Clay Shale ¢ =0.189, § = 0.204— n = —.010,
e GreenLight River Shale¢ = 0.0975,§ = —0.11, — n = .266.

Notice that the GreenLight River Shale is derived from thed&drRiver Shale described by
Tsvankin (2001) by halving the anisotropic parameterands), because the strong unellipti-
cal nature of the original one & .74) caused the group-slowness approximation in equation 6
to break down, and made the kinematic computations basealydracing, and thus on group
velocity and angles, inconsistent with wavefield migrasibased on the dispersion relation in
equation 7. Notice that the GreenLight River Shale is gt#l inost unelliptical among the set
of rocks | am using.

ANGLE GATHERSBY ANISOTROPIC DOWNWARD-CONTINUATION
MIGRATION

In anisotropic media, when the reflector is dipping with exggo the normal to the isotropic
axis of symmetry (horizontal direction for VTI) the incideasnd reflected aperture angle dif-
fer. This difference is caused by the fact that, althoughptinese slowness is function of the
propagation angle, Snell law requires that the componemtd|pl to the reflector of the inci-

dent and reflected slowness vectors must match at the io¢erfdowever, we can still define
an “average” aperture angjeand “average” dip angley using the following relationships:

i N ~+~
,3r2,35, and Otx='352'3r,

V= (8)

where theBs andg; are the phase angles of the downgoing and upgoing plane waeggc-
tively.
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Figure 1: Sketch representing the reflection of a plane wavani anisotropic medium.
biondo1-cig-aniso-vAINR]

Figure 1 shows the geometric interpretation of these andlegice that the average dip
angleay is different from the true geological dip anglg, and that the average aperture angle
y is obviously different from the true aperture angfgsandy; . However, the five angles are
related and, if needed, the true angles can be derived freravbrage angles (Rosales and
Biondi, 2005).

The transformation to the angle domain transforms the ge&smage from the migrated
subsurface offset domakmn;, to the angle domain by a slant stack transform. The tramsfor
tion axis is thus the physical dip of the image along the stiasa offset; that isgz: /ohe.
The dip angles can be similarly related to the midpoint dipthe image; that isgz: /om.
Following the derivation of acoustic isotropic ADCIGs byvdaand Fomel (2003) and of
converted-waves ADCIGs by Rosales and Rickett (2001), wencde the following relation-
ships between the propagation angles and the derivativeurezhfrom the wavefield:

ot

— = Scos@ix—7)—Scos@ix+7), 9)
Zé (mszmg, hs:hg)

E;i = Ssin@x— )+ & sin@x+7), (10)
M |(z.=z, he=he)

aaTt = Ssin@ —7)—Ssin@x+7), (11)
§ 1(z:=%, m=m)

whereS; and§ are the phase slownesses for the source and receiver wdsefegpectively.
We obtain the expression for the offset dip by taking theorafiequation 11 with equation 9,
and similarly for the midpoint dips by taking the ratio of edon 10 with equation 9, and
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after some algebraic manipulations, we obtain the follgnarpressions:

tany + §l~%— 2 tand

0
°% - . (12)
g |, ) 1- S+:ZZ tandy tany
SS ~
Mg | (h, =Ry 1- %i%tan?tan&’x

In contrast with the equivalent relationships valid fortispic media, these relationships de-
pend on both the aperture angfeand the dip angléx. The expression for the offset dip
(equation 9) simplifies into the known relationship validisotropic media when either the
difference between the phase slownesses is zero, or theglgd is zero. In VTI media this
happens for flat geological dips. In a general TI medium tbisdition is fulfilled when the
geological dip is normal to the axis of symmetry.

Solving for tary’ and tarwy we obtain the following:

N azé — Az tanozx
tany = T 9ZsA - (14)
S X
325 ~
L Agtany
tandy, = - , (15)

1+ ;%AgtanV
where for convenience | substituted the symhalfor the “normalized slowness difference”
(& -9)/(S+S)
Substituting equation 15 in equation 14, and equation 1@ éguation 15, we get the

following two quadratic expressions that can be solved tonade the angles as a function of
the dips measured from the image:

[azé Az— 82& }tan2 +[1 Az]tanyvta—zé §_8_Z§ =0 (16)

3mg ahg am Mg ahg
9z 9z 2 ~ 2V ians 1 0% 9z
— —— AZ|tarf 1— A%]tan Az =0 17
|:8hg 8m§ S] le+[ S] ax+ahg S 8m§ ( )

These are two independent quadratic equations iff &wd tarw, that can be solved indepen-
dently. If the “normalized slowness differenca’z between the slowness along the propaga-
tion directions of the source and receiver wavefields aravikneve can directly computg
and@y, and then the trugs and ;. One important case in this category is when we image
converted waves.

For anisotropic velocities, the slownesses depend on thigagation angles, and thus the
normalized difference depends on the unkndwanday. In practice, these equations can be
solved by a simple iterative process that starts by assuthagnormalized difference” to be
equal to zero. In all numerical test | conducted this itemprocess converges to the correct
solution in only a few iterations, and thus is not computaaity demanding.



SEP-120 Anistropic ADCIGs 83

The dependency of equations 16 and 17 from the slownessdunstalso an impediment
to the use of efficient Fourier-domain methods to perforntittaiesformation to angle domain,
because the slowness function cannot be assumed to berdoriaatunately, the numerical
examples shown below indicate that for practical valuefiefanisotropy parameters the de-
pendency of the estimate from the dip angles can be safetyegnfor small dips, and it is
unlikely to constitute a problem for steep dips.

KINEMATIC ANALYSISOF ADCIGSBY INTEGRAL MIGRATION

The analysis shown in the previous section provides thedomahtal equations to relate the
offset and midpoint dips measured from prestack imagesapliase angles at the reflection
point. However, the previous analysis is not directly aggilie to the analysis of residual
moveout in the ADCIGs caused by velocity errors becausebiaged on plane waves and not
rays. We are interested in relating traveltime errors acdated during the propagation in
the overburden to movements of the migrated events in thel&De traveltime errors are
naturally evaluated along rays, which are related to gralpoity and angles. To overcome
this difficulty, in this section | introduce an integral foahation of the methodology to compute
angle gathers that enables a simple link between ADCIGs eaairiatics.

My analysis is based on the conceptual generalization efat (Kirchhoff) migration to
the computation of sub-surface offset gathers. Integrgtamion is defined by the summation
surfaces over which the data are integrated to compute thgarat every point in the image
space. The shapes of these summation surfaces are usualyisa as the sum of the time
delays from the image poink{, m;) in the subsurface to the source and receiver locations at
the surface. The basic idea underlying the generalizatintrdduce in this paper, is that we
can compute the summation surfaces by evaluating the tilaggistarting not from the same
point in the subsurface for both the source and receiver bagsstarting from two points hor-
izontally shifted by+hg with respect to the image point. The summation of data albaget
surfaces produces a prestack image as a function of thersatxswoffset that is kinematically
equivalent to the image created by wavefield-continuatiggrations such as source-receiver
downward continuation, or shot-profile migration in corgtian to the generalized imaging
condition discussed by Rickett and Sava (2002). Theretbeekinematic analysis that fol-
lows, and its conclusions, are independent from the mignatiethod applied to compute the
prestack images. An interesting observation is that the K&3@omputed using this gener-
alization of integral migration should be immune from th&facts that affect angle gathers
computed by conventional integral migration and discussefitolk and Symes (2003).

Generalized migration impulseresponsein parametric form

Integral migration can be conceptually performed by spreathe data along spreading sur-
faces as well as by summing data along the summation surdigamsssed above. The spread-
ing surfaces are duals of the summation surfaces and reprigseimpulse response of the
migration operator. In homogeneous anisotropic mediunsktiae of the impulse responses
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Figure 2: Geometry used for eval- Ly z
uating the impulse response of N
the generalized integral migration. : —
biondo1-imp-respNR]

of the generalized integral migration can be easily evaldianalytically as a function of the
subsurface offséltg, in addition to the usual image depth and midpointms. Figure 2 il-
lustrates the geometry used to evaluate this impulse respddotice that the angles in this
figure @x andy) are missing a tilde because they are group angles, and asee@ngles as
in the previous section. In an isotropic medium these argjleshe dip and aperture angles,
but in an anisotropic medium these angles are not easilieckta the geological dip and the
reflection aperture angles. They can be thought of as coemeparameters to evaluate the
impulse response.

Simple trigonometry applied to Figure 2 allows us to expthesmpulse response in para-
metric form, as a function afyx andy . If we migrate an impulse recorded at titge midpoint
mp and surface offsdip, the migration impulse response can be expressed as follows

z = L(axy) Cocszoszx_clfy, (18)
me = Mo (o) oo (19)
e = ho—H=ho—L(way) S, (20)
with
L (e y) = LS;LK 21)

In a isotropic medium the half path-length would be simply given bytp/2S, but in an
anisotropic medium it is function of the angles. Its two camentsLs andL, can be calcu-
lated by solving the following system of linear equations:

to = SLs+SLy, (22)
Zs—% = Lgscos@x—y)—Lrcos@y+y)=0. (23)

Equation 22 constraints the total traveltime to be equahéampulse time, and equations 23
constraints the depth of the end point of the two ragsafidz ) to be equal, since the sub-
surface offset is assumed to be horizontal. The solutiohiefdystem of equation yields the
following for the half path-length:

I—S + Lr tD

L (le, J/) = 2 = (S i Ss) + (Sr — %)tanocx tany - (24)
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The combination of equation 24 and equations 18—-20 endi#es/mluation of the generalized
migration impulse response in a arbitrary homogeneoustioEc medium.

Figure 3 shows a 3-D rendering of the impulse response cadpuging the previous
equations for an impulse witly = .9 secondsimp = 0 kilometers, andip = .4 kilometers,
and vertical slownesS, = 1 s/km; the anisotropy parameters correspond to the Taylor Sand
as listed in the table on page 80. The gray line (green in psilgrerimposed onto the impulse
response is the result of cutting the surface at zero suxidffset, and thus corresponds
to the conventional impulse response of prestack migratidne black line superimposed
onto the impulse response is the result of cutting the seréazero midpoint. In Figure 4
these two lines are superimposed onto the correspondirtigalesections cut from the im-
ages computed by an anisotropic wavefield source-receilgration applied with the same
parameters described above. Figure 4b shows the convehtiogration impulse response,
whereas Figure 4a shows the zero-midpoint section. The damputed by applying the kine-
matic equations perfectly match the impulse responses gmdpsing wavefield migration,
confirming the accuracy of the kinematic equations.

Analytical evaluation of the tangent planeto theimpulse response

The expression for the generalized impulse response ofgaieanisotropic migration leads
to the analytical evaluation of the offset dip and midpoimt along the planes tangent to the
impulse response, as a function of the group angles anditelbcthis section | demonstrate
that in the simple case of flat reflectors this analysis leads<actly the same results as the
phase-space analysis presented in the previous sectierderivation of the general relation-
ships expressed in equations 13 and 12, which are valid farlatrary reflector’s dip, is left
to the reader.

By applying elementary analytical geometry, | demonstira#gppendix A that the deriva-
tive of the depth with respect to the subsurface offset, ast@mt midpoint, is given by:

0% |  _ ey %7 25)
ahg T omg dhg omg dhg ’
Mg =mg Bax 0y 0y dax

and the derivative of the depth with respect to the midp@htonstant subsurface offset, is
given by:

02 __ Fay Gy I (26)
omg |, ;M ohe _ omeh;
§=1g dayx Ay dy dax

In the special case of flat reflectors & /dax andohg /9y vanish, and thus equation 25
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Figure 3: Impulse response of generalized anisotropi¢geksnigration. The gray line (green

in color) superimposed onto the impulse response corresptinthe conventional impulse
response of prestack migratiotbiondol-surf_taylor_hxd_dot_L{K:R]
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Figure 4. Vertical sections cut from
the impulse response computed by an >
anisotropic wavefield source-receiver
migration. The lines superimposed
onto the images correspond to the
lines superimposed onto the surface
shown in Figure 3 and are computed
by applying the kinematic expres- -
sions presented in equations 18-24.

| biondo1-Surf-taylor_hxd_.4-ovefn
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simplifies into the following expression:

9z aL omg
9z _ ( 9 ‘L=E+ dy COSV) dax
_ - ah . am,
e |(1m, —m. ar=0) (T;‘LZE—%smy) T
0z oL
W‘L:E_F WCOSV 27
= ‘ o (27)
a2
(28)

By substituting into equation 27 the appropriate derivaatfthe image coordinates and of the
half path-length with respect to the angles, all providedppendix A, | further simplify the
expression into the following:

825 tany + %g—f
— = —. (29)
ah = 1—135¢gn

& |(mg=mg, ax=0) Sy I4

Finally, by applying the transformation from group anglesoiphase angles expressed in
equation 4, | obtain the final result that for flat reflectors subsurface-offset dip is exactly
equal to the tangent of the phase aperture apgthat is:

9z

— tany. 30
oh; any (30)

(ms =M, O[XZO)

Numerical examples of aperture angle along impulse responses

The analytical kinematic results can be verified by numémgcanputations of impulse re-
sponses by wavefield migration and transformation of theltieg prestack image cubes into
the angle domain. Figure 5 shows four zero subsurfacetafstions cut through the impulse
responses computed by wavefield-continuation anisotrocation for the three anisotropic
rocks described in the table on page 80 and for an isotroplc fbhe parameters defining the
impulse responses are the same as for Figure 3; thigf 1s,.9 secondsmp = O kilometers,
andhp = .4 kilometers, and vertical slowneS = 1 s/km. Figure 5a shows the isotropic
case, Figure 5b shows the Taylor Sand case, Figure 5c shewddba Clay Shale case, and
Figure 5d shows the GreenLight River Shale case. As in Figuttee line superimposed onto
the images represent the impulse response computed usikgngmatic expressions in equa-
tions 18-24. The kinematic curves perfectly predicts thegpshof the images even for very
steep dips.

Figure 6 shows two-dimensional slices cut through the clbib@ioed by the transformation
to the angle domain of the impulse responses shown in Figureh& slices are cut at the
midpoint and depth corresponding to the expected locafitmdmpulse responses; that is, at
the location tracked by the lines shown in Figure 5. Theré¢haee lines superimposed onto the
angle-domain images. The solid lines display the numedoaiputation of arctaag: /oh;)
by applying equation 25. They perfectly track, as expedteslyesults of the transformation
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of the prestack images to angle domain. The dotted linedagishe phase aperture angle
y. As expected, they overlap with the solid line around th® zeidpoint (i.e. flat reflector),
and depart from them at larger midpoints, which corresporgtéeper reflections. However,
the error introduced by ignoring the difference betweerea@z: /ah:) andy is small, and
likely to be negligible in most practical situations. Filyathe dashed lines display the group
aperture angle. The differences betweenandy are substantial, up to 20% in some cases.
Ignoring them might be detrimental to the application of ABS. Notice that in the isotropic
case the three lines perfectly overlap and all of them mdtehmage.

ANISOTROPIC RESIDUAL MOVEOUT FOR FLAT REFLECTORS

The kinematic formulation of the generalized impulse resgopresented in the previous sec-
tion enables a simple analysis of the residual moveout (RM®@PDCIGs caused by errors in
anisotropic velocity parameters. For the sake of simpliat the present, | limit my analysis
to reflections from flat interfaces. However, a generalwatf the flat-events analysis to dip-
ping events should be conceptually straightforward, thomgt necessarily simple from the
analytical point of view.

A VTI velocity function, either group or phase, is descridgdthe following vector of
three velocitie/ = (W, VH, Vn), as for example used in equations 5, or by the corresponding
vector of three slowness&= (Sy, Sy, Sy) used in equation 6. | define the perturbations
as one multiplicative factors for each of the velocities ane& multiplicative factor for all
velocities; that is, the perturbed velocjy is defined as:

oV = (oW, oVH, pUN) = pv (ovy W, oviy VH L pvy UN) - (31)
The velocity-parameter perturbations is thus defined bydah@wving four-components vector
P= (V. PV PV PV ) -

For flat reflectors, the transformation to angle domain magsiage point at coordinates
(ze,he) into an image point with coordinates,( ) according to the following mapping:
~ 0
y = arctan—Zé , (32)
8h§ mg =Mmg

z, = zg—hgaTzS = z: —hgtany. (33)

The partial derivative of the angle-domain depthwith respect to thé-th component in the
perturbation vector can be expressed as follows:

9z,  9z,9L 9z, dy 9z, 9y

dpi 0L dp Iy dpi 9V Opi
9z, 0L aSJr Sy 9z, dy 0z, 3y
9L 3aS\dp Ay dpi/) Ay oo OV Ipi

_9z,0L3S  (9dz,0L3S  0z,\dy 3z, Iy (34)
9L 3Sap aL 9Say  ay Jopi 9y oo
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Figure 5: Impulse responses evaluated at zero subsurféeet ébr four rock types: a)
Isotropic, b) Taylor Sand, c) Mesa Clay Shale, and d) GregintlRiver Shale. Superimposed

onto the images are the impulse responses computed by it expressions presented
in equations 18—24/biondo1-Quad_hxd_.4-oveffCR]
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Figure 6: Slices of the impulse responses transformed inéo angle-domain for four
rock types: a) Isotropic, b) Taylor Sand, c) Mesa Clay Shatlg] d) GreenLight River
Shale. Superimposed onto the images there are the curveputenby applying the
kinematic analysis: y (dashed line),y (dotted line), and arctadg: /oh:) (solid line).
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In Appendix B | demonstrate that the terms multiplying thetiphderivatives with respect to
the angles are zero, and equation 34 simplifies into:

9z, 9z, 9L 3S

_ , 35
0pi oL 0Sap; (35)
where
0z 0 ah - . ~
B_If = a—ié — a—f tany’ = cosy + siny tany, (36)
and
oL
% (37)

0S(y) ~  S(y)cosy’

Uniform scaling of velocity

The derivative with respect to the perturbation compongnhas the following particularly
simple form:

0z ~

—~ =z (1+tany tanp), (38)
dpv

because the derivative of the slowness with respect to ammi$caling of the velocity has the

following simple form:

3S(y) — —S(y), (39)

dpv
that leads to the derivativiL /9py to be independent from the “local” shape of the anisotropic
slowness function. Intuitively, this simplification is atéd to the fact that the “shape” of the
wavefronts is not affected by a uniform scaling of the velpci

The residual moveouk zgrpo is defined as the difference between the reflector movement
at finite aperture anglg and the reflector movement at normal incidence. From equ&go
the partial derivative oA zrpmo With respect tqoy is equal to the following expression:

J0AZrRMO
dpv

= z; tany tany. (40)

When the medium is isotropic, and the phase angles are egjtted group angles, the RMO
expression in equation 40 becomes the RMO expression intsatiby Biondi and Symes
(2003). The dependency of equation 40 from the group angé®saits use in RMO analysis
somewhat less convenient, because it requires the tramsfion of phase angles (measured
directly from the image) into group angles by applying etprafl. The computational cost
of evaluating equation 1 is negligible, but its use makescthraputations dependent on the
local values of the background anisotropic velocity fumetiOn the other hand, the following
numerical examples show that substantial errors are intedlwhen the distinction between
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the group and phase angles is neglected, and the phasesuggliinstead of the group angle
in equation 40.

Figure 7 shows ADCIGs when an anisotropic velocity was pbed bypy = .99. The
four panels correspond to four rock types: a) Isotropic, &)ldr Sand, c) Mesa Clay Shale,
and d) GreenLight River Shale. Superimposed onto the imagethe RMO functions com-
puted using equation 40. The solid line was computed by cdéimgpwany from tany by
applying equation 1, whereas the dashed line was computegfrpximating tap as equal
to tany. The RMO curves computed using the correct group angle @érimatch the residual
moveout of the images. On the contrary, when the phase aagiased instead of the group
angles, significant errors are introduced even for such d pedurbation in the parameters
(pv = .99). Itis interesting to notice that the errors are largerthe rock types exhibiting
strong unelliptical anisotropy (Taylors Sand and Greeht.Rjver Shale) than for the strongly
anisotropic but quasi-elliptical rock (Mesa Clay Shale).

The expression for the RMO function derived in equation 4Based on a linearization,
and thus when the the perturbations in velocity parametertagge it is not as accurate as it
is when the perturbations are small (eog. = .99). Figure 8 illustrates this fact by showing a
similar experiment as the one shown in Figure 7, but with &upleation 10 times larger; that
is, with py =.9. As in Figure 7, the four panels correspond to four roclesypa) Isotropic,
b) Taylor Sand, c) Mesa Clay Shale, and d) GreenLight Rived&land the lines superim-
posed onto the images are the RMO functions computed by tisengorrect values for tan
(solid lines), and by using tgnin place of tany (dashed lines). With large perturbations,
the predicted RMO functions differ from the actual RMO fuons at wide aperture angles
even when the correct values of the group angles are useduatieq 40. However, even
with such large perturbations the predicted RMO functiamssaill useful approximations of
the actual RMO functions. In particular, it can be obsenret the predicted RMO function
correctly approximates the differences in shape of theah®WO function among the rock
types. These shape variations are related to the variatisigape of the wavefronts, which
are reflected in the predicted RMO function through the Vi in the mapping from phase
angles to group angles.

Arbitrary scaling of velocity

The expressions of the derivative bf with respect to arbitrary perturbations of individual
velocity components (i.e/y, Vi, andVy) are slightly more complex than with respecisp
because the wavefronts are deformed when the velocity coem® are unevenly perturbed.
These derivatives can be expressed as:

9z, z: 9S(y) ~
—_— = —— 1+tany tany), 41
dpwy S(y) dpvy ( ) 0
3z, z: 0S(y) ~

= —————(1+tanytany), 42
oV S(y) dpwy ( ) “42)
d 0S
Zy _ _ % 950 (1+tany tany). (43)

vy S(y) dpvy
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Figure 7: ADCIGs obtained when a constant anisotropic legas perturbed byy = .99
for four rock types: a) Isotropic, b) Taylor Sand, c) MesayC&hale, and d) GreenLight
River Shale. Superimposed onto the images are the RMO émsctiomputed using equa-
tion 40. The solid line was computed when fawas derived from tap by applying equa-
tion 1, whereas the dashed line was computed by approxig&iims as equal to taj.

| biondo1-Quad_Aniso-rho.99_oveiiCR]
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Figure 8: ADCIGs obtained when a constant anisotropic vglacas perturbed byy = .9
for four rock types: a) Isotropic, b) Taylor Sand, c) MesayC&hale, and d) GreenLight
River Shale. Superimposed onto the images are the RMO émsctiomputed using equa-
tion 40. The solid line was computed when fawas derived from tap by applying equa-
tion 1, whereas the dashed line was computed by approxig&iims as equal to taj.

| biondo1-Quad_Aniso-rho.9_ove/iCR]
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The expressions for the derivatives of the slowness funatiibh respect to the perturba-
tion parameters depend on the particular form chosen toappate the slowness function.
Appendix C derives these derivative for the VTI group sloss&inction approximation ex-
pressed in equation 6, which | used for the numerical expErtmshown in this paper.

The partial derivatives of the RMO functiohzryvo are directly derived from the partial
derivatives ofz,, taking into account that for flat reflectors only the vertie@ocity compo-
nentVy influences the image depth of normal incidence. The devieaf Azgyvo can thus
be written as follows:

JdAZrRMO Ze 0 S(y) ~
= —— (1+tany tany) — z¢, (44)
Iove S0) ooy =
dAZrRMO Ze 0 S(y) ~
. (1+tany tany), (45)
oV S(y) dpw
0AZ 0S ~
Rwo % 9S(y) (1+tany tany). (46)
apVN S()/) aIOVN

Figures 9 and 10 show examples of the application of the gémed RMO functions ex-
pressed in equations 44-46. As in Figures 7— 8, | show the &3QGbr three different
anisotropic rock types, but, differently from the previdigures, not for the isotropic case.
The order of the rock types is the same as in Figures 7— 8; shatainels a) correspond to
Taylor Sand, panels b) to Mesa Clay Shale, and panels c) enGight River Shale. Further-
more, as in Figures 7— 8, one figure (Figure 10) shows the AD@itained with a smaller
perturbation than the ADCIGs shown in the other figure (Feg@). The ADCIGs shown in
Figure 9 were obtained by performimgptropic migration on the synthetic data modeled as-
suminganisotropicvelocity. The ADCIGs shown in Figure 10 were computed byisgaby
.25 the parameter perturbations used to compute Figure 8.lifiés superimposed onto the
images are the RMO functions computed by using the corrdaesdor tary (solid lines),
and by using tait in place of tary (dashed lines).

The predicted RMO functions accurately track the actual RiMi@tions when the param-
eter perturbations are sufficiently small to be within thegeaof accuracy of the linearization
at the basis of the derivation of equation 40 (Figure 10). &an when the perturbations are
large (Figure 9) and cause a substantial RMO (up to 30% ofetthector depth) the predicted
RMO functions are excellent approximations of the actual®inctions.

The RMO functions associated with the two strongly unatigitrocks (Taylor Sand and
GreenLight River Shale) exhibit a characteristic osaltgtbehavior; the events at narrow-
aperture angles are imaged deeper than the normal incidemed, whereas the events at
wide-aperture angles are imaged shallower. This osailldiehavior is well predicted by the
analytical RMO function introduced in equations 44—46.

In contrast, the approximation of the group angles with thage angles (dashed lines in
the figures) seriously deteriorates the accuracy of theiggeiRMO functions. Notice that,
in contrast with the uniform perturbation case illustrateéigures 7— 8, the dashed lines are
different among the panels, because the derivatives oflthensss function with respect to
the perturbation parameters depend on the anisotropioyedeas of the background medium.
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Figure 9: ADCIGs obtained when data modeled withaamsotropicvelocity have been mi-
grated using afisotropic velocity. The anisotropic data were modeled assuming troele
types: a) Taylor Sand, b) Mesa Clay Shale, and c¢) GreenLiglgrShale. Superimposed
onto the images are the RMO functions computed using equd@ioThe solid line was com-
puted when tap was derived from taji by applying equation 1, whereas the dashed line was
computed by approximating tanas equal to tapi. \biondol-Trio_Aniso-iso_oveMCR]
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Figure 10: ADCIGs obtained when data modeled withaamsotropic velocity have been
migrated using dess anisotropiovelocity; that is, with anisotropic parameters obtained by
scaling by .25 the parameter perturbations used to compgted=9. The anisotropic data
were modeled assuming three rock types: a) Taylor Sand, baN¢ay Shale, and c) Green-
Light River Shale. Superimposed onto the images are the Riu©otibns computed using
equation 40. The solid line was computed whemtamas derived from tapy by applying
equation 1, whereas the dashed line was computed by apmtmgrtany as equal to taj.

| biondo1-Trio_Aniso-scaled_ovelfCR]
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Conversion of depth errorsinto traveltimeerrors

The RMO functions derived above can be directly used in arédsbased vertical updating
of the velocity function after migration. However, in coraplmedia it is often desirable to
invert the depth errors measured from ADCIGs into velopdyameters perturbations through
a tomographic procedure. To be able to apply a tomographtbodewe must perform an
additional step to convert the depth errors measured fror@ i3 into traveltime errors. This
depth-to-time conversion can be easily accomplished iti rewriting the chain of partial
derivatives in equation 35, and obtain the following relaship:

9z, 9z, 9L _ cosy +siny tany

at oL at S(y) ’ (“47)

which can be directly applied to convert depth errors indweitime perturbations to be used
in tomography.

CONCLUSIONS

The methodology for computing and analyzing ADCIGs thatlesn recently developed for
isotropic media can be generalized to prestack images dehsing anisotropic prestack
migration. The transformation to angle domain performedlayt-stacking the subsurface-
offset axis generates angle gathers that are approxinfatadyion of the phase aperture angle.
In VTI media the approximation is exact for flat reflectorsd @ven for dipping reflectors it
seems to be sufficiently accurate for practical applicatiith realistic anisotropic parame-
ters.

The linearized analysis of ADCIGs obtained by anisotropigration shows that the RMO
function observed when the migration velocity is inaccerst function of both the phase
aperture angle and the group aperture angle. The numexizad@es show that the linearized
expression of the RMO function accurately predicts thead®MO function measured after
wavefield migration.

A simple modification of the analysis that yields the expi@ssf the RMO function leads
also to a linearized relationship between depth errors uredsn ADCIGs and traveltime
errors accumulated along the wavepaths. This relatiorsdtopld enable the development of
migration velocity analysis methods based on tomograpéliocity-updating procedures.
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APPENDIX A - ANALYTICAL EVALUATION OF THE TANGENT PLANE TO THE
IMPUL SE RESPONSE

In this appendix | derive the expressions for evaluatingiérévatives of image depth with
respect to the subsurface off$gtand the midpointn; these derivatives are computed along
the tangent plane to the impulse response of the generalg@htion operator, which is
defined in equations 18-24.

| start by deriving the equation for the vector normal to tinpulse-response surfade,

Zz Mg hg

825 amg ahg

dax  dax Oy

325 8m§ 3h5

9y oy ay

omg ohe  oamg ohg '\ v 0z ohy 9z ohg & 0Ze M 0Zg OMg ﬁ
dax 0y &

dy dory dax dy oy dy

wherez;, M, andﬁg are respectively the unit vectors along the three dimessignm;, and
he.

The equation of the tangent plane at the image point Withdinates(fg, mg,ﬁg) is given
by:
3mg ahg 8m§ ahg

Tlmehs) = ( ————— ) (2 %)

day 0y 0y day

0ze 0hg 0z 8hg) _
———— 4= | (mg—M
( day 3y | 9y day (m; —m;)

0z 0Mz 0z am§> =
078 2% ) (he —hg) = 0. 49
+ (8ax 3y 9y do (he —he) (49)

_|_

by:

del o pmame ozom

0z _ Melme=me _ Bax By By Dox (50)
ahg Me —if T aﬂ% _ aﬁ%
s =Tk 9z¢ me =g day 0y dy dax
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and similarly the derivative of the depth with respect to thiepoint, at constant subsurface
offset, is given by:

oT oo .
—_ _ 0Z; ahg 0Z¢ ahg
9z _ OMeln=he a9y 9y ax (51)
M [y, _p, 0T amg ohe _ 9me ohe °
E=% 9ze = dayx Ay dy Odax
¢ lhg=hg

To evaluate equations 50-51. we need to evaluate the folippartial derivatives, ob-
tained by differentiating the expressions in equation208—

] tano . AL (ary,y) coLax — Sir?
% _ —L (ax,y) ————— (coFay +sirfy) + x,7) X 4
0oy COSuk COSy 0oy COSuy COSy
) tan . AL (arx,y) cofay — Sir?
% _ —L(ax,y)—y(00§y+SIn2ax)+ (o, ) X Y
oy COSuk COSy ay COSuy COSy
omg cosuy L (ay,y) Sinay
= —L (aX! )/) - ’
dak cosy day  COSy
omg siny sinax  dL (ax, ) Sino
— = —L (aX! )/) - ’
dy coy dy  cosy
ohg siny siney  dL (ax,y) Siny
= —L(ax,y) - )
day coSay day  COSxy
ah cos oL (ax,y) sin
ay COSuy dy  COSux
The derivative of path length are evaluated as following:
oL _ o)
dax T [(S+S)H(S — ) tanax tany]
9 3 3 9 S -t
(38 +22) + (32 - 22) tanaytany + SSpam |, (53)
and
oL _ —to
W T (S +S)HS —S) tanaxtany |2
[(a—s 8—55> (— — —) tanay tany + %] : (54)

Application to the isotropic case

The application to the isotropic case is simpler than thearopic case because the deriva-
tive of the path length is zero, but it is instructive sinceetifies known results through a
completely different derivation. Substituting equati®2sinto equation 50, | obtain:

92 L2tany[fg'27“;(cos°-ax+sin2 )~ w8 (COSZ)/+SIn20{X)]
g |, _m, L2[1—tarfaytarfy|
L2tany[ 1+ sir ay (Co§ - = >+tar12axtar\2y]

L2[1—tarPaxtar?y]
= tany, (55)
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which shows thabz /oh; is independent from the dip anglg. This expression is consis-
tent with the 2-D analysis by Sava and Fomel (2003) and theaB+lysis by by Biondi and
Tisserant (2004).

APPENDIX B

In this appendix | demonstrate that the terms in equation @4iptying the partial derivatives
with respect to the angles; that By /9p; anddy /dp;, are zero when evaluated at the point
when the events are correctly migrated at zero subsurfdsetofVe are interested in estimat-
ing the RMO function measured for an incorrect velocity. fTRMO function can be seen as
a perturbation around the image obtained with the corrdotitg.

After simple evaluation of partial derivatives the term tiplying 9y /dp; in equation 34
can be written as the following:

9z, oL aS(y)+8i B _25(005y+sinytan57)88(y)
oL aS(y) oy oy N S(y)cosy ay

— L (siny — cosy tany)

0S
= -z [(1+tany tany) # +tany —tan?} , (56)

that can be easily demonstrated to be equal to zero aftetitstibs of the relationship be-
tween phase angles and group angles presented in equation 4.

The term multiplyingdy /dp; is equal to

4 1

= —hi e, 57
oy Sco§)7 (57)

which is obviously equal to zero when the subsurface offseero, the point around which
we are interested in expanding the RMO function.

APPENDIX C - DERIVATIVESOF VTl SLOWNESSFUNCTION WITH RESPECT
TO THE PERTURBATION PARAMETERS

In this Appendix | present the analytical expressions f@ derivatives of the VTI group
slowness function expressed in equation 6 in the main telies@ derivatives are necessary
for the numerical computation of the RMO functions.

The VTI slowness function can be approximated as (Fowl€y320

< 0) S/2cos0 + Sy ?sirfo —|—\/(S\/200§9 +Su2sin?0) " + Sy2 (SN2 — S42) sin? 26
Tl =
2

1 (6) + /S (6) + S (Sn? — Su?) sirP 26 .
_ . ,
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where
S, (0) = Sy?cog 0 + Sy?sirfd (59)

is the elliptical component.

The derivatives are then written as:

S @) _ S 1), Fe, 0O SHS-SHsry
vl 2SmO) dwasm (6),/S(0) + S2 (S0P - S4?)sinP2e.
SuE)| | S 1@, TR, RO+ SASIERY
v lpma 25mO) v asm (0),/22(0) + SvP (w2 - Su?)sirP2e.
S (6) _ —Sv*S\’sin’ 26 62)

oo asm(0) /S (6) + SvP (SNP - Su?) sirP2e
where the derivatives of the elliptical component with edgo o, andpy,, are:
3 Sen (9) —S/2cog0
=Y = — 63
vy |1 S (0) (63)
3Sen (0) —S,2sirfe
= —. 64
VI S () 9




