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Short Note

Sparse radon transforms with a bound-constrained approach

Antoine Guitton1

INTRODUCTION

Radon transforms are popular operators for velocity analysis (Taner and Koehler, 1969; Gui-
tton and Symes, 2003), noise attenuation (Foster and Mosher, 1992), and data interpolation
(Hindriks and Duijndam, 1998; Trad et al., 2002). One property that is often sought in radon
domains is sparseness, where the energy in the model space iswell focused for each corre-
sponding event in the data space. Sparseness is especially useful for multiple attenuation and
interpolation. In practice, depending on the radon transform, sparseness can be achieved ei-
ther in the Fourier (Herrmann et al., 2000) or time domain (Sacchi and Ulrych, 1995). To
estimate sparse radon panels in the time domain, a regularization operator that enforces long-
tailed probability density functions for the model parameters is often used. This regularization
operator can be thè1 norm (Nichols, 1994) or the Cauchy norm (Sacchi and Ulrych, 1995).

In this paper, a new time-domain method is presented that yields sparse radon panels.
This method estimates a sparse model by adding two models estimated independently with
only positive or negative values obtained with a bound-constrained optimization technique.
Therefore, by forcing the model to fall within a certain range of values, the null space and its
effects are decreased.

In the section following this introduction, I introduce theproblem of finding a bound-
constrained model and its resolution by presenting the limited memory L-BFGS-B technique
(Zhu et al., 1997). This method aims at finding a solution withsimple bounds for linear or
non-linear problems. Then, I introduce a method that estimates sparse radon domains. Finally,
this technique is tested on a synthetic and field data examples and compared to the Cauchy
regularization (Sacchi and Ulrych, 1995). They demonstrate that the proposed strategy yields
sparse radon panels comparable to the Cauchy approach. One advantage of this new strategy is
that the choice of parameters is much simpler; for instance,no Lagrange multiplier is needed.
One drawback is that two inversions need to be carried out as opposed to one for the Cauchy
method.
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FINDING A MODEL WITH SIMPLE BOUNDS

In this section, I present the problem of finding simple bounds and the method that solves it.

The goal of bound-constrained optimization is to find a vector of model parametersm such
that we minimize

min f (m) subject tom ∈ �, (1)

where

m ∈ � = {m ∈ <N | l i ≤ mi ≤ ui }, (2)

with l i andui being the lower and upper bounds for the modelmi , respectively. In this case,l i
andui are called simple bounds. They can be different for each point of the model space. The
model vector that obeys equation (1) is calledm∗.

The sets of indicesi for which the i th constraint are active/inactive are called the ac-
tive/inactive setsA(m)/I (m). Most of the algorithms used to solve bound constrained prob-
lems first identifyA(m) and then solve the minimization problem for the free variables of
I (m).

The L-BFGS-B algorithm

The L-BFGS-B algorithm is an extension of the quasi-Newton L-BFGS algorithm (Guitton
and Symes, 2003) that yields a model constrained by simple bounds (Zhu et al., 1997). The
L-BFGS algorithm is a very efficient algorithm for solving large scale problems. L-BFGS-B
borrows ideas from trust region techniques while keeping the L-BFGS update of the Hessian
and line search algorithms.

The L-BFGS-B algorithm is affordable for very large problems. The memory requirement
is roughly (12+ 2m)N wherem is the number of BFGS updates kept in memory andN the
size of the model space. In practice,m = 5 is a typical choice. Per iteration, the number
of multiplications range from 4mN+ N when no constraints are applied tom2N when all
variables are bounded. The program offers the freedom to have different bounds for different
points of the model space. In addition, some points can be constrained while others are not.

There are three different stopping criteria for the L-BFGS-B algorithm. First the program
stops when the maximum number of iterations is reached. Or, the program stops when the
decrease of the objective function becomes small enough. Or, the program stops when the
norm of the projected gradient (in à∞ sense) is small enough.

Tests indicate that the L-BGFS-B algorithm ran in single precision with no constraints
is not quite twice as slow as a conjugate gradient solver per iteration. This result is quite
remarkable when considering that L-BFGS-B works for any type of non-linear (or linear)
problem with line searches. In addition, the number of iterations needed to convergence is
almost identical for both L-BFGS-B and the conjugate gradient solver. In the next section, I
present a method to estimate sparse radon transforms.
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ESTIMATING SPARSE RADON DOMAINS

Given a CMP gatherd and a radon transform operatorL, we want to minimize the least-
squares objective function

f (m) = ‖Lm−d‖2, (3)

wherem is the unknown radon domain. The main idea of this paper is to decomposem into its
positive and negative parts by imposing simple bounds onm with the L-BFGS-B algorithm.
Therefore, the two problems

min f (m(−)) subject tom(−) ∈ ] −∞,0[ , (4)

and

min f (m(+)) subject tom(+) ∈ [0,+∞[ , (5)

need to be solved. Note that we could decomposem into more subdomains as well. It is
important to solve both problems of findingm(−) and m(+) independently, and not simul-
taneously as it can be done with linear programming techniques (Claerbout and Muir, 1973).
Here, the main idea is to decrease the null space and its effects by constraining the model, sim-
ilar to what is accomplished with the Cauchy regularization. Once the two modelsm(+) and
m(−) are estimated with the L-BFGS-B algorithm, the sparse modelis obtained by computing
msparse = m(−) +m(+). In the following section, I illustrate this technique witha synthetic and
real data example using the hyperbolic radon transform.

EXAMPLES

Figure 1a shows a synthetic CMP gather with five hyperbolas. First, the model is constrained
to have positive values in Figure 1b. Note that this domain isartifacts free and extremely
focused. Second, the model is constrained to have negative values in Figure 1c. Again, the
model is very sparse. Finally, the sparse model obtained by adding Figures 1b and 1c is shown
in Figure 1d. As expected, this model is very sparse comparedto the radon panel obtained
without sparseness constraints in Figure 1e. Now, this method is tested on one CMP gather
from a marine dataset in the Gulf of Mexico. Here, the proposed method is also compared with
the sparse result with the Cauchy regularization (Sacchi and Ulrych, 1995). Figure 2a shows
the input data. The sparse models obtained by adding the bounded models and by using the
Cauchy regularization are shown in Figures 2d and 2e, respectively. Both results are almost
identical, with the new technique yielding a better panel. The residual, i.e., the difference
between the input data and the remodeled data, is also very similar in both cases (Figures 2b
and 2c).

CONCLUSION

A new method to estimate sparse radon panels has been presented. This method is based
on (1) the decomposition of the model space into positive andnegative values with a bound-
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constrained optimization technique, and (2) the summationof the two estimated models. This
decomposition has the property of reducing the null space and its effects. As illustrated with
synthetic and field data examples, this method yields sparseradon panels and compares fa-
vorably with the Cauchy regularization technique. Compared to the Cauchy regularization,
the proposed method is simpler to parametrize where, for instance, no Lagrange multiplier is
estimated. However, more iterations are needed for the bound-constrained approach because
two models are estimated independently.
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Figure 1: (a) Input data. Estimated model for (b) positive values and (c) negative values only.
(d) Estimated sparse domain (b)+(c). (e) Estimated model without sparseness constraints.
antoine2-plusminus-nospike-HUBER[ER]
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Figure 2: (a) Input CMP gather from a marine data experiment.Residual panels for the
sparse model estimated with (b) the bounded models and (c) the Cauchy regularization.
Sparse models estimated with (d) the bounded models and (e) the Cauchy regularization.
antoine2-cauchyres-gm2-HUBER[ER]


