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Short Note

Analytical traveltimes for arbitrary multiples in constant velocity

Chris Liner and Ioan Vlad1

INTRODUCTION

Levin and Shah (1977) compute analytical traveltimes for internal multiples generated by a
single-CMP seismic survey over a 2-D, two-layer, constant-velocity Earth. Their expression
treats the specific case of a single reflection from the bottom of the second layer, preceded and
followed by a number of bounces inside the first layer. To obtain the traveltimes, they use the
method of images, computing successive images of the source through successive reflections
towards the receivers, then computing an image of the receiver through the last reflector. The
traveltime is obtained by dividing the distance between the two images to the wavespeed. This
way they obtain an analytical traveltime along the pegleg ray that joins the given source and
receiver positions only as a function of the respective positions, without the need to take the
ray parameter into account.

We extend this procedure to an Earth model with an arbitrary number of layers and an
arbitrary sequence of internal bounces between the respective layers. The Earth model is
still 2-D, constant-velocity, and with linear interfaces defining constant-density layers. The
computations are also done individually for each CMP. The ultimate goal of this study is to
assist in the computation of amplitudes for pegleg multiples. This will be used in further
studies to isolate the geologic settings in which pegleg multiples are strong enough to cause
errors in the interpretation.

PROBLEM SETUP

Let us assume that reflecting interface i is given through two points belonging to it, A and B.
Since traveltimes are computed independently for each CMP, we use a coordinate system with
the origin in the midpoint between source and receiver (both located at the surface). In this
CMP-centric coordinate system, interface i can be expressed as

z = x tanθi +
di

cosθi
, (1)
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where θi is the dip of the interface:

tanθi =
zb − za

xb − xa
(2)

and di is the distance from the CMP point to the interface:

di = za cosθ − xa sinθ . (3)

Figure 1 shows a three-interface example. Similar to Levin and Shah (1977), we use the

Figure 1: Three interface reflectiv-
ity model for illustrating the mean-
ing of the notations di and θi . No-
tice the sign convention for angles.
nick2-peglegmodel [NR]

method of images to compute traveltimes. Let us denote with Q
(

xq , zq
)

the image of point
P
(

xp, zp
)

through reflector i (see Figure 2). Through simple analytical geometry we find that
[

xq

zq

]

︸ ︷︷ ︸

q

=

[

cos2θi sin2θi

sin2θi −cos2θi

]

︸ ︷︷ ︸

A(2θi )

[

xp

zp

]

︸ ︷︷ ︸

p

+

[

−2di sinθi

2di cosθi

]

︸ ︷︷ ︸

b(θi )

. (4)

Figure 2: Image point concept illus-
tration. nick2-imex [NR]

CASCADING IMAGE-CONSTRUCTION OPERATIONS

In order to compute the position of the image after a cascade of several image-construction
operations, we first need to define the cascade sequence c as the ordered sequence of interface
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numbers at which we will consider that a reflection occurs. We define the source as S(−h, 0)
and the receiver as G(0,h), as shown in Figure 1. Because both S and G are at the surface, any
sort of multiple event will be reflected more than once by the same interface. Therefore, the
mapping of the counting index i of the cascading sequence onto the values ci of the cascading
sequence is therefore surjective, but not injective. To be able to work with indices in an
efficient manner, we describe the geometry of the problem through the sequences

φi = θci (5)

and

li = dci (6)

which incorporate information both on the geometry of the interfaces and on the order of the
cascade, and for which the index numbering starts with the value 1. The subscripts for q will
also denote the counting index for the image reflection cascade. The first reflection operation
can be written as

q1 = A (2φi ) p +b (φi ) . (7)

Then,

q2 = A
(

2φj
)

q1 +b
(

φj
)

(8)
= A

(

2φj
)

A (2φi )p+A
(

2φj
)

b (φi )+b
(

φj
)

, (9)

q3 = A (2φk)q2 +b (φk) (10)

= A (2φk)A
(

2φj
)

A (2φi ) p +A (2φk)A
(

2φj
)

b (φi )+A (2φk)b
(

φj
)

+b (φk) , (11)

and so on. Let us denote the counterclockwise rotation matrix with

R (α) =

[

cosα −sinα

sinα cosα

]

. (12)

Both A and R are involutory matrices. It can be easily verified that:

A (α)A (β) = R (α −β) (13)

R (α)R (β) = R (α +β) (14)

A (α)R (β) = A (α −β) (15)

R (α)A (β) = A (α +β) (16)

Chains of A operators can be written as a single operator:

A (β)A (γ )A (δ) = A (β)R (γ − δ) = A (β −γ + δ) , (17)
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A (α)A (β)A (γ )A (δ) = A (α)A (β −γ + δ) = R (α −β +γ − δ) , (18)

According to (15), we can write any A as

A (α) =

[

1 0
0 −1

]

R (−α) , (19)

so the product of any number k of A operators can be written as
k
∏

i=1

A (αi ) =

[

1 0
0 (−1)k

]

R

(
k
∑

i=1

(−1)i+k−1 αi

)

. (20)

To use these properties for constructing cascades of image reflections, we must replace the
set αi with the inverse succession of the dips of the reflecting interfaces, multiplied by two
according to the definition of A in (4):

αi = 2φk−i+1, (21)

where i = 1 . . .k. The reverse “chronological” order is a consequence of the operators in
the chain being matrices that multiply the previous image coordinate vector from the left, as
exemplified by (8) and (10). The result of the succession of image-building operations can be
written as

qn =

n
∑

j=0

[

1 0
0 (−1) j

]

R

(

2
j
∑

i=1

(−1)i+ j−1 φj−i+1

)

b
(

φn− j
)

, (22)

where we define a nonphysical quantity φ0 = −π
2 and we also define b (φ0) as the coordinates

vector of the initial point in the cascade of reflections. We also consider that the summation
index increases in increments of 1 and that summation operators return zero when the upper
summation limit is smaller than the lower summation limit. Under the assumption that the
starting point of the cascade is at the surface, and by denoting half of its x coordinate with l0,
we can write all b vectors using rotations:

b (φi ) = 2li

[

−sinφi

cosφi

]

= 2li R (φi )
[

0
1

]

= 2li R
(

φi +
π

2

)
[

1
0

]

. (23)

Substituting this into (22),

qn = 2
n
∑

j=0

ln− j

[

1 0
0 (−1) j

]

R

(

φn− j +
π

2
+2

j
∑

i=1

(−1)i+ j−1 φj−i+1

)
[

1
0

]

, (24)

These particular choices of l0 and φ0, together with the assumption of a surface starting point,
ensure that (23) is consistent for the starting point of the cascading operations too. After a few
algebraic manipulations, we obtain

qn = 2
n
∑

j=0

ln− j

[

−sinβj

(−1) j cosβj

]

, (25)

where

βj = φn− j +2
j
∑

i=1

(−1)i+ j−1 φj−i+1. (26)
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COMPUTING THE TRAVELTIME: THE THEORY

Let us denote by n a value smaller 1 less than the total number of bounces of the wave in the
earth. Let us pretend “not to know” that the horizontal coordinates of S and G are −h and h,
respectively, and denote them with s and g instead, since we will later need a more general
expression that can be differentiated with respect to these variables. We start by generating the
sequences φi and li , according to (5) and (6), and keeping in mind the nonphysical prependix
φ0 = −π

2 .

Using the fact that n is always even because the total number of bounces inside the earth
is always odd, and substituting into (25), we find the image cascaded through n reflection
operations from the source to be

qS
n = s

[

−sinβn

cosβn

]

+2
n−1
∑

j=0

ln− j

[

−sinβj

(−1) j cosβj

]

. (27)

The receiver image is obtained from a single reflection operation, through the last reflecting
interface:

qG
1 = g

[

cos2φn+1

sin2φn+1

]

+2ln+1

[

−sinφn+1

cosφn+1

]

. (28)

The traveltime is the distance between qS
n and qG

1 divided by the velocity. This distance will
be computed as the magnitude of the vector qS

n −qG
1 . By making the notations

u1 =
2
v







n−1
∑

j=0

ln− j

[

−sinβj

(−1) j cosβj

]

+ ln+1

[

sinφn+1

−cosφn+1

]





, (29)

u2 =
1
v

[

−sinβn

cosβn

]

, (30)

u3 = −
1
v

[

cos2φn+1

sin2φn+1

]

, (31)

we can write:

t = |u1 + su2 + gu3| . (32)

In particular, for s = −h and g = h and

u4 = u2 −u3 =
1
v

[

sin (−βn)+ cos2φn+1

cos (−βn)+ sin2φn+1

]

, (33)

the traveltime can be written as

t = |u1 −hu4| . (34)
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This vector magnitude can be computed using scalar products:

t =
√

[u1 −hu4] · [u1 −hu4] (35)

or it can be written as

t2 = u4 ·u4

(

h −
u1 ·u4

u4 ·u4

)2

+u1 ·u1 −
(u1 ·u4)2

u4 ·u4
, (36)

which is the equation of a hyperbola with the apex at

hapex =
u1 ·u4

u4 ·u4
, (37)

tapex =

√

u1 ·u1 −
(u1 ·u4)2

u4 ·u4
. (38)

COMPUTING THE TRAVELTIME: AN EXAMPLE

We will illustrate the theory presented above using the multiple reflection event S1010201G
(the zeros denote the Earth surface). For this event, n = 6, 1 less than the total number of
bounces in the earth. The first step is generating sequences φi and li , according to (5) and (6):

{φ1,φ2,φ3,φ4,φ5,φ6,φ7} = {θ1,θ0,θ1,θ0,θ2,θ0,θ1} (39)

and

{l1, l2, l3, l4, l5, l6, l7} = {d1,d0,d1,d0,d2,d0,d1} (40)

We prepend φ0 = −π
2 to the sequence of angles, then we compute the β sequence:

β0 = φ6 (41)
β1 = φ5 −2φ1 (42)
β2 = φ4 −2φ1 +2φ2 (43)
β3 = φ3 −2φ1 +2φ2 −2φ3 (44)

β4 = φ2 −2φ1 +2φ2 −2φ3 +2φ4 (45)
β5 = φ1 −2φ1 +2φ2 −2φ3 +2φ4 −2φ5 (46)
β6 = φ0 −2φ1 +2φ2 −2φ3 +2φ4 −2φ5 +2φ6 (47)

It may be useful to notice the regularities in signs and indices. The summation and trigonomet-
ric operators in (25) and (26) can be written in matrix form to verify the correctness of their
numerical implementation. We then compute the auxiliary vectors given by (29) and (33):

u1 = 2
v
l5

[

−sinβ1

−cosβ1

]

+ 2
v
l4

[

−sinβ2

+cosβ2

]

+ 2
v
l3

[

−sinβ3

−cosβ3

]

+

+ 2
v
l2

[

−sinβ4

+cosβ4

]

+ 2
v
l1

[

−sinβ5

−cosβ5

]

+ 2
v
l7

[

sinφ7

−cosφ7

] , (48)
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u4 =
1
v

[

sin (−β6)+ cos2φ7

cos (−β6)+ sin2φ7

]

, (49)

For our very particular case in which some of the bounces are with the surface (d0 = 0, θ0 = 0),

u1 =
2
v

d1

[

+sin3θ1 + sin (3θ1 +2θ2)+ sinθ1

−cos3θ1 − cos (3θ1 +2θ2)− cosθ1

]

+
2
v

d2

[

+sin (2θ1 − θ2)
−cos (2θ1 − θ2)

]

, (50)

u4 =
2
v

cos (3θ1 + θ2)
[

cos (θ1 + θ2)
−sin (θ1 + θ2)

]

, (51)

and the traveltime for each offset h can now be computed by plugging these vectors directly
into (35). By performing trigonometric operations, we may find that the expression for the
distance is the same as that in Equation (A-14) of Levin and Shah (1977).

ANGLES OF DEPARTURE AND ARRIVAL

The previous sections presented a method to compute the traveltime from a given source point
to a given receiver point. Using the image point reflection method has eschewed the need for
traditional ray tracing. However, in order to estimate the effect of the acquisition arrays on the
amplitudes, or to graphically display the raypaths, we need to compute the angles of departure
of the rays from the source and of arrival to the receiver.

Shah (1973) shows that if we denote with αs the smallest angle between the raypath de-
parting from the source and the vertical, with αg the similarly defined arrival angle, with s the
coordinate of the source and with g the coordinate of the receiver, the two angles can be found
from the relations:

sinαs

v
=

∂t
∂s

, (52)

sinαg

v
=

∂t
∂g

. (53)

Writing (32) as

t2 = u1 ·u1 + s2u2 ·u2 + g2u3 ·u3 +2su1 ·u2 +2gu1 ·u3 +2sgu2 ·u3, (54)

we obtain
∂t
∂s

=
1
t

u2 · (u1 +u2 + gu3) , (55)

∂t
∂g

=
1
t

u3 · (u1 + su2 +u3) . (56)

Replacing now s with −h and g with h, the angles are given by:

sinαs =
v

t
u2 · (u1 +u2 +hu3) , (57)

sinαg =
v

t
u3 · (u1 −hu2 +u3) , (58)

where t is computed as a function of h as given by (35).
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CONCLUSION

We have derived a formula which describes the traveltimes of internal or surface-related mul-
tiples of any order, reflected between any number of layers in a constant-velocity medium. We
have also derived an analytical formula for their angles of departure from the source and ar-
rival for the receiver. The low computational cost of this algorithm makes it highly suitable for
an analytical-stochastic estimation of the strength of internal multiples in various geological
settings, with the ultimate purpose of identifying classes of settings in which internal multiples
are likely to be a problem. We plan to perform this work in the near future.
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