Next: About this document ...
Up: Berryman: Bounds on geomechanical
Previous: APPENDIX B: Bounds of
-
Avellaneda, M., 1987, Iterated homogenization, differential
effective medium theory and applications:
Commun. Pure Appl. Math., 40, 527-554.
-
Backus, G. E., 1962, Long-wave elastic anisotropy produced by horizontal
layering: J. Geophys. Res., 67, 4427-4440.
-
Berryman, J. G., 1980, Long-wavelength propagation in composite elastic media
II. Sphericaal inclusions:
J. Acoust. Soc. Am., 68, 1809-1819.
-
Berryman, J. G., 1980, Long-wavelength propagation in composite elastic media
II. Ellipsoidal inclusions:
J. Acoust. Soc. Am., 68, 1820-1831.
-
Berryman, J. G., 1982, Effective medium theory for elastic
composites: in Elastic Wave Scattering and Propagation, edited
by V. K. Varadan and V. V. Varadan, (Ann Arbor Science, Ann Arbor,
Michigan), pp. 111-129.
-
Berryman, J. G., 1994, Role of porosity in estimates of composite
elastic constants:
Trans. ASME J. Energy Resources Tech., 116, 87-96.
-
Berryman, J. G., 2004a, Poroelastic shear modulus dependence on
pore-fluid properties arising in a model of thin isotropic layers:
Geophys. J. Int., 157, pp. 415-425.
-
Berryman, J. G., 2004b, Bounds on elastic constants of random
polycrystals of laminates: in press, to appear in
J. Appl. Phys.
-
Bruggeman, D. A. G., 1935,
Berechnung verschiedener physikalischer Konstanten
von heterogenen Substanzen: I. Dielectrizitätskonstanen und
Leitfahigkeiten der Mischkörper aus Isotropen Substanzen:
Ann. Phys. (Leipzig), 24, 636-679.
-
Drugan, W. J., and Willis, J. R., 1996, A micromechanics-based nonlocal
constitutive equation and estimates of representative volume
element size for elastic composites: J. Mech. Phys. Solids,
44, 497-524.
-
Einstein, A., 1905, Eine neue Bestimmung der Moleküldimensionen:
Ann. Phys., 19, 289-306.
-
Gibiansky, L. V., and Milton, G. W., 1993,
On the effective viscoelastic moduli of two-phase
media. I. Rigorous bounds on the complex bulk modulus:
Proc. Roy. Soc. London A, 440, 163-188.
-
Gibiansky, L. V., Milton, G. W., and Berryman, J. G., 1999,
On the effective viscoelastic moduli of two-phase
media. III. Rigorous bounds on the complex shear modulus in two
dimensions: Proc. Roy. Soc. London A, 455, 2117-2149.
-
Hashin, Z., and Shtrikman, S., 1961, Note on a variational approach
to the theory of composite elastic materials:
J. Franklin Inst., 271, 336-341.
-
Hashin, Z., and Shtrikman, S., 1962, On some variational principles in
anisotropic and nonhomogeneous elasticity:
J. Mech. Phys. Solids, 10, 335-342.
-
Hashin, Z., and Shtrikman, S., 1963, A variational approach to the
theory of the elastic behavior of multiphase materials:
J. Mech. Phys. Solids, 11, 127-140.
-
Hill, R., 1952, Elastic properties of reinforced solids: Some
theoretical principles: Proc. Phys. Soc. London A, 65,
349-354.
-
Maxwell, J. C., 1873, Treatise on Electricity and Magnetism:
Clarendon Press, Oxford, England.
-
Milton, G. W., 1981, Bounds on the electromagnetic, elastic, and other
properties of two-component composites: Phys. Rev. Lett.,
46, 542-545.
-
Milton, G. W., 1985, The coherent potential approximation is a realizable
effective medium scheme: Comm. Math. Phys., 99,
463-500.
-
Milton, G. W., and Berryman, J. G., 1997,
On the effective viscoelastic moduli of two-phase
media. II. Rigorous bounds on the complex shear modulus in three
dimensions: Proc. Roy. Soc. London A, 453, 1849-1880.
-
Milton, G. W., 2002, The Theory of Composites:
Cambridge, University Press, Cambridge, UK, pp. 77-78, 163, 457-498.
-
Norris, A. N., 1985, A differential scheme for the effective moduli of
composites: Mech. Mater., 4, 1-16.
-
Peselnick, L., and Meister, R., 1965, Variational method of determining
effective moduli of polycrystals: (A) Hexagonal symmetry,
(B) trigonal symmetry: J. Appl. Phys., 36, 2879-2884.
-
Postma, G. W., 1955, Wave propagation in a stratified medium:
Geophysics, 20, 780-806.
-
Rayleigh, L., 1892, On the influence of obstacles arranged in a rectangular
order upon the properties of medium:
Phil. Mag., 34, 481-502.
-
Reuss, A., 1929, Berechung der Fliessgrenze von Mischkristallenx
auf Grund der Plastizitätsbedingung für Einkristalle:
Z. Angew. Math. Mech., 9, 49-58.
-
Voigt, W., 1928, Lehrbuch der Kristallphysik: Teubner, Leipzig,
964 pp.
-
Walpole, L. J., 1966, On bounds for the overall elastic moduli of
inhomogeneous systems I.: J. Mech. Phys. Solids, 14, 151-162.
-
Watt, J. P., and Peselnick, L., 1980, Clarification of the
Hashin-Shtrikman bounds on the effective elastic moduli of
polycrystals with hexagonal, trigonal, and tetragonal symmetries:
J. Appl. Phys., 51, 1525-1531.
Next: About this document ...
Up: Berryman: Bounds on geomechanical
Previous: APPENDIX B: Bounds of
Stanford Exploration Project
10/23/2004