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Non-linear estimation of vertical delayswith a quasi-Newton
method

Antoine Guitton, Jesse Lomask, and Sergey Fomel

ABSTRACT

A local dip (or step out) between two adjacent traces embyetse¢cessary information to
go from one reflection on one trace to the same reflection omekie In more dimensions
i.e., 3-D, the same result is obtained between distantdragentegrating the local dips
in all directions, thus obtaining relative delay maps uk&fu(1) automatic full-volume

picking and (2) automatic flattening of horizons. The estiareof these maps from loca
dips is a non-linear process. In this paper, this problenoligesl with a quasi-Newton
technique for 2-D slices and 3-D cubes. Furthermore, theasbn of the relative delays
is done globally in a least-squares sense for all reflectoonee. Synthetic and field
data examples illustrate the ability of the algorithm totéathorizon according to their
geological time. As a natural extension of our algorithmy bBarizon can also be picked
automatically at no additional cost.

INTRODUCTION

From the estimation of local dips, Lomask (2003a) showetwdical shifts (time or depth)
can be estimated to flatten seismic data in 2-D or 3-D. Thechdsa is to integrate local
dips or step outs estimated from the data. This integratieesgor every point in the data
volume a relative vertical (time or depth) delay to one eygasent on a reference trace. This
delay can be used for flattening, where each sample is stitteording to the delay value,
or for picking, where one event (or many events) can be fabfvom the reference trace to
everywhere in the data volume by simply stepping up or dovwoting to the delay value.
In addition, time/depth shift estimation can be used for yng@ophysical applications. For
instance, Wolf et al. (2004) illustrate how RMS velocitiesmde estimated without picking.
Similarly, Guitton et al. (2004) solve a tomographic prablby inverting the time delays.

Lomask (2003b) identified a non-linear relationship betwe local dips and the relative
delays. In his approach, however, this property was firsbrigth by solving simpler linear
problems. The goal of this paper is to solve the non-lineablgm exactly with a quasi-
Newton approach called L-BFGS (Guitton and Symes, 2003yit8pthe non-linear problem
allows us to estimate relative time/depth shifts when tlealldips are not constant with time
or depth, a central assumption in the linear approach of Isér{2003a).
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This paper starts with a presentation of the theory of tiretll delay estimation in 2-D
and 3-D. The quasi-Newton method is briefly introduced. Thka proposed algorithm is
tested on 2-D and 3-D data examples. They illustrate theracgwf the method to compute
relative time/depth delays and to perform event picking.

THEORY OF TIME/DEPTH DELAYSESTIMATION

First consider a data voluntéXx, y, z) wherex andy are the horizontal axes auds the depth
or time axis. Building on Lomask (2003b), a vertical (timedepth) delay function (x,y, z)
is estimated by minimizing the following functiond(r):

J(r)=ff[(px(x,y,z;r)—g—;)2+(py(x,y,z;r)—g—;)z} dxdy, ()

where py is the local step-out vector estimated in thelirection andpy is the local step-out
vector estimated in thg direction. Both vectors depend an which makes the problem of
finding the time/depth delays non-linear.

In this paper, we propose solving fe(x,y,z) with a quasi-Newton method called L-
BFGS (Guitton and Symes, 2003). The quasi-Newton method itegative process where
the solution to the problem is updated as follows:

Tel = Tk—AklelVJ(‘L'k), (2)

wherery, 1 is the updated solution at iteratiday- 1, Ax the step length computed by a line
search that ensures a sufficient decreasd(o) and Hx an approximation of the Hessian
(or second derivative.) One important property of L-BFG&t it requires the gradient of
J() only to build the Hessian. The gradieYitl(z) of J(zr) can be found by introducing the
Euler-Lagrange equation and is given by:

0%t 327,'+8px apy 1apx®> 1apy?
ox2 9y2  9x 9y 2 9t 2 Ot

VI(r)=— 3)
The 2-D case is a simple extension of this result where thegeén y are dropped. In prac-
tice, the last four terms of the gradient in equation (3) campkecomputed and evaluated at
(X, Y, Z) when needed for the BFGS update. This saves a lot of conmpuaheffort. Note
that the relative vertical (time or depth) delays are coraguwtith respect to a reference trace
chosen a priori in the data volume. A weight that would thrawt-fitting equations at fault
locations can also be incorporated easily in both the gnadied objective function.

The most important components of this time/depth delayuatadn technique are the dip
fields px and py. In our implementation, we use the method of Fomel (2002)storate
both. This technique estimates local dips from adjaceoegavithout slant-stacking. It also
gives one dip value only for each data point. Next, 2-D and @afa examples illustrate the
flattening technique.
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2-D DATA EXAMPLES

The 2-D algorithm, a simple extension of the 3-D algorithsnllustrated first on five synthetic
(Figures 1 to 5) and one field data examples (Figure 6). ABdHeures are organized as fol-
lows: panel (a) shows the input data, panel (b) shows theastd dip field using Fomel’s
technique (Fomel, 2002), (d) shows the picking result whieeeseed point starts from the ref-
erence trace every ten samples in time/depth, and (d) si@fkattening result. The field data
example is a 2-D slice extracted from the EIf (now Total) L7&a$et after common-azimuth
depth migration (Vaillant et al., 2000). All these examplkstrate that the time/depth delay
estimation process is very accurate and robust.

3-D DATA EXAMPLES

The 3-D algorithm is tested on two datasets from the Gulf okigle Figures 7a, 7b, and
7c show the input data, the picked reflector, and the flattergsult for the first dataset. The
size of this dataset is 100x100x100 samples. After flatgemrFigure 7c, a channel is now
clearly visible. Note that the picked reflectors in Figuref@lbow extremely well the true
reflectors. Again, this result is obtained at no cost andaditg available from the estimation
of 7(X,Y,2).

Figures 8a, 8b, and 8c show the input data, the picked reflesntd the flattening result
for the second dataset. The size of this dataset is 200xP00s@mples. It features more
complicated structures such as a large salt body on theskedtyn as SF) and faults. Nothing
was done to pick the faults, as suggested by (Lomask et &5)20levertheless, the flattening
result in Figure 8c highlights one channel on the depth she¢ was not previously visible.
The picking result in Figure 8b is also very accurate.

CONCLUSION

Estimating time/depth delays from dip fields is a non-lingaablem. A quasi-Newton tech-
nique was introduced to solve it. Several 2-D and 3-D exasijllestrate the efficiency of this
method to flatten and automatically interpret seismic lorgzwithout any picking.
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Figure 1: (a) Model. (b) Estimated dips. (c) Automatic prakof few horizons. (d) Flattening
result. The first trace is used for referen\ca‘ntoinel—unconformitMER]
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(a) Input (b) Dip field
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Figure 2: (a) Model. (b) Estimated dips. (c) Automatic prakof few horizons. (d) Flattening
result. The first trace is used for referen\ca‘ntoinel—unconformityF[ER]
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(a) Input (b) Dip field
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Figure 3: (a) Model. (b) Estimated dips. (c) Automatic prakof few horizons. (d) Flattening
result. The smoothness of the estimated dips introducd emats in the flattening result. The
first trace is used for referenqantoinel-unconformityﬁER]
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Figure 4. (a) Model. (b) Estimated dips. (c) Automatic prakof few horizons. (d) Flattening
result. The first trace is used for referen\emtoinel—thinningﬁER]
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Figure 5: (a) Model. (b) Estimated dips. (c) Automatic prakof few horizons. (d) Flattening
result. The first trace is used for referen\emtoinel—down_lapzHER]
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(a) Input (b) Dip field
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Figure 6: (a) Model. (b) Estimated dips. (c) Automatic prakof few horizons. (d) Flattening
result. The picked horizons follow extremely well the stiue of the data. The trace at
X=12000 is used for referenc@ntoinel-elf2D[ER]
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(c) Flattening
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Figure 7: (a) Model. (b) Automatic picking of few horizonsc) (Flattening result. The
picked horizons follow extremely well the structure of tregal On the time slice (top panel)
a channel (marked as C), previously unseen in the data, éaley by the flattening process.
|antoine1-3D-data-shoal-t¢ ER]
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(c) Flattening
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Figure 8: (a) Model. (b) Automatic picking of few horizonst) Flattening result. On the
depth slice (top panel) a channel (marked as C), previoustgen in the data, is revealed by
the flattening process. Arrow SF shows the salt flafstoine1-3D-ExxonMobil-da{dCR]
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