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Angle-domain common image gathers for anisotropic migration

Biondo Biondi1

ABSTRACT

I present a general methodology for computing and analyzingAngle Domain Common
Image Gathers (ADCIGs) in conjunction with anisotropic wavefield-continuation migra-
tion. I demonstrate that the aperture angles estimated by transforming prestack images
using slant stacks along the subsurface-offset axis are a good approximation of the phase
aperture angles, and that they are exactly equal to the phaseaperture angles for flat events
in VTI media.
I introduce a generalization of the concept of migration impulse response for the compu-
tation of prestack images function of the subsurface offsetthat enables a straightforward
analytical analysis of the reflector movements caused by perturbations in anisotropic pa-
rameters. This analysis shows that the Residual Moveout (RMO) in migrated ADCIGs is
function of both the phase aperture angle and the group aperture angle. The dependency
of the RMO function on the group angles adds some complexity to the RMO analysis be-
cause the computation of group angles from phase angles, which are measured from the
ADCIGs, depends on the local background anisotropic velocity at the reflector point.
Several numerical examples demonstrate the accuracy of theRMO function predicted by
my kinematic analysis, and in contrast, that the approximation of the group angles by the
phase angles may lead to substantial errors for events reflected at wide aperture angles.

INTRODUCTION

Angle Domain Common Image Gathers (ADCIGs) are a useful toolfor updating migration
velocity after wavefield-continuation migration (Biondi and Sava, 1999; Clapp and Biondi,
2000). When the migration velocity is not accurate, the inconsistency of the migrated events
along the aperture-angle axis is proportional to the migration velocity errors and provides the
quantitative information necessary to update the velocityfunction.

All the methods for computing ADCIGs currently available inthe literature are limited to
isotropic migration; this is true for both the methods applied during downward continuation
before imaging (Prucha et al., 1999), and the methods applied on the prestack migrated image
as a post-processing operator (Sava and Fomel, 2003; Rickett and Sava, 2002; Biondi and
Tisserant, 2004). Similarly, the quantitative analysis ofthe residual moveout measured in
ADCIGs caused by migration-velocity errors is also limitedto the isotropic case (Biondi and
Symes, 2003; Biondi and Tisserant, 2004).

1email: not available
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In this paper I generalize the methodologies for computing and analyzing ADCIGs to
prestack images obtained by wavefield-continuation anisotropic migration. This work is prac-
tically motivated by two current trends in the seismic exploration industry: 1) data are recorded
with increasingly long offsets, improving the resolution and reliability of the estimation of
anisotropic parameters from surface data, 2) anisotropic prestack depth migration is increas-
ingly being used in areas, like near or under salt bodies, where the image quality, and conse-
quently the velocity estimation process, could benefit fromthe use of wavefield-continuation
migration (Bear et al., 2003; Sarkar and Tsvankin, 2004a). In this perspective, other papers in
this report present complementary work that is aimed at developing methods for cost-efficient
anisotropic 3-D prestack migration (Sen and Biondi, 2005),and overturned-events anisotropic
3-D prestack migration (Shan and Biondi, 2005b,a).

Sarkar and Tsvankin (2003, 2004b) analyze the effect of velocity errors on offset-domain
CIGs produced by Kirchhoff migration. They demonstrate theeffectiveness of their method
by successfully applying it to a West Africa data set (Sarkarand Tsvankin, 2004a). In this
paper, I provide the basic analytical tools necessary to perform anisotropic migration velocity
analysis for data sets that benefit from imaging with wavefield-continuation migration instead
of Kirchhoff migration.

The main conceptual differences between isotropic ADCIGs and anisotropic ADCIGs are
related to the fact that in anisotropic wave-propagation the phase angles and velocities are
different from the group angles and velocities (Tsvankin, 2001). Therefore, the first question
that I will address is: which aperture angles are we measuring in the ADCIGs? I demon-
strate that the transformation to angle domain maps the reflection into the phase-angle domain.
Strictly speaking this mapping is exact only for events normal to the isotropic axis of symmetry
(e.g. flat events for Vertical Transverse Isotropic (VTI) media), because the presence of dips
skews the estimates in ways similar to when geological-dipsbias the estimation of aperture
angles while computing ADCIGs for converted events (Rosales and Rickett, 2001; Rosales
and Biondi, 2005). Fortunately, in the anisotropic case, the biases caused by geological dips
are less likely to create problems in practical applications than in the converted waves case.
The simple numerical examples shown in this paper seem to indicate that, for realistic values
of anisotropy, the errors caused by the geological dips is small and can be neglected. This ap-
proximation greatly simplifies the computation of ADCIGs and thus makes their application
more attractive.

The second question I address is: is the residual moveout caused by velocity errors only
function of the phase angles, or does it also depend on the group angles? In the second part
of this paper I demonstrate that the residual moveout is function of both the angles and that
neglecting its dependency on the group angles leads to substantial inaccuracy in the predicted
RMO function.

PHASE AND GROUP ANGLES AND VELOCITIES

In anisotropic media the group angles and velocities do not coincide with the phase angles and
velocities. The transformation from phase velocityṼ to group velocityV is conventionally
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defined as the following (Tsvankin, 2001):

V =

√
Ṽ2 +

(
dṼ

dθ̃

)
, (1)

whereθ̃ is the phase propagation angle. The associated transformation from phase angles to
group anglesθ is defined as:

tanθ =
tañθ + 1

Ṽ
dṼ
dθ̃

1− 1
Ṽ

dṼ
dθ̃

tañθ
. (2)

Notice that throughout this paper I use the tilde symbol to distinguish between phase quantities
(with a tilde) and group quantities (without a tilde).

Dellinger and Muir (1985) propose, and heuristically motivate, the following symmetric
relations for the inverse transforms:

S̃=

√
S2+

(
dS

dθ

)
, (3)

whereS̃andSare respectively the phase slowness and the group slowness,and

tañθ =
tanθ + 1

S
dS
dθ

1− 1
S

dS
dθ

tanθ
. (4)

I use the heuristic relation in equation 4 to derive some of the analytical results presented in
this paper. Furthermore, I use all the above relationships to compute the kinematic numerical
results presented in this paper.

The numerical results, though not the analytical results, are also dependent on the choice
of a specific approximation of the anisotropic phase-velocity function. I used the following
VTI approximation for the phase velocity:

Ṽ2
VTI (θ ) =

VV
2cos2θ + VH

2sin2θ +

√(
VV

2cos2θ + VH
2sin2θ

)4
+ VV

2
(
VN

2 − VH
2
)
sin22θ

2
,

(5)

whereVV , VH , VN, are respectively the vertical velocity, the horizontal velocity and the NMO
velocity. Following Fowler (2003), the corresponding approximation for the group velocity is
the following:

S2
VTI (θ ) =

SV
2cos2θ + SH

2sin2θ +

√(
SV

2cos2θ + SH
2sin2θ

)4
+ SV

2
(
SN

2 − SH
2
)
sin22θ .

2
,

(6)

where SV , SH , SN, are respectively the vertical slowness, the horizontal slowness and the
NMO slowness.
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The numerical results obtained by modeling and migrating synthetic seismic data were
obtained by source-receiver depth continuation (upward for modeling and downward for mi-
gration) using the following dispersion relation:

kz =
ω

VV

√
ω2 − VH

2k2
x

ω2 +
(
VN

2 − VH
2
)
k2

x

, (7)

whereω is the temporal frequency, andkx andkz are respectively the horizontal and vertical
wavenumbers. The dispersion relation shown in equation 7 corresponds to the velocity and
slowness functions in equations 5 and 6 (Fowler, 2003).

Anisotropic parameters used for numerical tests

To verify the accuracy of the results under realistic but different anisotropic conditions, in the
numerical examples I used three set of anisotropic Thomsen parameters representing three
different rocks described by Tsvankin (2001):

• Taylor Sand :ε = 0.110 δ = −0.035, → η = .155,
• Mesa Clay Shale :ε = 0.189, δ = 0.204→ η = −.010,
• GreenLight River Shale :ε = 0.0975, δ = −0.11, → η = .266.

Notice that the GreenLight River Shale is derived from the Green River Shale described by
Tsvankin (2001) by halving the anisotropic parameters (ε andδ), because the strong unellipti-
cal nature of the original one (η = .74) caused the group-slowness approximation in equation 6
to break down, and made the kinematic computations based on ray tracing, and thus on group
velocity and angles, inconsistent with wavefield migrations based on the dispersion relation in
equation 7. Notice that the GreenLight River Shale is still the most unelliptical among the set
of rocks I am using.

ANGLE GATHERS BY ANISOTROPIC DOWNWARD-CONTINUATION
MIGRATION

In anisotropic media, when the reflector is dipping with respect to the normal to the isotropic
axis of symmetry (horizontal direction for VTI) the incident and reflected aperture angle dif-
fer. This difference is caused by the fact that, although thephase slowness is function of the
propagation angle, Snell law requires that the components parallel to the reflector of the inci-
dent and reflected slowness vectors must match at the interface. However, we can still define
an “average” aperture anglẽγ and “average” dip anglẽαx using the following relationships:

γ̃ =
β̃r − β̃s

2
, and α̃x =

β̃s + β̃r

2
, (8)

where thẽβs andβ̃r are the phase angles of the downgoing and upgoing plane waves, respec-
tively.
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Figure 1: Sketch representing the reflection of a plane wave in an anisotropic medium.
biondo1-cig-aniso-v2[NR]

Figure 1 shows the geometric interpretation of these angles. Notice that the average dip
anglẽαx is different from the true geological dip angleSαx, and that the average aperture angle
γ̃ is obviously different from the true aperture anglesγ̃s andγ̃r . However, the five angles are
related and, if needed, the true angles can be derived from the average angles (Rosales and
Biondi, 2005).

The transformation to the angle domain transforms the prestack image from the migrated
subsurface offset domainhξ , to the angle domain by a slant stack transform. The transforma-
tion axis is thus the physical dip of the image along the subsurface offset; that is,∂zξ/∂hξ .
The dip angles can be similarly related to the midpoint dips in the image; that is,∂zξ/∂mξ .
Following the derivation of acoustic isotropic ADCIGs by Sava and Fomel (2003) and of
converted-waves ADCIGs by Rosales and Rickett (2001), we can write the following relation-
ships between the propagation angles and the derivative measured from the wavefield:

∂t

∂zξ

∣∣∣∣
(mξ =Smξ , hξ=Shξ )

= S̃scos (̃αx − γ̃ )− S̃r cos (̃αx + γ̃ ) , (9)

∂t

∂mξ

∣∣∣∣
(zξ=Szξ , hξ=Shξ )

= S̃ssin (̃αx − γ̃ )+ S̃r sin (̃αx + γ̃ ) , (10)

∂t

∂hξ

∣∣∣∣
(zξ =Szξ , mξ =Smξ )

= S̃ssin (̃αx − γ̃ )− S̃r sin (̃αx + γ̃ ) , (11)

whereS̃s andS̃r are the phase slownesses for the source and receiver wavefields, respectively.
We obtain the expression for the offset dip by taking the ratio of equation 11 with equation 9,
and similarly for the midpoint dips by taking the ratio of equation 10 with equation 9, and
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after some algebraic manipulations, we obtain the following expressions:

∂zξ

∂hξ

∣∣∣∣
(mξ =Smξ )

=
tanγ̃ +

S̃r −S̃s
S̃r +S̃s

tañαx

1−
S̃r −S̃s
S̃r +S̃s

tañαx tanγ̃
, (12)

∂zξ

∂mξ

∣∣∣∣
(hξ=Shξ )

=
tañαx +

S̃r −S̃s
S̃r +S̃s

tanγ̃

1−
S̃r −S̃s
S̃r +S̃s

tanγ̃ tañαx

. (13)

In contrast with the equivalent relationships valid for isotropic media, these relationships de-
pend on both the aperture anglẽγ and the dip anglẽαx. The expression for the offset dip
(equation 9) simplifies into the known relationship valid inisotropic media when either the
difference between the phase slownesses is zero, or the dip angleα̃x is zero. In VTI media this
happens for flat geological dips. In a general TI medium this condition is fulfilled when the
geological dip is normal to the axis of symmetry.

Solving for tañγ and tañαx we obtain the following:

tanγ̃ =

∂zξ

∂hξ
−1S̃tañαx

1+
∂zξ

∂hξ
1S̃tañαx

, (14)

tañαx =

∂zξ

∂mξ
−1S̃tanγ̃

1+
∂zξ

∂mξ
1S̃tanγ̃

, (15)

where for convenience I substituted the symbol1S̃ for the “normalized slowness difference”
(S̃r − S̃s)/(S̃r + S̃s).

Substituting equation 15 in equation 14, and equation 14 into equation 15, we get the
following two quadratic expressions that can be solved to estimate the angles as a function of
the dips measured from the image:

[
∂zξ

∂mξ

1S̃−
∂zξ

∂hξ

12
S̃

]
tan2 γ̃ +

[
1−12

S̃

]
tanγ̃ +

∂zξ

∂mξ

1S̃−
∂zξ

∂hξ

= 0 (16)
[

∂zξ

∂hξ

1S̃−
∂zξ

∂mξ

12
S̃

]
tan2 α̃x +

[
1−12

S̃

]
tañαx +

∂zξ

∂hξ

1S̃−
∂zξ

∂mξ

= 0 (17)

These are two independent quadratic equations in tanγ̃ and tañαx that can be solved indepen-
dently. If the “normalized slowness difference”1S̃ between the slowness along the propaga-
tion directions of the source and receiver wavefields are known, we can directly computẽγ
andα̃x, and then the truẽβs and β̃r . One important case in this category is when we image
converted waves.

For anisotropic velocities, the slownesses depend on the propagation angles, and thus the
normalized difference depends on the unknownγ̃ andα̃x. In practice, these equations can be
solved by a simple iterative process that starts by assumingthe “normalized difference” to be
equal to zero. In all numerical test I conducted this iterative process converges to the correct
solution in only a few iterations, and thus is not computationally demanding.
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The dependency of equations 16 and 17 from the slowness function is also an impediment
to the use of efficient Fourier-domain methods to perform thetransformation to angle domain,
because the slowness function cannot be assumed to be constant. Fortunately, the numerical
examples shown below indicate that for practical values of the anisotropy parameters the de-
pendency of the estimate from the dip angles can be safely ignored for small dips, and it is
unlikely to constitute a problem for steep dips.

KINEMATIC ANALYSIS OF ADCIGS BY INTEGRAL MIGRATION

The analysis shown in the previous section provides the fundamental equations to relate the
offset and midpoint dips measured from prestack images to the phase angles at the reflection
point. However, the previous analysis is not directly applicable to the analysis of residual
moveout in the ADCIGs caused by velocity errors because it isbased on plane waves and not
rays. We are interested in relating traveltime errors accumulated during the propagation in
the overburden to movements of the migrated events in the ADCIG; the traveltime errors are
naturally evaluated along rays, which are related to group velocity and angles. To overcome
this difficulty, in this section I introduce an integral formulation of the methodology to compute
angle gathers that enables a simple link between ADCIGs and kinematics.

My analysis is based on the conceptual generalization of integral (Kirchhoff) migration to
the computation of sub-surface offset gathers. Integral migration is defined by the summation
surfaces over which the data are integrated to compute the image at every point in the image
space. The shapes of these summation surfaces are usually computed as the sum of the time
delays from the image point (zξ ,mξ ) in the subsurface to the source and receiver locations at
the surface. The basic idea underlying the generalization Iintroduce in this paper, is that we
can compute the summation surfaces by evaluating the time delays starting not from the same
point in the subsurface for both the source and receiver rays, but starting from two points hor-
izontally shifted by±hξ with respect to the image point. The summation of data along these
surfaces produces a prestack image as a function of the subsurface offset that is kinematically
equivalent to the image created by wavefield-continuation migrations such as source-receiver
downward continuation, or shot-profile migration in conjunction to the generalized imaging
condition discussed by Rickett and Sava (2002). Therefore,the kinematic analysis that fol-
lows, and its conclusions, are independent from the migration method applied to compute the
prestack images. An interesting observation is that the ADCIGs computed using this gener-
alization of integral migration should be immune from the artifacts that affect angle gathers
computed by conventional integral migration and discussedby Stolk and Symes (2003).

Generalized migration impulse response in parametric form

Integral migration can be conceptually performed by spreading the data along spreading sur-
faces as well as by summing data along the summation surfacesdiscussed above. The spread-
ing surfaces are duals of the summation surfaces and represent the impulse response of the
migration operator. In homogeneous anisotropic medium theshape of the impulse responses
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Figure 2: Geometry used for eval-
uating the impulse response of
the generalized integral migration.
biondo1-imp-resp[NR]
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of the generalized integral migration can be easily evaluated analytically as a function of the
subsurface offsethξ , in addition to the usual image depthzξ and midpointmξ . Figure 2 il-
lustrates the geometry used to evaluate this impulse response. Notice that the angles in this
figure (αx andγ ) are missing a tilde because they are group angles, and not phase angles as
in the previous section. In an isotropic medium these anglesare the dip and aperture angles,
but in an anisotropic medium these angles are not easily related to the geological dip and the
reflection aperture angles. They can be thought of as convenient parameters to evaluate the
impulse response.

Simple trigonometry applied to Figure 2 allows us to expressthe impulse response in para-
metric form, as a function ofαx andγ . If we migrate an impulse recorded at timetD, midpoint
mD and surface offsethD, the migration impulse response can be expressed as follows:

zξ = L (αx,γ )
cos2αx −sin2γ

cosαx cosγ
, (18)

mξ = mD − L (αx,γ )
sinαx

cosγ
, (19)

hξ = hD − H = hD − L (αx,γ )
sinγ

cosαx
, (20)

with

L (αx,γ ) =
Ls + Lr

2
. (21)

In a isotropic medium the half path-lengthL would be simply given bytD/2S, but in an
anisotropic medium it is function of the angles. Its two componentsLs andLr can be calcu-
lated by solving the following system of linear equations:

tD = SsLs + Sr Lr , (22)

zs − zr = Ls cos(αx −γ )− Lr cos(αx +γ ) = 0. (23)

Equation 22 constraints the total traveltime to be equal to the impulse time, and equations 23
constraints the depth of the end point of the two rays (zs andzr ) to be equal, since the sub-
surface offset is assumed to be horizontal. The solution of this system of equation yields the
following for the half path-length:

L (αx,γ ) =
Ls + Lr

2
=

tD

(Sr + Ss)+ (Sr − Ss) tanαx tanγ
. (24)
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The combination of equation 24 and equations 18–20 enables the evaluation of the generalized
migration impulse response in a arbitrary homogeneous anisotropic medium.

Figure 3 shows a 3-D rendering of the impulse response computed using the previous
equations for an impulse withtD = .9 seconds,mD = 0 kilometers, andhD = .4 kilometers,
and vertical slownessSV = 1 s/km; the anisotropy parameters correspond to the Taylor Sand
as listed in the table on page 80. The gray line (green in color) superimposed onto the impulse
response is the result of cutting the surface at zero subsurface offset, and thus corresponds
to the conventional impulse response of prestack migration. The black line superimposed
onto the impulse response is the result of cutting the surface at zero midpoint. In Figure 4
these two lines are superimposed onto the corresponding vertical sections cut from the im-
ages computed by an anisotropic wavefield source-receiver migration applied with the same
parameters described above. Figure 4b shows the conventional migration impulse response,
whereas Figure 4a shows the zero-midpoint section. The lines computed by applying the kine-
matic equations perfectly match the impulse responses computed using wavefield migration,
confirming the accuracy of the kinematic equations.

Analytical evaluation of the tangent plane to the impulse response

The expression for the generalized impulse response of prestack anisotropic migration leads
to the analytical evaluation of the offset dip and midpoint dip along the planes tangent to the
impulse response, as a function of the group angles and velocity. In this section I demonstrate
that in the simple case of flat reflectors this analysis leads to exactly the same results as the
phase-space analysis presented in the previous section. The derivation of the general relation-
ships expressed in equations 13 and 12, which are valid for anarbitrary reflector’s dip, is left
to the reader.

By applying elementary analytical geometry, I demonstratein Appendix A that the deriva-
tive of the depth with respect to the subsurface offset, at constant midpoint, is given by:

∂zξ

∂hξ

∣∣∣∣
mξ =Smξ

= −

∂zξ

∂αx

∂mξ

∂γ
−

∂zξ

∂γ

∂mξ

∂αx

∂mξ

∂αx

∂hξ

∂γ
−

∂mξ

∂γ

∂hξ

∂αx

, (25)

and the derivative of the depth with respect to the midpoint,at constant subsurface offset, is
given by:

∂zξ

∂mξ

∣∣∣∣
hξ=Shξ

= −

∂zξ

∂αx

∂hξ

∂γ
−

∂zξ

∂γ

∂hξ

∂αx

∂mξ

∂αx

∂hξ

∂γ
−

∂mξ

∂γ

∂hξ

∂αx

. (26)

In the special case of flat reflectors the∂zξ/∂αx and∂hξ/∂γ vanish, and thus equation 25
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Figure 3: Impulse response of generalized anisotropic prestack migration. The gray line (green
in color) superimposed onto the impulse response corresponds to the conventional impulse
response of prestack migration.biondo1-surf_taylor_hxd_dot_4[CR]

Figure 4: Vertical sections cut from
the impulse response computed by an
anisotropic wavefield source-receiver
migration. The lines superimposed
onto the images correspond to the
lines superimposed onto the surface
shown in Figure 3 and are computed
by applying the kinematic expres-
sions presented in equations 18–24.
biondo1-Surf-taylor_hxd_.4-overn
[CR]
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simplifies into the following expression:

∂zξ

∂hξ

∣∣∣∣
(mξ =Smξ , αx=0)

=

(
∂zξ

∂γ

∣∣∣
L=SL

+ ∂L
∂γ

cosγ
)

∂mξ

∂αx(
∂hξ

∂γ

∣∣∣
L=SL

− ∂L
∂γ

sinγ

)
∂mξ

∂αx

=

∂zξ

∂γ

∣∣∣
L=SL

+ ∂L
∂γ

cosγ

∂hξ

∂γ

∣∣∣
L=SL

− ∂L
∂γ

sinγ
. (27)

(28)

By substituting into equation 27 the appropriate derivative of the image coordinates and of the
half path-length with respect to the angles, all provided inAppendix A, I further simplify the
expression into the following:

∂zξ

∂hξ

∣∣∣∣
(mξ =Smξ , αx=0)

=
tanγ + 1

S
∂S
∂γ

1− 1
S

∂S
∂γ

tanγ
. (29)

Finally, by applying the transformation from group angles into phase angles expressed in
equation 4, I obtain the final result that for flat reflectors the subsurface-offset dip is exactly
equal to the tangent of the phase aperture angleγ̃ ; that is:

∂zξ

∂hξ

∣∣∣∣
(mξ =Smξ , αx=0)

= tanγ̃ . (30)

Numerical examples of aperture angle along impulse responses

The analytical kinematic results can be verified by numerical computations of impulse re-
sponses by wavefield migration and transformation of the resulting prestack image cubes into
the angle domain. Figure 5 shows four zero subsurface-offset sections cut through the impulse
responses computed by wavefield-continuation anisotropicmigration for the three anisotropic
rocks described in the table on page 80 and for an isotropic rock. The parameters defining the
impulse responses are the same as for Figure 3; that is,tD = .9 seconds,mD = 0 kilometers,
andhD = .4 kilometers, and vertical slownessSV = 1 s/km. Figure 5a shows the isotropic
case, Figure 5b shows the Taylor Sand case, Figure 5c shows the Mesa Clay Shale case, and
Figure 5d shows the GreenLight River Shale case. As in Figure4, the line superimposed onto
the images represent the impulse response computed using the kinematic expressions in equa-
tions 18–24. The kinematic curves perfectly predicts the shape of the images even for very
steep dips.

Figure 6 shows two-dimensional slices cut through the cube obtained by the transformation
to the angle domain of the impulse responses shown in Figure 5. The slices are cut at the
midpoint and depth corresponding to the expected location of the impulse responses; that is, at
the location tracked by the lines shown in Figure 5. There arethree lines superimposed onto the
angle-domain images. The solid lines display the numericalcomputation of arctan(∂zξ/∂hξ )
by applying equation 25. They perfectly track, as expected,the results of the transformation
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of the prestack images to angle domain. The dotted lines display the phase aperture angle
γ̃ . As expected, they overlap with the solid line around the zero midpoint (i.e. flat reflector),
and depart from them at larger midpoints, which correspond to steeper reflections. However,
the error introduced by ignoring the difference between arctan(∂zξ/∂hξ ) andγ̃ is small, and
likely to be negligible in most practical situations. Finally, the dashed lines display the group
aperture angleγ . The differences betweenγ andγ̃ are substantial, up to 20% in some cases.
Ignoring them might be detrimental to the application of ADCIGs. Notice that in the isotropic
case the three lines perfectly overlap and all of them match the image.

ANISOTROPIC RESIDUAL MOVEOUT FOR FLAT REFLECTORS

The kinematic formulation of the generalized impulse response presented in the previous sec-
tion enables a simple analysis of the residual moveout (RMO)in ADCIGs caused by errors in
anisotropic velocity parameters. For the sake of simplicity, at the present, I limit my analysis
to reflections from flat interfaces. However, a generalization of the flat-events analysis to dip-
ping events should be conceptually straightforward, though not necessarily simple from the
analytical point of view.

A VTI velocity function, either group or phase, is describedby the following vector of
three velocitiesV = (VV ,VH ,VN), as for example used in equations 5, or by the corresponding
vector of three slownessesS = (SV ,SH ,SN) used in equation 6. I define the perturbations
as one multiplicative factors for each of the velocities andone multiplicative factor for all
velocities; that is, the perturbed velocityρV is defined as:

ρV =
(
ρVV ,ρVH ,ρVN

)
= ρV

(
ρVV VV ,ρVH VH ,ρVN VN

)
. (31)

The velocity-parameter perturbations is thus defined by thefollowing four-components vector
ρ=

(
ρV ,ρVV ,ρVH ,ρVN

)
.

For flat reflectors, the transformation to angle domain maps an image point at coordinates
(zξ ,hξ ) into an image point with coordinates (zγ , γ̃ ) according to the following mapping:

γ̃ = arctan
∂zξ

∂hξ

∣∣∣∣
mξ =Smξ

, (32)

zγ = zξ −hξ

∂zξ

∂hξ

∣∣∣∣
mξ =Smξ

= zξ −hξ tanγ̃ . (33)

The partial derivative of the angle-domain depthzγ with respect to thei -th component in the
perturbation vector can be expressed as follows:

∂zγ

∂ρi
=

∂zγ

∂L

∂L

∂ρi
+

∂zγ

∂γ

∂γ

∂ρi
+

∂zγ

∂γ̃

∂γ̃

∂ρi

=
∂zγ

∂L

∂L

∂S

(
∂S

∂ρi
+

∂S

∂γ

∂γ

∂ρi

)
+

∂zγ

∂γ

∂γ

∂ρi
+

∂zγ

∂γ̃

∂γ̃

∂ρi

=
∂zγ

∂L

∂L

∂S

∂S

∂ρi
+

(
∂zγ

∂L

∂L

∂S

∂S

∂γ
+

∂zγ

∂γ

)
∂γ

∂ρi
+

∂zγ

∂γ̃

∂γ̃

∂ρi
. (34)
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Figure 5: Impulse responses evaluated at zero subsurface offset for four rock types: a)
Isotropic, b) Taylor Sand, c) Mesa Clay Shale, and d) GreenLight River Shale. Superimposed
onto the images are the impulse responses computed by the kinematic expressions presented
in equations 18–24.biondo1-Quad_hxd_.4-overn[CR]
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Figure 6: Slices of the impulse responses transformed into the angle-domain for four
rock types: a) Isotropic, b) Taylor Sand, c) Mesa Clay Shale,and d) GreenLight River
Shale. Superimposed onto the images there are the curves computed by applying the
kinematic analysis: γ (dashed line),γ̃ (dotted line), and arctan(∂zξ/∂hξ ) (solid line).
biondo1-Quad_Mx-Ang_hxd_.4-overn[CR]
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In Appendix B I demonstrate that the terms multiplying the partial derivatives with respect to
the angles are zero, and equation 34 simplifies into:

∂zγ

∂ρi
=

∂zγ

∂L

∂L

∂S

∂S

∂ρi
, (35)

where

∂zγ

∂L
=

∂zξ

∂L
−

∂hξ

∂L
tanγ̃ = cosγ +sinγ tanγ̃ , (36)

and

∂L

∂S(γ )
= −

zξ

S(γ )cosγ
, (37)

Uniform scaling of velocity

The derivative with respect to the perturbation componentρV has the following particularly
simple form:

∂zγ

∂ρV
= zξ (1+ tanγ tanγ̃ ) , (38)

because the derivative of the slowness with respect to a uniform scaling of the velocity has the
following simple form:

∂S(γ )

∂ρV
= −S(γ ) , (39)

that leads to the derivative∂L/∂ρV to be independent from the “local” shape of the anisotropic
slowness function. Intuitively, this simplification is related to the fact that the “shape” of the
wavefronts is not affected by a uniform scaling of the velocity.

The residual moveout1zRMO is defined as the difference between the reflector movement
at finite aperture anglẽγ and the reflector movement at normal incidence. From equation 38
the partial derivative of1zRMO with respect toρV is equal to the following expression:

∂1zRMO

∂ρV
= zξ tanγ tanγ̃ . (40)

When the medium is isotropic, and the phase angles are equal to the group angles, the RMO
expression in equation 40 becomes the RMO expression introduced by Biondi and Symes
(2003). The dependency of equation 40 from the group angles makes its use in RMO analysis
somewhat less convenient, because it requires the transformation of phase angles (measured
directly from the image) into group angles by applying equation 1. The computational cost
of evaluating equation 1 is negligible, but its use makes thecomputations dependent on the
local values of the background anisotropic velocity function. On the other hand, the following
numerical examples show that substantial errors are introduced when the distinction between
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the group and phase angles is neglected, and the phase angle is used instead of the group angle
in equation 40.

Figure 7 shows ADCIGs when an anisotropic velocity was perturbed byρV = .99. The
four panels correspond to four rock types: a) Isotropic, b) Taylor Sand, c) Mesa Clay Shale,
and d) GreenLight River Shale. Superimposed onto the imagesare the RMO functions com-
puted using equation 40. The solid line was computed by computing tanγ from tañγ by
applying equation 1, whereas the dashed line was computed byapproximating tanγ as equal
to tañγ . The RMO curves computed using the correct group angle perfectly match the residual
moveout of the images. On the contrary, when the phase anglesare used instead of the group
angles, significant errors are introduced even for such a small perturbation in the parameters
(ρV = .99). It is interesting to notice that the errors are larger for the rock types exhibiting
strong unelliptical anisotropy (Taylors Sand and GreenLight River Shale) than for the strongly
anisotropic but quasi-elliptical rock (Mesa Clay Shale).

The expression for the RMO function derived in equation 40 isbased on a linearization,
and thus when the the perturbations in velocity parameters are large it is not as accurate as it
is when the perturbations are small (e.g.ρV = .99). Figure 8 illustrates this fact by showing a
similar experiment as the one shown in Figure 7, but with a perturbation 10 times larger; that
is, with ρV = .9. As in Figure 7, the four panels correspond to four rock types: a) Isotropic,
b) Taylor Sand, c) Mesa Clay Shale, and d) GreenLight River Shale, and the lines superim-
posed onto the images are the RMO functions computed by usingthe correct values for tanγ
(solid lines), and by using tañγ in place of tanγ (dashed lines). With large perturbations,
the predicted RMO functions differ from the actual RMO functions at wide aperture angles
even when the correct values of the group angles are used in equation 40. However, even
with such large perturbations the predicted RMO functions are still useful approximations of
the actual RMO functions. In particular, it can be observed that the predicted RMO function
correctly approximates the differences in shape of the actual RMO function among the rock
types. These shape variations are related to the variationsin shape of the wavefronts, which
are reflected in the predicted RMO function through the variations in the mapping from phase
angles to group angles.

Arbitrary scaling of velocity

The expressions of the derivative ofzγ with respect to arbitrary perturbations of individual
velocity components (i.e.VV , VH , andVN) are slightly more complex than with respect toρV

because the wavefronts are deformed when the velocity components are unevenly perturbed.
These derivatives can be expressed as:

∂zγ

∂ρVV

= −
zξ

S(γ )

∂S(γ )

∂ρVV

(1+ tanγ tanγ̃ ) , (41)

∂zγ

∂ρVH

= −
zξ

S(γ )

∂S(γ )

∂ρVH

(1+ tanγ tanγ̃ ) , (42)

∂zγ

∂ρVN

, = −
zξ

S(γ )

∂S(γ )

∂ρVN

(1+ tanγ tanγ̃ ) . (43)
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Figure 7: ADCIGs obtained when a constant anisotropic velocity was perturbed byρV = .99
for four rock types: a) Isotropic, b) Taylor Sand, c) Mesa Clay Shale, and d) GreenLight
River Shale. Superimposed onto the images are the RMO functions computed using equa-
tion 40. The solid line was computed when tanγ was derived from tañγ by applying equa-
tion 1, whereas the dashed line was computed by approximating tanγ as equal to tañγ .
biondo1-Quad_Aniso-rho.99_overn[CR]
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Figure 8: ADCIGs obtained when a constant anisotropic velocity was perturbed byρV = .9
for four rock types: a) Isotropic, b) Taylor Sand, c) Mesa Clay Shale, and d) GreenLight
River Shale. Superimposed onto the images are the RMO functions computed using equa-
tion 40. The solid line was computed when tanγ was derived from tañγ by applying equa-
tion 1, whereas the dashed line was computed by approximating tanγ as equal to tañγ .
biondo1-Quad_Aniso-rho.9_overn[CR]
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The expressions for the derivatives of the slowness function with respect to the perturba-
tion parameters depend on the particular form chosen to approximate the slowness function.
Appendix C derives these derivative for the VTI group slowness function approximation ex-
pressed in equation 6, which I used for the numerical experiments shown in this paper.

The partial derivatives of the RMO function1zRMO are directly derived from the partial
derivatives ofzγ , taking into account that for flat reflectors only the vertical velocity compo-
nentVV influences the image depth of normal incidence. The derivatives of1zRMO can thus
be written as follows:

∂1zRMO

∂ρVV

= −
zξ

S(γ )

∂S(γ )

∂ρVV

(1+ tanγ tanγ̃ )− zξ , (44)

∂1zRMO

∂ρVH

= −
zξ

S(γ )

∂S(γ )

∂ρVH

(1+ tanγ tanγ̃ ) , (45)

∂1zRMO

∂ρVN

= −
zξ

S(γ )

∂S(γ )

∂ρVN

(1+ tanγ tanγ̃ ) . (46)

Figures 9 and 10 show examples of the application of the generalized RMO functions ex-
pressed in equations 44–46. As in Figures 7– 8, I show the ADCIGs for three different
anisotropic rock types, but, differently from the previousfigures, not for the isotropic case.
The order of the rock types is the same as in Figures 7– 8; that is: panels a) correspond to
Taylor Sand, panels b) to Mesa Clay Shale, and panels c) to GreenLight River Shale. Further-
more, as in Figures 7– 8, one figure (Figure 10) shows the ADCIGobtained with a smaller
perturbation than the ADCIGs shown in the other figure (Figure 9). The ADCIGs shown in
Figure 9 were obtained by performingisotropicmigration on the synthetic data modeled as-
suminganisotropicvelocity. The ADCIGs shown in Figure 10 were computed by scaling by
.25 the parameter perturbations used to compute Figure 9. The lines superimposed onto the
images are the RMO functions computed by using the correct values for tanγ (solid lines),
and by using tañγ in place of tanγ (dashed lines).

The predicted RMO functions accurately track the actual RMOfunctions when the param-
eter perturbations are sufficiently small to be within the range of accuracy of the linearization
at the basis of the derivation of equation 40 (Figure 10). Buteven when the perturbations are
large (Figure 9) and cause a substantial RMO (up to 30% of the reflector depth) the predicted
RMO functions are excellent approximations of the actual RMO functions.

The RMO functions associated with the two strongly unelliptical rocks (Taylor Sand and
GreenLight River Shale) exhibit a characteristic oscillatory behavior; the events at narrow-
aperture angles are imaged deeper than the normal incidenceevent, whereas the events at
wide-aperture angles are imaged shallower. This oscillatory behavior is well predicted by the
analytical RMO function introduced in equations 44–46.

In contrast, the approximation of the group angles with the phase angles (dashed lines in
the figures) seriously deteriorates the accuracy of the predicted RMO functions. Notice that,
in contrast with the uniform perturbation case illustratedin Figures 7– 8, the dashed lines are
different among the panels, because the derivatives of the slowness function with respect to
the perturbation parameters depend on the anisotropic parameters of the background medium.
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Figure 9: ADCIGs obtained when data modeled with ananisotropicvelocity have been mi-
grated using anisotropic velocity. The anisotropic data were modeled assuming threerock
types: a) Taylor Sand, b) Mesa Clay Shale, and c) GreenLight River Shale. Superimposed
onto the images are the RMO functions computed using equation 40. The solid line was com-
puted when tanγ was derived from tañγ by applying equation 1, whereas the dashed line was
computed by approximating tanγ as equal to tañγ . biondo1-Trio_Aniso-iso_overn[CR]
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Figure 10: ADCIGs obtained when data modeled with ananisotropicvelocity have been
migrated using aless anisotropicvelocity; that is, with anisotropic parameters obtained by
scaling by .25 the parameter perturbations used to compute Figure 9. The anisotropic data
were modeled assuming three rock types: a) Taylor Sand, b) Mesa Clay Shale, and c) Green-
Light River Shale. Superimposed onto the images are the RMO functions computed using
equation 40. The solid line was computed when tanγ was derived from tañγ by applying
equation 1, whereas the dashed line was computed by approximating tanγ as equal to tañγ .
biondo1-Trio_Aniso-scaled_overn[CR]
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Conversion of depth errors into traveltime errors

The RMO functions derived above can be directly used in a layered-based vertical updating
of the velocity function after migration. However, in complex media it is often desirable to
invert the depth errors measured from ADCIGs into velocity-parameters perturbations through
a tomographic procedure. To be able to apply a tomographic method, we must perform an
additional step to convert the depth errors measured from ADCIGs into traveltime errors. This
depth-to-time conversion can be easily accomplished by slightly rewriting the chain of partial
derivatives in equation 35, and obtain the following relationship:

∂zγ

∂t
=

∂zγ

∂L

∂L

∂t
=

cosγ +sinγ tanγ̃

S(γ )
, (47)

which can be directly applied to convert depth errors into traveltime perturbations to be used
in tomography.

CONCLUSIONS

The methodology for computing and analyzing ADCIGs that hasbeen recently developed for
isotropic media can be generalized to prestack images computed using anisotropic prestack
migration. The transformation to angle domain performed byslant-stacking the subsurface-
offset axis generates angle gathers that are approximatelyfunction of the phase aperture angle.
In VTI media the approximation is exact for flat reflectors, and even for dipping reflectors it
seems to be sufficiently accurate for practical applications with realistic anisotropic parame-
ters.

The linearized analysis of ADCIGs obtained by anisotropic migration shows that the RMO
function observed when the migration velocity is inaccurate is function of both the phase
aperture angle and the group aperture angle. The numerical examples show that the linearized
expression of the RMO function accurately predicts the actual RMO function measured after
wavefield migration.

A simple modification of the analysis that yields the expression of the RMO function leads
also to a linearized relationship between depth errors measured in ADCIGs and traveltime
errors accumulated along the wavepaths. This relationshipshould enable the development of
migration velocity analysis methods based on tomographic velocity-updating procedures.
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APPENDIX A - ANALYTICAL EVALUATION OF THE TANGENT PLANE TO THE
IMPULSE RESPONSE

In this appendix I derive the expressions for evaluating thederivatives of image depthzξ with
respect to the subsurface offsethξ and the midpointmξ ; these derivatives are computed along
the tangent plane to the impulse response of the generalizedmigration operator, which is
defined in equations 18–24.

I start by deriving the equation for the vector normal to the impulse-response surface,En:

En =

∣∣∣∣∣∣∣

Ezξ Emξ
Ehξ

∂zξ

∂αx

∂mξ

∂αx

∂hξ

∂αx
∂zξ

∂γ

∂mξ

∂γ

∂hξ

∂γ

∣∣∣∣∣∣∣

=

(
∂mξ

∂αx

∂hξ

∂γ
−

∂mξ

∂γ

∂hξ

∂αx

)
Ezξ +

(
−

∂zξ

∂αx

∂hξ

∂γ
+

∂zξ

∂γ

∂hξ

∂αx

)
Emξ +

(
∂zξ

∂αx

∂mξ

∂γ
−

∂zξ

∂γ

∂mξ

∂γ

)
Ehξ ,

(48)

whereEzξ , Emξ , andEhξ are respectively the unit vectors along the three dimensions zξ , mξ , and
hξ .

The equation of the tangent plane at the image point with coordinates
(
Szξ , Smξ ,Shξ

)
is given

by:

T
(
zξ ,mξ ,hξ

)
=

(
∂mξ

∂αx

∂hξ

∂γ
−

∂mξ

∂γ

∂hξ

∂αx

)(
zξ −Szξ

)

+

(
−

∂zξ

∂αx

∂hξ

∂γ
+

∂zξ

∂γ

∂hξ

∂αx

)(
mξ − Smξ

)

+

(
∂zξ

∂αx

∂mξ

∂γ
−

∂zξ

∂γ

∂mξ

∂αx

)(
hξ −Shξ

)
= 0. (49)

The derivative of the depth with respect o the subsurface offset, at constant midpoint, is given
by:

∂zξ

∂hξ

∣∣∣∣
mξ =Smξ

= −

∂T
∂hξ

∣∣∣
mξ =Smξ

∂T
∂zξ

∣∣∣
mξ =Smξ

= −

∂zξ

∂αx

∂mξ

∂γ
−

∂zξ

∂γ

∂mξ

∂αx

∂mξ

∂αx

∂hξ

∂γ
−

∂mξ

∂γ

∂hξ

∂αx

. (50)
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and similarly the derivative of the depth with respect to themidpoint, at constant subsurface
offset, is given by:

∂zξ

∂mξ

∣∣∣∣
hξ=Shξ

= −

∂T
∂mξ

∣∣∣
hξ=Shξ

∂T
∂zξ

∣∣∣
hξ=Shξ

= −

∂zξ

∂αx

∂hξ

∂γ
−

∂zξ

∂γ

∂hξ

∂αx

∂mξ

∂αx

∂hξ

∂γ
−

∂mξ

∂γ

∂hξ

∂αx

. (51)

To evaluate equations 50–51. we need to evaluate the following partial derivatives, ob-
tained by differentiating the expressions in equations 18–20:

∂zξ

∂αx
= −L (αx,γ )

tanαx

cosαx cosγ

(
cos2αx +sin2γ

)
+

∂L (αx,γ )

∂αx

cos2αx −sin2γ

cosαx cosγ
,

∂zξ

∂γ
= −L (αx,γ )

tanγ

cosαx cosγ

(
cos2γ +sin2αx

)
+

∂L (αx,γ )

∂γ

cos2αx −sin2γ

cosαx cosγ
,

∂mξ

∂αx
= −L (αx,γ )

cosαx

cosγ
−

∂L (αx,γ )

∂αx

sinαx

cosγ
,

∂mξ

∂γ
= −L (αx,γ )

sinγ sinαx

cos2γ
−

∂L (αx,γ )

∂γ

sinαx

cosγ
,

∂hξ

∂αx
= −L (αx,γ )

sinγ sinαx

cos2αx
−

∂L (αx,γ )

∂αx

sinγ

cosαx
,

∂hξ

∂γ
= −L (αx,γ )

cosγ

cosαx
−

∂L (αx,γ )

∂γ

sinγ

cosαx
. (52)

The derivative of path length are evaluated as following:
∂L
∂αx

=
−tD

[(Sr +Ss)+(Sr −Ss) tanαx tanγ ]2

[(
∂Sr
∂αx

+
∂Ss
∂αx

)
+

(
∂Sr
∂αx

−
∂Ss
∂αx

)
tanαx tanγ +

(Sr −Ss) tanγ

cos2αx

]
, (53)

and
∂L
∂γ

=
−tD

[(Sr +Ss)+(Sr −Ss) tanαx tanγ ]2

[(
∂Sr
∂γ

+
∂Ss
∂γ

)
+

(
∂Sr
∂γ

−
∂Ss
∂γ

)
tanαx tanγ +

(Sr −Ss) tanαx
cos2γ

]
. (54)

Application to the isotropic case

The application to the isotropic case is simpler than the anisotropic case because the deriva-
tive of the path length is zero, but it is instructive since itverifies known results through a
completely different derivation. Substituting equations52 into equation 50, I obtain:

∂zξ

∂hξ

∣∣∣∣
mξ =Smξ

= −
L2 tanγ

[
tan2αx
cos2γ

(
cos2αx +sin2γ

)
− 1

cos2γ

(
cos2γ +sin2αx

)]

L2
[
1− tan2αx tan2γ

]

= −
L2 tanγ

[
−1+sin2αx

(
1

cos2γ
− 1

cos2γ

)
+ tan2αx tan2γ

]

L2
[
1− tan2αx tan2γ

]

= tanγ , (55)
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which shows that∂zξ/∂hξ is independent from the dip angleαx. This expression is consis-
tent with the 2-D analysis by Sava and Fomel (2003) and the 3-Danalysis by by Biondi and
Tisserant (2004).

APPENDIX B

In this appendix I demonstrate that the terms in equation 34 multiplying the partial derivatives
with respect to the angles; that is,∂γ /∂ρi and∂γ̃ /∂ρi , are zero when evaluated at the point
when the events are correctly migrated at zero subsurface offset. We are interested in estimat-
ing the RMO function measured for an incorrect velocity. That RMO function can be seen as
a perturbation around the image obtained with the correct velocity.

After simple evaluation of partial derivatives the term multiplying ∂γ /∂ρi in equation 34
can be written as the following:

(
∂zγ

∂L

∂L

∂S(γ )

∂S(γ )

∂γ
+

∂zγ

∂γ

)
= −

zξ (cosγ +sinγ tanγ̃ )

S(γ )cosγ

∂S(γ )

∂γ
− L (sinγ −cosγ tanγ̃ )

= −zξ

[
(1+ tanγ tanγ̃ )

∂S(γ )

∂γ
+ tanγ − tanγ̃

]
, (56)

that can be easily demonstrated to be equal to zero after substitution of the relationship be-
tween phase angles and group angles presented in equation 4.

The term multiplying∂γ̃ /∂ρi is equal to

∂z

∂γ̃
= −hξ

1

cos2 γ̃
, (57)

which is obviously equal to zero when the subsurface offset is zero, the point around which
we are interested in expanding the RMO function.

APPENDIX C - DERIVATIVES OF VTI SLOWNESS FUNCTION WITH RESPECT
TO THE PERTURBATION PARAMETERS

In this Appendix I present the analytical expressions for the derivatives of the VTI group
slowness function expressed in equation 6 in the main text. These derivatives are necessary
for the numerical computation of the RMO functions.

The VTI slowness function can be approximated as (Fowler, 2003):

S2
VTI (θ ) =

SV
2cos2θ + SH

2sin2θ +

√(
SV

2cos2θ + SH
2sin2θ

)4
+ SV

2
(
SN

2 − SH
2
)
sin22θ

2

=
S2

Ell (θ )+
√

S4
Ell (θ )+ SV

2
(
SN

2 − SH
2
)
sin22θ

2
, (58)
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where

S2
Ell (θ ) = SV

2cos2θ + SH
2sin2θ (59)

is the elliptical component.

The derivatives are then written as:

∂SVTI (θ )

∂ρVV

∣∣∣∣
ρ=1

=
SEll (θ )

2SVTI (θ )

∂SEll (θ )

∂ρVV

+
2∂SEll (θ )

∂ρVV
S3

Ell (θ )− SV
2
(
SN

2 − SH
2
)
sin22θ

4SVTI (θ )
√

S2
Ell (θ )+ SV

2
(
SN

2 − SH
2
)
sin22θ

,(60)

∂SVTI (θ )

∂ρVH

∣∣∣∣
ρ=1

=
SEll (θ )

2SVTI (θ )

∂SEll (θ )

∂ρVH

+
2∂SEll (θ )

∂ρVH
S3

Ell (θ )+ SV
2SH

2sin22θ

4SVTI (θ )
√

S2
Ell (θ )+ SV

2
(
SN

2 − SH
2
)
sin22θ

,(61)

∂SVTI (θ )

∂ρVN

∣∣∣∣
ρ=1

=
−SV

2SN
2sin22θ

4SVTI (θ )
√

S2
Ell (θ )+ SV

2
(
SN

2 − SH
2
)
sin22θ

, (62)

where the derivatives of the elliptical component with respect toρVV andρVH are:

∂SEll (θ )

∂ρVV

∣∣∣∣
ρ=1

=
−SV

2cos2θ

SEll (θ )
(63)

∂SEll (θ )

∂ρVH

∣∣∣∣
ρ=1

=
−SH

2sin2θ

SEll (θ )
. (64)


