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Non-linear estimation of vertical delays with a quasi-Newton
method

Antoine Guitton, Jesse Lomask, and Sergey Fomel1

ABSTRACT

A local dip (or step out) between two adjacent traces embeds the necessary information to
go from one reflection on one trace to the same reflection on thenext. In more dimensions,
i.e., 3-D, the same result is obtained between distant traces by integrating the local dips
in all directions, thus obtaining relative delay maps useful for (1) automatic full-volume
picking and (2) automatic flattening of horizons. The estimation of these maps from local
dips is a non-linear process. In this paper, this problem is solved with a quasi-Newton
technique for 2-D slices and 3-D cubes. Furthermore, the estimation of the relative delays
is done globally in a least-squares sense for all reflectors at once. Synthetic and field
data examples illustrate the ability of the algorithm to flatten horizon according to their
geological time. As a natural extension of our algorithm, any horizon can also be picked
automatically at no additional cost.

INTRODUCTION

From the estimation of local dips, Lomask (2003a) showed that vertical shifts (time or depth)
can be estimated to flatten seismic data in 2-D or 3-D. The basic idea is to integrate local
dips or step outs estimated from the data. This integration gives for every point in the data
volume a relative vertical (time or depth) delay to one eventpresent on a reference trace. This
delay can be used for flattening, where each sample is shiftedaccording to the delay value,
or for picking, where one event (or many events) can be followed from the reference trace to
everywhere in the data volume by simply stepping up or down according to the delay value.
In addition, time/depth shift estimation can be used for many geophysical applications. For
instance, Wolf et al. (2004) illustrate how RMS velocities can be estimated without picking.
Similarly, Guitton et al. (2004) solve a tomographic problem by inverting the time delays.

Lomask (2003b) identified a non-linear relationship between the local dips and the relative
delays. In his approach, however, this property was first ignored by solving simpler linear
problems. The goal of this paper is to solve the non-linear problem exactly with a quasi-
Newton approach called L-BFGS (Guitton and Symes, 2003). Solving the non-linear problem
allows us to estimate relative time/depth shifts when the local dips are not constant with time
or depth, a central assumption in the linear approach of Lomask (2003a).
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This paper starts with a presentation of the theory of time/depth delay estimation in 2-D
and 3-D. The quasi-Newton method is briefly introduced. Then, the proposed algorithm is
tested on 2-D and 3-D data examples. They illustrate the accuracy of the method to compute
relative time/depth delays and to perform event picking.

THEORY OF TIME/DEPTH DELAYS ESTIMATION

First consider a data volumed(x, y,z) wherex andy are the horizontal axes andz is the depth
or time axis. Building on Lomask (2003b), a vertical (time ordepth) delay functionτ (x, y,z)
is estimated by minimizing the following functionalJ(τ ):

J(τ ) =

∫ ∫

[

(

px(x, y,z;τ )−
∂τ

∂x

)2

+

(

py(x, y,z;τ )−
∂τ

∂y

)2
]

dx dy, (1)

wherepx is the local step-out vector estimated in thex direction andpy is the local step-out
vector estimated in they direction. Both vectors depend onτ , which makes the problem of
finding the time/depth delays non-linear.

In this paper, we propose solving forτ (x, y,z) with a quasi-Newton method called L-
BFGS (Guitton and Symes, 2003). The quasi-Newton method is an iterative process where
the solution to the problem is updated as follows:

τk+1 = τk −λkH−1
k ∇ J(τk), (2)

whereτk+1 is the updated solution at iterationk + 1, λk the step length computed by a line
search that ensures a sufficient decrease ofJ(τ ) and Hk an approximation of the Hessian
(or second derivative.) One important property of L-BFGS isthat it requires the gradient of
J(τ ) only to build the Hessian. The gradient∇ J(τ ) of J(τ ) can be found by introducing the
Euler-Lagrange equation and is given by:

∇ J(τ ) = −
∂

2
τ

∂x2
−

∂
2
τ

∂y2
+

∂px

∂x
+

∂py

∂y
+

1

2

∂ px
2

∂τ
+

1

2

∂ py
2

∂τ
(3)

The 2-D case is a simple extension of this result where the terms in y are dropped. In prac-
tice, the last four terms of the gradient in equation (3) can be precomputed and evaluated at
τk(x, y,z) when needed for the BFGS update. This saves a lot of computational effort. Note
that the relative vertical (time or depth) delays are computed with respect to a reference trace
chosen a priori in the data volume. A weight that would throw-out fitting equations at fault
locations can also be incorporated easily in both the gradient and objective function.

The most important components of this time/depth delay evaluation technique are the dip
fields px and py. In our implementation, we use the method of Fomel (2002) to estimate
both. This technique estimates local dips from adjacent traces without slant-stacking. It also
gives one dip value only for each data point. Next, 2-D and 3-Ddata examples illustrate the
flattening technique.
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2-D DATA EXAMPLES

The 2-D algorithm, a simple extension of the 3-D algorithm, is illustrated first on five synthetic
(Figures 1 to 5) and one field data examples (Figure 6). All these figures are organized as fol-
lows: panel (a) shows the input data, panel (b) shows the estimated dip field using Fomel’s
technique (Fomel, 2002), (d) shows the picking result wherethe seed point starts from the ref-
erence trace every ten samples in time/depth, and (d) shows the flattening result. The field data
example is a 2-D slice extracted from the Elf (now Total) L7D dataset after common-azimuth
depth migration (Vaillant et al., 2000). All these examplesillustrate that the time/depth delay
estimation process is very accurate and robust.

3-D DATA EXAMPLES

The 3-D algorithm is tested on two datasets from the Gulf of Mexico. Figures 7a, 7b, and
7c show the input data, the picked reflector, and the flattening result for the first dataset. The
size of this dataset is 100x100x100 samples. After flattening in Figure 7c, a channel is now
clearly visible. Note that the picked reflectors in Figure 7bfollow extremely well the true
reflectors. Again, this result is obtained at no cost and is readily available from the estimation
of τ (x, y,z).

Figures 8a, 8b, and 8c show the input data, the picked reflector, and the flattening result
for the second dataset. The size of this dataset is 200x200x200 samples. It features more
complicated structures such as a large salt body on the left (shown as SF) and faults. Nothing
was done to pick the faults, as suggested by (Lomask et al., 2005). Nevertheless, the flattening
result in Figure 8c highlights one channel on the depth slicethat was not previously visible.
The picking result in Figure 8b is also very accurate.

CONCLUSION

Estimating time/depth delays from dip fields is a non-linearproblem. A quasi-Newton tech-
nique was introduced to solve it. Several 2-D and 3-D examples illustrate the efficiency of this
method to flatten and automatically interpret seismic horizons without any picking.

ACKNOWLEDGEMENTS

We thank ChevronTexaco for providing the dataset used in thefirst 3-D example, and Joe
Reilly at ExxonMobil for the second 3-D dataset.



170 Guitton et al. SEP–120

Figure 1: (a) Model. (b) Estimated dips. (c) Automatic picking of few horizons. (d) Flattening
result. The first trace is used for reference.antoine1-unconformity[ER]
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Figure 2: (a) Model. (b) Estimated dips. (c) Automatic picking of few horizons. (d) Flattening
result. The first trace is used for reference.antoine1-unconformity2[ER]
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Figure 3: (a) Model. (b) Estimated dips. (c) Automatic picking of few horizons. (d) Flattening
result. The smoothness of the estimated dips introduce small errors in the flattening result. The
first trace is used for reference.antoine1-unconformity3[ER]
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Figure 4: (a) Model. (b) Estimated dips. (c) Automatic picking of few horizons. (d) Flattening
result. The first trace is used for reference.antoine1-thinning3[ER]
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Figure 5: (a) Model. (b) Estimated dips. (c) Automatic picking of few horizons. (d) Flattening
result. The first trace is used for reference.antoine1-down_lap2D[ER]
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Figure 6: (a) Model. (b) Estimated dips. (c) Automatic picking of few horizons. (d) Flattening
result. The picked horizons follow extremely well the structure of the data. The trace at
X=12000 is used for reference.antoine1-elf2D[ER]
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Figure 7: (a) Model. (b) Automatic picking of few horizons. (c) Flattening result. The
picked horizons follow extremely well the structure of the data. On the time slice (top panel)
a channel (marked as C), previously unseen in the data, is revealed by the flattening process.
antoine1-3D-data-shoal-test[CR]
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Figure 8: (a) Model. (b) Automatic picking of few horizons. (c) Flattening result. On the
depth slice (top panel) a channel (marked as C), previously unseen in the data, is revealed by
the flattening process. Arrow SF shows the salt flanks.antoine1-3D-ExxonMobil-data[CR]
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