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Short Note

Spar seradon transfor mswith a bound-constrained approach

Antoine Guittoh

INTRODUCTION

Radon transforms are popular operators for velocity amayf&ner and Koehler, 1969; Gui-
tton and Symes, 2003), noise attenuation (Foster and Mo$86R), and data interpolation
(Hindriks and Duijndam, 1998; Trad et al., 2002). One prop#rat is often sought in radon
domains is sparseness, where the energy in the model spaed i®cused for each corre-
sponding event in the data space. Sparseness is espes#lily for multiple attenuation and
interpolation. In practice, depending on the radon tramsfeparseness can be achieved ei-
ther in the Fourier (Herrmann et al., 2000) or time domainc€Baand Ulrych, 1995). To
estimate sparse radon panels in the time domain, a regatianzoperator that enforces long-
tailed probability density functions for the model paraemsis often used. This regularization
operator can be thé" norm (Nichols, 1994) or the Cauchy norm (Sacchi and Ulry&@5).

In this paper, a new time-domain method is presented thédsygparse radon panels.
This method estimates a sparse model by adding two modétsagst independently with
only positive or negative values obtained with a bound-trairsed optimization technique.
Therefore, by forcing the model to fall within a certain reraf values, the null space and its
effects are decreased.

In the section following this introduction, | introduce tpeoblem of finding a bound-
constrained model and its resolution by presenting thedidnmemory L-BFGS-B technique
(Zhu et al., 1997). This method aims at finding a solution wgithple bounds for linear or
non-linear problems. Then, | introduce a method that eséesparse radon domains. Finally,
this technique is tested on a synthetic and field data exangpid compared to the Cauchy
regularization (Sacchi and Ulrych, 1995). They demonsttiadt the proposed strategy yields
sparse radon panels comparable to the Cauchy approachd@eage of this new strategy is
that the choice of parameters is much simpler; for instamed,agrange multiplier is needed.
One drawback is that two inversions need to be carried ouppssed to one for the Cauchy
method.
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FINDING A MODEL WITH SIMPLE BOUNDS

In this section, | present the problem of finding simple bauadd the method that solves it.

The goal of bound-constrained optimization is to find a veatonodel parametenrs such
that we minimize

min f(m) subject tom € Q, (2)
where
meQ={meRN |l <m <u}, (2)

with I; andu; being the lower and upper bounds for the madglrespectively. In this casg,
andu; are called simple bounds. They can be different for eacht pdithhe model space. The
model vector that obeys equation (1) is calietl

The sets of indices for which theith constraint are active/inactive are called the ac-
tive/inactive setsA(m)/1 (m). Most of the algorithms used to solve bound constrainetpro
lems first identify A(m) and then solve the minimization problem for the free vdaatof

[ (m).

TheL-BFGS-B algorithm

The L-BFGS-B algorithm is an extension of the quasi-NewteBRGS algorithm (Guitton
and Symes, 2003) that yields a model constrained by simplad®(Zhu et al., 1997). The
L-BFGS algorithm is a very efficient algorithm for solvingde scale problems. L-BFGS-B
borrows ideas from trust region techniques while keepirgltBFGS update of the Hessian
and line search algorithms.

The L-BFGS-B algorithm is affordable for very large probkenthe memory requirement
is roughly (12+2m)N wherem is the number of BFGS updates kept in memory &hthe
size of the model space. In practice,= 5 is a typical choice. Per iteration, the number
of multiplications range from N+ N when no constraints are appliedn@N when all
variables are bounded. The program offers the freedom te tidferent bounds for different
points of the model space. In addition, some points can bstned while others are not.

There are three different stopping criteria for the L-BFB &lgorithm. First the program
stops when the maximum number of iterations is reached. h@rptogram stops when the
decrease of the objective function becomes small enoughth®mprogram stops when the
norm of the projected gradient (iné& sense) is small enough.

Tests indicate that the L-BGFS-B algorithm ran in singlecpgien with no constraints
is not quite twice as slow as a conjugate gradient solver tpeation. This result is quite
remarkable when considering that L-BFGS-B works for anyetygb non-linear (or linear)
problem with line searches. In addition, the number of tterss needed to convergence is
almost identical for both L-BFGS-B and the conjugate gratiglver. In the next section, |
present a method to estimate sparse radon transforms.
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ESTIMATING SPARSE RADON DOMAINS

Given a CMP gathed and a radon transform operatbr we want to minimize the least-
squares objective function

f(m)=|ILm—d|?, ®3)

wherem is the unknown radon domain. The main idea of this paper istochposen into its
positive and negative parts by imposing simple boundsionith the L-BFGS-B algorithm.
Therefore, the two problems

min f(m)) subjecttom_) e ] —00,0[ , 4)
and
min f(m,)) subject tom(;) € [0,+o0[ , (5)

need to be solved. Note that we could decomposmto more subdomains as well. It is
important to solve both problems of findimg) and m(.) independently, and not simul-
taneously as it can be done with linear programming tecles@Claerbout and Muir, 1973).
Here, the main idea is to decrease the null space and itdffeconstraining the model, sim-
ilar to what is accomplished with the Cauchy regularizatiGmce the two modelsy;) and
m(-) are estimated with the L-BFGS-B algorithm, the sparse misdabtained by computing
Mgparse = M) +M(4). Inthe following section, I illustrate this technique watsynthetic and
real data example using the hyperbolic radon transform.

EXAMPLES

Figure 1a shows a synthetic CMP gather with five hyperbolast, Ehe model is constrained
to have positive values in Figure 1b. Note that this domaiarigacts free and extremely
focused. Second, the model is constrained to have negatives/in Figure 1c. Again, the
model is very sparse. Finally, the sparse model obtainedtiyng Figures 1b and 1c is shown
in Figure 1d. As expected, this model is very sparse comp@ard¢ige radon panel obtained
without sparseness constraints in Figure 1e. Now, this odeth tested on one CMP gather
from a marine dataset in the Gulf of Mexico. Here, the progosethod is also compared with
the sparse result with the Cauchy regularization (Sacdahitérych, 1995). Figure 2a shows
the input data. The sparse models obtained by adding thededumodels and by using the
Cauchy regularization are shown in Figures 2d and 2e, régpbc Both results are almost
identical, with the new technique vyielding a better panehe Tesidual, i.e., the difference
between the input data and the remodeled data, is also vaikasin both cases (Figures 2b
and 2c).

CONCLUSION

A new method to estimate sparse radon panels has been meseriis method is based
on (1) the decomposition of the model space into positiveraaghtive values with a bound-
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constrained optimization technique, and (2) the summatidhe two estimated models. This
decomposition has the property of reducing the null spadatareffects. As illustrated with
synthetic and field data examples, this method yields spaden panels and compares fa-
vorably with the Cauchy regularization technique. Comgarethe Cauchy regularization,
the proposed method is simpler to parametrize where, feamcg, no Lagrange multiplier is
estimated. However, more iterations are needed for thedoanstrained approach because
two models are estimated independently.
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(a) Input data (b) Positive values (c) Negative valuse (@) = (b)+(c) (e) Model space without bounds
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Figure 1: (a) Input data. Estimated model for (b) positivieiga and (c) negative values only.
(d) Estimated sparse domain (b)+(c). (e) Estimated mod#lowt sparseness constraints.
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(a) Input data (b) Residual with bounds (c) Residual with Cauchy reg (d) Model space with bounds (¢) Model space with Cauchy reg
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Figure 2: (a) Input CMP gather from a marine data experimd®ésidual panels for the
sparse model estimated with (b) the bounded models and écCHuchy regularization.
Sparse models estimated with (d) the bounded models andhdeauchy regularization.
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