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Short Note

Non-stationary PEFs and large gaps

William Curry1

INTRODUCTION

Prediction-error filters (PEFs) may be used to interpolate missing data, either to increase the
sampling of data that are regularly-sampled (Spitz, 1991),as well as to interpolate larger gaps
in data (Claerbout, 1992, 1999). In addition to using multi-dimensional PEFs, non-stationary
PEFs (Crawley et al., 1998) have been used to interpolate regularly-sampled data (Crawley,
2000). Non-stationary PEFs have not been successfully usedto interpolate large holes in data.

With the assumption of stationarity, a large hole in the datadoes not adversely affect
PEF estimation as long as there are sufficient contiguous data present to constrain the data
elsewhere. However, when non-stationary PEFs are used to interpolate data, there is a large
gap in the PEF coefficients as well as in the data. In the stationary case those filter coefficients
were assumed to be known, but in the non-stationary case thatassumption is no longer valid.

For a simple non-stationary test case, a herringbone pattern has previously been used to
test interpolation and simulation methods in geophysics with stationary PEFs (Brown, 1999;
Claerbout, 1999) as well as more recently in the geostatistical community as a test case for
multiple-point geostatistics (Journel and Zhang, 2005).

Estimation of a non-stationary PEF is an under-determined problem, so a regularization
term is added to the estimation which ensures spatial smoothness of filter coefficients. This
regularization term looks a lot like an isotropic interpolation, but this paper shows that the
isotropic interpolation of filter coefficients is not a successful approach.

A much simpler method is to replace the unknown filter coefficients with the regularized
filter coefficients from the nearest known filter, which is tantamount to a nearest-neighbor
type of interpolation of filters. This wreaks substantiallyless havoc than other attempts to
interpolate filters, as it does not manipulate PEF coefficients.

The herringbone pattern used in this paper has an obvious preferential direction, so by
only regularizing and searching for a nearest-neighbor vertically a much better result can be
produced. For seismic data this direction would be along radial lines in the cmp domain.
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Manipulating non-stationary filters during the estimationprocess with regularization terms
to fill in missing filters appears to be ineffective. Instead,using a very simple method which
uses the nearest known portion of the non-stationary PEF to interpolate shows promising re-
sults for a simple test case. By incorporating some prior information of which PEF to use, a
much better interpolated result can be obtained.

BACKGROUND

Estimation of a stationary PEF can be phrased as a least-squares problem, where the following
fitting goal is minimized with respect to an unknown filterf:

W(DKf+d) ≈ 0, (1)

in whichW is a weight to exclude equations with missing data,D is convolution with the data,
K constrains the first filter coefficient to 1,f is the unknown filter, andd is a copy of the data.

Once the PEF has been estimated, it can then be used to interpolate missing data by solving
another inverse problem:

Lm−d ≈ 0 (2)

εFm ≈ 0, (3)

whereL is a selecting operator that selects the known data within the interpolated modelm,
d is the known data,ε is a scaling factor, andF represents convolution with the newly-found
PEF. The output modelm is referred to as the restored data.

Instead of a restored version of the data, multiple equiprobable realizations (Clapp, 2000)
of the missing data can be generated by changing fitting goal (3) to

εFm ≈ σn, (4)

where instead of desiring the output of the filter convolved with the model to be zero, we now
choose for it to be equal to random noisen scaled by a factorσ . Multiple realizations of the
interpolation can be generated by using different random numbers forn that are identically
distributed. This noise is only introduced where the data are missing, as the residual of fitting
goal (3) will already look like random noise where data are present.

In geostatistical language, the restored data is very similar to an E-type, which is the same
as an average of multiple realizations (or simulations) of the result generated by fitting goals
(2) and (4). Dividing random noise by the PEF, which is the same as solving fitting goal (4) is
equivalent to an unconditional simulation, where no data constrain the output.

All of the previous theory has been utilized for stationary PEFs. A non-stationary PEF can
be estimated by a fitting goal similar to fitting goal (1), except that instead of the PEF having
a single set of coefficients, the PEF now has a separate set of coefficients for each data point.
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Since there are now many more unknown filter coefficients thanknown data, a regularization
term needs to be added to constrain the problem:

εAf ≈ 0, (5)

wheref is the unknown non-stationary PEF andA is a regularization operator that acts over
space for each filter coefficient independently, and is typically either a Laplacian or helix
derivative (Claerbout, 1999). Fitting goals (3) and (4) canbe used with a non-stationary PEF
f in the place of a stationary PEF.

APPLICATION TO HERRINGBONE DATA

The methods described above were applied to the herringbonesynthetic. The fully-sampled
data as well as the data with the hole are shown in Figure 1.

Figure 1: The herringbone data, (a) original data, and (b) data with hole. bill2-herr-orig
[ER,M]

As a starting point, the hole was interpolated using a stationary PEF that was 9× 4 co-
efficients, shown in Figure 2a. We can see how well the PEF has characterized the data by
convolving the PEF with either the original data or the interpolated result. The result of con-
volving the PEF with the interpolated result is shown in Figure 2b. As has been previously
noted, the PEF appears to miss the spines of the herringbone pattern, but gets the two slopes
relatively well. When examining the result of random noise divided by that same stationary
PEF (shown in Figure 2c) we can see the problem with the assumption of stationarity in that
the two slopes present in the herringbone pattern are co-located throughout the simulation.

The problems with co-located dips due to the assumption of stationarity can be avoided
by using a non-stationary PEF. A 9×2 non-stationary PEF (with a total of about 16,000 filter
coefficients) was estimated on the known data and then used tointerpolate the missing data.
As we can see from Figure 3a, the result is nearly perfect, which shouldn’t be surprising given



250 Curry SEP–120

Figure 2: Stationary PEF result, (a) interpolated data, (b)interpolated data convolved with
PEF, and (c) random noise divided by PEF.bill2-herr-stat [ER,M]

that the non-stationary PEF was estimated on the answer. Still, the restored version appears
to have little of the problems of the interpolation smoothlydecaying to zeros that was present
in the stationary case. When convolving the PEF with the fulldataset, we can see from the
relative strength of the edge effects (in Figure 4b) that thefilter perfectly captured the data.
When we remove the edge effects, we see no trace of the spine ofthe herringbone, and the
result looks very random as seen in Figure 4c.

Figure 3: Non-stationary PEF results, where the PEF is estimated on the complete data. (a)
interpolated result. (b) PEF convolved with original data.(c) PEF convolved with original
data with edge effects removed, and the result scaled.bill2-herr-ns-known[ER,M]

The previous test was a demonstration of the effectiveness of a non-stationary PEF as a
container for information, but we had the answer before attempting to solve the problem. Next,
we must resolve the issue of non-stationary PEFs with holes in them, which happens when we
do not have the answer.

A more realistic starting point would be to estimate a PEF on the data with the hole and
hope that the regularization term in fitting goal (5) would act as a method of interpolating the
PEF in areas with missing data. As we can see from the results in Figure 4, this is clearly
not the case. The restored data using a stationary PEF extends much further into the gap than
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Figure 4: Non-stationary PEF results, where the PEF is estimated on the data with the hole.
(a) The interpolation result using a filter with a hole in it. (b) non-stationary PEF convolved
with original data. (c) non-stationary PEF convolved with interpolated result. (d) PEF from
full data convolved with data with hole. (e) and (f): sections from a single filter lag for the
model residual of fitting goal 5bill2-herr-ns-unknown[ER,M]
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the non-stationary PEF does. If we look at the model residualfrom fitting goal (5) shown
in Figures 4e and f, we can start to see why. This is a portion ofthe model residual for two
non-stationary filter coefficients over the entire space of the non-stationary PEF. We can see
that as we move within the gap that the residual drops to zero,as the filter coefficients are also
zero within this area. Relying upon the filter regularization to fill in gaps in the non-stationary
filter does not put filters in holes.

We can also look at the performance of the PEFs by looking at the random realizations
as well as random noise divided by the non-stationary PEF, both shown in Figure 5. These
results mostly confirm what we already know from Figure 4, however it is surprising to see
that Figures 4b and c, which use the full data, are not as consistent as expected. The areas
which contain the herringbone pattern are non consistent from simulation to simulation. This
is not the case with the stationary PEF result of Figure 2c.

Figure 5: (a) random realization of interpolation, (b) and (c) two sets of random numbers
deconvolved with the PEF estimated on the complete data. (d)to (f): same as (a) to (c), except
for a PEF estimated on the data with the hole.bill2-herr-realiz [ER,M]

Instead of interpolating filter coefficients by relying on anisotropic roughener for regular-
ization, a much simpler approach is taken. After the non-stationary PEF is estimated, the filter
coefficients in areas with missing data are simply interpolated in a nearest-neighbor fashion
with the nearest filter coefficients that are constrained by data. The results of using this method
are shown in Figure 6. On the first panel (a), we can see that thesignal that we want to destroy
with our filter is partially gone, and the output looks much more random than before. On the
second panel (b), we see that the interpolated result is better than any of the previous attempts.
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While there is only a single dip in any location, these dips are not in the correct locations as
they do not follow the vertical spine of the herringbone. On the third panel (c), a single filter
lag plotted with respect to space, we can clearly see the difference between filter coefficients
that have been estimated on data, and those that have been interpolated from neighboring area
with data.

Figure 6: Results for PEF estimation with isotropic regularization and an isotropic nearest-
neighbor search. (a) Convolution of the PEF with the fully-sampled data. (b) Interpolation
with the PEF. We can see that the dips are no longer co-located, but do not match the spine of
the herringbone pattern. (c) Filter coefficients from a single filter lag. We can see the isotropic
smoothing of the filter coefficients as well as nearest neighbor smearing. bill2-herr-better
[ER,M]

If we examine the mappings between the areas with no data and their nearest neighbors
as shown in Figures 7a and b, we can see that the mappings do notcorrespond to the vertical
trend present in the herringbone data. If we alter the nearest-neighbor interpolation so that no
points outside of the vertical direction are considered, with the result shown in Figures 7c and
d.

In addition to changing the filter interpolation so that it acts in a preferential direction, the
regularization of the filter has been changed from an isotropic Laplacian to a derivative in the
vertical direction. The results of using both of these new methods is shown in Figure 8. The
first panel (a) shows how the missing signal is better attenuated with this method. The second
panel (b) is the interpolation result, which is far superiorto any other method shown in this
paper. The correct dips are present in the correct locations. The amplitude of the interpolated
result is not as uniform as would be desired, however. Finally, in the third panel (c), we
can see that the interpolated filter coefficients are much more difficult to identify than with
the previous method. The only obvious artifact is the seam caused by the nearest-neighbor
interpolation when the interpolated data switched from oneside of the gap to the other.

CONCLUSIONS AND FUTURE WORK

When making the jump from stationary to non-stationary interpolation, the issue of interpo-
lating large gaps becomes a much more difficult problem. In addition to worrying about the
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Figure 7: Nearest-neighbor coordinates of closest filters.(a) and (b): y and x locations (re-
spectively) of nearest neighbors for missing data with an isotropic search. (c) and (d), the
same, but when searching only vertically.bill2-near [ER,M]
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Figure 8: Results for PEF estimation with a vertical derivative for regularization and a vertical
nearest-neighbor search for missing coefficients. (a) Convolution of the PEF with the fully-
sampled data. We can see that the result is more white than in Figure 6. (b) Interpolation with
the PEF. Again, the result is better than in Figure 6. The dipsare all in the correct locations,
but the amplitude is not as high as it should be. (c) Filter coefficients from a single filter lag.
The nearest-neighbor interpolated filter coefficients are now much harder to distinguish from
the area where the PEF is estimated from local data.bill2-herr-best [ER,M]

continuity of the estimate, estimating the value of the filter in the hole is also a problem.

Interpolating filter coefficients with a Laplacian or helical derivative clearly is not a viable
approach. A method that preserves the filters, such as nearest neighbor interpolation of filter
coefficients proves to be more feasible. When that method incorporates prior information in
terms of a preferred direction of regularization and interpolation, the result is greatly improved.

In the future, this method can be applied to large gaps in seismic data, where the preferred
direction is either radial lines or Snell rays.
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