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Interpolating with data-space prediction-error filters

William Curry!

ABSTRACT

The Madagascar sea elevation dataset presents a problem adta are collected along
crossing tracks. These tracks are not straight, and areftnerirregular in the model
space. Previous methods assumed that the data were rggalempled in the model spac
coordinate system, or did not take into account the redidarin the acquisition of the
data. Instead of attempting to find a prediction-error filtethe model space, | estimat
two prediction-error filters in a coordinate system basetherdata’s spatial distribution
and show how to regularize the data with these filters withmpsong results. | then
show how this strategy can be applied to 2D and 3D land sumwbgs data predicted by
reciprocity is included.
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INTRODUCTION

The Madagascar seasat sea level dataset is a collectioo giasses of the GEOSAT satellite
(ascending and descending) over a region of the SouthwdisinliiRidge in the Indian Ocean.
There is a densely-acquired region of the dataset in thénsaeutich ranges from 40 to 70
degrees (E) longitude and 30 to 40 degrees (S) latitude evthé latitude of the sparsely-
acquired data ranges from 20 to 40 degrees (S) latitude passh Figure 1.

The satellite tracks are much like feathered marine geopleables, sail lines, or shot
lines in a 3D seismic survey. Any method that hopes to sucor€D seismic data should be
able to deal with this toy problem.

Early work on this dataset at SEP (Ecker and Berlioux, 199Bnask, 1998, 2002) has
mainly dealt with the systematic errors present in the ddatsset (Ecker and Berlioux, 1995),
or with ways in which to use information in the dense portidrihee data to regularize the
missing bins in the northern, sparse portion of the data @skn1998, 2002). In the latter, it
is assumed that the statistics of the data are stationanpoteregions. More recent work has
started to deal with the interpolation of only the sparseksgCurry, 2004; Lomask, 2004).

In this paper, only the lower half of the dataset (30 to 40 degr(S) latitude) is exam-
ined, so that interpolation of the sparse tracks can be codpaith the dense tracks. Here,
a different approach is presented to dealing with the spaas& problem, where a pair of
prediction-error filters (PEFs) are estimated directly loa two sets of tracks. This pair of
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filters is estimated in the data space, so that the issuesssingidata and irregular geometry
are no longer present. Once these filters have been estintla¢égdcan be used in tandem to
regularize the missing portions of the model space.

Extension of this method to incorporate non-stationary $iEKuite straightforward. The
similarities between the Madagascar data and a Colombiagenic data line are notewor-
thy enough that this method should be applicable to 2D latal, ehere the two sets of tracks
correspond to positive and negative offsets. The geométay3® cross-swath land seismic
survey also has similarities to the Madagascar data, whees @ata predicted by reciprocity
is added irregular crossing tracks are present in cmp_sebfk space.

BACKGROUND

The Madagascar regularization problem has been approasireglthe following fitting goals
(Lomask, 2002):

d
W—[Lm—-d] ~ O
giltm —d]
eAm = 0. (2)

In these fitting goalsW corresponds to a weight for ends of tracks and spikes in ttee ﬁa
is a derivative along each track used to eliminate low fregyevariations along each tradk,
is a linear interpolation operator that moves from values @agular grid to the data points,
m is the desired gridded model,are the data points along the tracksjs a regularization
operator, and is a trade-off parameter between the two fitting goals.

The regularization operatoA] typically is a Laplacian, a prediction-error filter (PEB},
a non-stationary PEF (Crawley, 2000). When using a PEFsitriiust be estimated on some
training data, using a least-squares fitting goal,

W (DKa +d) ~ 0, (2)

in whichW is a weight to exclude equations with missing d&tas convolution with the data,
K constrains the first filter coefficient to 4 s the unknown filter, and is a copy of the data.

In order to set a benchmark for how effective any interpolatf the sparse tracks is, a
PEF is estimated using fitting goal (2) on the output of fitgagls (1) when using the dense
tracks of the Madagascar dataset and a Laplacian regularizzperator. The PEF is then
used to interpolate the sparse tracks in the same area,tbsisgme fitting goals (1), this time
with the regularization being convolution with a PEF. Thasult provides an upper bound to
what an ideal interpolation of the data would be if we alre&dgw the answer. Any new
result should be much better than the Laplacian regulasizahown in Figure 2b.

PEFS IN THE DATA SPACE

Once we attempt to interpolate this dataset using only thessgracks, the above method no
longer works, as no region would have enough contiguousatatahich to estimate a PEF.
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Figure 1: (a) sparse tracks. (b) dense trafii#{1-datal [ER,M]

In this case we will pay more attention to how our data areialpatlistributed. The known
data points in the model space are distributed along curkesbing tracks, making it very
difficult to estimate a PEF in this space, as shown in Figunddwever, in the data space of
the fitting goals (1) of the previous section, the data aregpdadnin a regular space: a series of
regularly-sampled tracks, as shown in Figures 3 and 4.

Since these data are collected in two series of one-dimealsiacks, it would be easiest
to estimate a pair of one-dimensional PEFs on these two $étaaks, as shown in the top
halfs of Figures 3 and 4.

We now have two PEFs which have been estimated in a data $padbe model which
we wish to regularize with these PEFs is in a different spddes requires the introduction
of two additional linear interpolation operatdrs andL», which pull bins from the model
space into the ascending and descending track data spaspsctively. The mappings used
for these operators are shown in Figure 5. Now that we havetlat prediction-error filters
for regularizations operators as well as linear interpotabperators that pull model points
into the data space, we can put everthing together in thewoip fitting goals,

d
W—[Lm—-d] =~ O
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Figure 2: (a) dense data regularized with a Laplacian. (bysgpdata regularized with a
Laplacian. (c) sparse data regularized with a PEF traingti@top.| bill1-best [ER,M]
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Figure 3: Sparse tracks, (a) ascending and (b) descendmgdiel space, and (c) ascending

and (d) descending tracks in data spabéll-sptracks [ER,M]
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Figure 4: Dense tracks, (a) ascending and (b) descendingdeingspace, and (c) ascending

and (d) descending tracks in data spabéll-detracks[ER,M]
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Figure 5. Mappings from data space to model space, all shawdaia space. From the
top down: ascending tracks latitude, ascending tracksitishey descending tracks latitude,

descending tracks longituddaill1-maps [ER,M]
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whereL pulls model pointsrf) to where we have data), A; andA, are 1D PEFs that are
estimated on the ascending and descending tracks in thepkata, respectively, arid and

L, are linear interpolation operators that pull model points the ascending and descending
track data spaces, respectivetyis a tradeoff parameter between the data fitting and model
styling goals.

The 1D PEFs can also be replaced by 2D PEFs that are estimasa@ling the filter so
that it covers multiple sparse tracks. If this approach kema the interpolation can occur in
the data space where the PEFs are estimated (using a singléPE&ach of the two track
spaces), or in the model space (using both PEFs simultaly@olite more straightforward
data-space interpolation is shown in Figure 6.

Figures 6a and b are simply the interpolation of the dataespait 2D PEFs estimated on
the sparse tracks. Figures 6c and d are those interpolagelisrenapped back to the model
space by using fitting goals (1), where the input data are hevintterpolated sets of tracks in
the first two panels. Since fitting goals (1) were applied whenerating the new tracks, the
track derivative is no longer necessary.

The results are mixed, as Figure 6¢ shows that the trend atitpe was correctly identified
by the PEF estimated on the ascending tracks. The PEF estiroatthe descending tracks
did not fare so well, as the direction of the ridge in the iptéated tracks of Figure 6d does
not match the densely sampled tracks in Figure 4d. This iaussthe descending tracks are
obligue to the structure, so the structure is aliased beyloagoint where a spaced PEF can
interpolate accurately. In either case, the result is b#ttn that obtained with a Laplacian,
and in the case of the ascending tracks is not that far frorREteestiamted on a fully-sampled
model space shown in Figure 2c.
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Figure 6: Interpolation of the two different track spacesgiad (b). (c) and (d) contain the
same results mapped into model space. The correct strikeeafidge is identified by the
ascending tracks but not the descending tra{dﬂt&l-dataspinter;p[ER,M]
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CONCLUSIONS AND FUTURE WORK

By estimating a pair of PEFs in the data space, the problenregjular data acquistion has
been avoided. The actual interpolation can be performe&herehe data space (track coor-
dinates) or the model space (latitude and longitude). Theltseturned out to be much better
for the ascending tracks than for the descending tracks.

Crossing tracks are also present in land seismic data, vdoero reciprocity the negative
offsets in the split-spread land experiment cross. In 2B llaippens in cmp - absolute offset
space as shown in Figure 7, and in 3D this also happens, batpn:c- offset_x and cmp_y -
offset_y spaces.
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Figure 7: Fold map of an irregularly-sampled 2D land surveymp and absolute offset. Sim-

ilar patterns of crossing tracks are also present in thigesudue to reciprocity, bill1-hulia
[ER]
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