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Bounds on geomechanical constants for a model of heterogeneous
reservoirs

James G. Berryman1

ABSTRACT

A well-known result due to Hill provides an exact expression for the bulk modulus of any
multicomponent elastic composite whenever the constituents are isotropic and the shear
modulus is uniform throughout. Although no precise analog of Hill’s result is available
for the opposite case of uniform bulk modulus and varying shear modulus, it is shown
here that some similar statements can be made for shear behavior of random polycrystals
composed of laminates of isotropic materials. This model is intended to incorporate char-
acteristics that mimic geomechanical properties of heterogeneous earth reservoirs, includ-
ing local layering due to sedimentary processes. In particular, the Hashin-Shtrikman-type
bounds of Peselnick, Meister, and Watt for random polycrystals composed of hexagonal
(transversely isotropic) grains are applied to our model of polycrystals of laminates. An
exact product formula relating the Reuss estimate of bulk modulus and an effective shear
modulus (of laminated grains composing the system) to products of the eigenvalues for
quasi-compressional and quasi-uniaxial shear eigenvectors also plays an important role
in the analysis of the overall shear behavior of the random polycrystal. When the bulk
modulus is uniform in such a system, the equations are shown to reduce to a simple form
that depends prominently on the uniaxial shear eigenvalue — as expected from physical
arguments concerning the importance of uniaxial shear in these systems. Applications of
the analytical results presented here include benchmarking of numerical procedures used
for studying elastic behavior of complex composites, and estimating coefficients needed
in up-scaled equations for elasticity and/or poroelasticity of heterogeneous reservoirs.

INTRODUCTION

In the course of analyzing a problem on fluid-dependence of shear modulus in poroelastic
systems, the author (Berryman, 2004a) uncovered an unanticipated identity in elasticity that
appears to have wider implications for many elastic systems and/or composites. The basic
result states that for any hexagonal (or transversely isotropic) elastic system there is an exact
product formula, namely, 6K RGV

eff = ω+ω−, relating the Reuss estimate K R of the bulk mod-
ulus times the Voigt estimate GV

eff of the uniaxial part of the shear modulus to the product of
the two system eigenvalues ω± for quasi-compressional and quasi-shear modes. There is also
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a second product formula with the roles of the Reuss and Voigt averages reversed, but this
second identity is somewhat less important as we shall see.

Our goal here will be to show how these facts help to remove in part (although only in one
special, but nevertheless interesting, case) the asymmetry in the analysis of elastic composites
resulting from the existence of Hill’s well-known formula (Hill, 1963, 1964; Milton, 2002) for
arbitrary elastic composites, showing that

K ∗ =

[

N
∑

n=1

fn

Kn +4µ/3

]−1

−4µ/3. (1)

Here the bulk modulus of the n-th constituent is Kn, the shear modulus takes the same value
µn = µ for all n = 1, . . . , N , and the overall effective bulk modulus is K ∗. The volume frac-
tions fn are all nonnegative, and add up to unity. In general there is in fact no corresponding
relationship for the overall shear modulus µ∗, when instead the system has constant bulk
modulus Kn = K for all N constituents. But, nevertheless, the existence of formulas quite
analogous to (1) for shear will be demonstrated for a model random polycrystal composed of
laminated grains.

As always in the theory of composites, there are several clear limitations to the use of the
analysis in practice: (a) the continuum hypothesis, (b) the implicit assumption of adequate
separation of scales between sizes of grains and of the overall composite, and (c) an assump-
tion of negligible porosity. The continuum hypothesis will clearly be violated if the grain sizes
are too small, approaching nanometer sizes and below. The deviations expected in our case
are similar to those observed in deviations from the Hall-Petch effect (Hall, 1951; Petch, 1953;
Schiötz, 1998), i.e., a softening of the composite as a function of decreasing grain size once the
size is below some threshold. This effect is caused in part by a significant increase in grain-to-
grain interface area (which is not accounted for by the present theory) in composites when the
grains become too small. At still smaller grain sizes, atomic scale effects become important
and the continuum theory must clearly fail. At the other extreme, if the grains are too large,
then there may not be sufficient numbers of particles in the sample for the separation of scales
between composite and grains to be adequate. This issue is related to the question of what
is an adequate REV (representative elementary volume) (Bear, 1972; Bourbié, 1987; Drugan
and Willis, 1996). If the grains are too large and, therefore, too few, the entire sample may not
be large enough to serve as an adequate REV. Finally, when a polycrystal is constructed by
assembling many crystalline grains, it is also important that very little porosity remain in the
resulting polycrystal. It has been estimated (Berryman, 1994) that as little as 0.5% porosity in
a composite is sufficient to make it important to include the porosity in the model. But, except
to exclude it thus from consideration, porosity is not discussed here.

The next section introduces the notation and basic results used in the rest of the paper. The
third section considers the case of constant bulk modulus, and shows that the Voigt and Reuss
averages for shear modulus, although differing in their numerical values, nevertheless depend
on simple averages of the shear modulus plus another average comparable to (1). The fourth
section considers the general problem for bounds on the moduli of random polycrystals of
laminates, with special emphasis on the Peselnick-Meister-Watt bounds (Peselnick and Meis-
ter, 1965; Watt and Peselnick, 1980). The discussion of the fifth section summarizes some
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practical conclusions about the analysis and also makes a comparison with a “self-consistent”
estimate related to the bounds. Two technical Appendices summarize results used in the main
text.

ELASTICITY OF LAYERED MATERIALS

We assume that a typical building block of the random system is a small grain of laminate
material whose elastic response for such a transversely isotropic (hexagonal) system can be
described by:
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, (2)

where σi j are the usual stress components for i , j = 1−3 in Cartesian coordinates, with 3 (or
z) being the axis of symmetry (the lamination direction for such a layered material). Displace-
ment ui is then related to strain component ei j by ei j = (∂ui/∂xj + ∂u j/∂xi )/2. This choice
of definition introduces some convenient factors of two into the 44,55,66 components of the
stiffness matrix shown in (2).

Although some of the results presented here are more general, we will assume for defi-
niteness that this stiffness matrix in (2) arises from the lamination of N isotropic constituents
having bulk and shear moduli Kn, µn , in the N > 1 layers present in each building block. It is
important that the thicknesses dn always be in the same proportion in each of these laminated
blocks, so that fn = dn/

∑

n′ dn′ . But it is not important what order the layers were added to the
blocks, as Backus’s formulas (Backus, 1962) for the constants show. For the overall behavior
for the quasistatic (long wavelength) behavior of the system we are studying, Backus’s results
[also see Postma (1955) and Milton (2002)] state that

c33 =

〈

1
K+4µ/3

〉−1
, c13 = c33

〈

K−2µ/3
K+4µ/3

〉

,

c44 =

〈

1
µ

〉−1
, c66 = 〈µ〉 ,

c11 =
c2

13
c33

+4c66 −4
〈

µ2

K+4µ/3

〉

, c12 = c11 −2c66.

(3)

This bracket notation can be correctly viewed: (a) as a volume average, (b) as a line integral
along the symmetry axis x3, or (c) as a weighted summation 〈Q〉 =

∑

n fn Qn over any relevant
physical quantity Q taking a constant value Qn in the n-th layer.

The bulk modulus for each such building block (or crystalline grain if you like) is that
given by the compressional Reuss average K R of the corresponding compliance matrix si j

[the inverse of the usual stiffness matrix ci j , whose nonzero components are shown in (2)].
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The well-known result is e = e11 + e22 + e33 = σ/Keff, where 1/Keff = 1/K R = 2s11 +2s12 +

4s13 + s33. This quantity can be expressed in terms of the stiffness elements as

1
K R − c13

=
1

c11 − c66 − c13
+

1
c33 − c13

. (4)

When µn =const, it is easy to show that (4) implies (1).

Even though Keff is the same for every grain, since the grains themselves are not isotropic,
the overall bulk modulus K ∗ of the random polycrystal is not necessarily the same as Keff for
the individual grains (Hill, 1952). Hashin-Shtrikman bounds on K ∗ for random polycrystals
whose grains have hexagonal symmetry (Peselnick and Meister, 1965; Watt and Peselnick,
1980) show in fact that the value K R lies outside the bounds in many situations. We will say
more about this in the fourth section.

In general an upper bound on the overall shear modulus of an isotropic polycrystal (Hill,
1952) is given by the Voigt average over shear of the stiffness matrix, which may be written as

µV =
1
5
(

GV
eff +2c44 +2c66

)

. (5)

This expression can be taken as the definition of GV
eff. Eq. (5) implies that GV

eff = (c11 + c33 −

2c13 − c66)/3. GV
eff is the energy per unit volume in a grain when a pure uniaxial shear strain

of unit magnitude is applied to the grain along its axis of symmetry (Berryman, 2004a).

CONSTANT BULK MODULUS

As a first result, consider a laminated grain composed of isotropic constituents, all having the
same bulk modulus K in each layer, but differing shear moduli. Then, if we define the function
[compare (1)]

g(ζ ) =

[

N
∑

n=1

fn

µn + ζ

]−1

− ζ , (6)

we find from (3) that GV
eff = g(ζ ) with ζ = 3K/4. This function g(ζ ) has the interesting and

useful properties that

c44 = 〈1/µ〉−1 ≡ g− ≤ g(ζ ) ≤ g+ ≡ 〈µ〉 = c66. (7)

Furthermore, g(ζ ) is a monotonic function, achieving its lower bound when ζ = 0 and ap-
proaching its upper bound as ζ → ∞. This formula shows in an elementary way how G V

eff =

g(3K/4) — and therefore µV — depends on the constant bulk modulus of the system, and also
that this component of the Voigt bound on the overall shear modulus increases with increasing
magnitude of the bulk modulus. The overall Voigt bound/estimate (5) for shear therefore has
very similar character, but the magnitude of the effect is reduced by a factor of 5, since this
is only one of the five distinct contributors to the overall shear behavior of the system. So the



SEP–117 Elastic constants in heterogeneous media 163

largest change in the Voigt shear modulus that variations in bulk modulus can ever induce are
expected to be on the order of 20% (or less) of the difference c66 − c44.

Similarly, the Reuss average for shear is

µR =

[

1
5

(

1
G R

eff
+

2
c44

+
2

c66

)]−1

, (8)

which is also a rigorous lower bound on the overall shear modulus of the polycrystal (Hill,
1952). For each hexagonal grain, the product formulas 3K RGV

eff = 3KV G R
eff = ω+ω−/2 =

c33(c11 − c66) − c2
13 are valid. The symbols ω± stand for the quasi-compressional and quasi-

uniaxial shear eigenvalues for all the grains (Berryman, 2004). The product formulas show
immediately that G R

eff = GV
effK R/KV = GV

eff, since K R = KV = K . Thus, for this relatively
simple system, pure compression or tension (e11 = e22 = e33) is an eigenvector corresponding
to stiffness eigenvalue 3K . Uniaxial shear strain (e33 = −2e11 = −2e22) is also an eigenvector
and 2GV

eff = 2G R
eff is the corresponding eigenvalue.

MODEL OF HETEROGENEOUS RESERVOIRS

Returning to the general problem for arbitrary Kn, suppose we construct a random polycrystal
by packing small bits of this laminate material into a large container in a way so that the axis of
symmetry appears randomly over all possible orientations and also such that no empty volume
(porosity) is left in the resulting composite. If the ratio of grain size to overall composite is
small enough so the usual implicit assumption of scale separation applies to the composite —
but not so small that we are violating the continuum hypothesis — then we have an example
of the type of material we want to study.

For each individual grain in this polycrystal, Eqs. (3) are valid locally (i.e., for locally
defined coordinates), and the grain bulk modulus K R is given by (4) for all the grains. The
factors 3K R and 2GV

eff are not necessarily eigenvalues of elastic stiffness for individual grains.
The Voigt average for shear is again given by (5), which is an upper bound on the isotropic
shear modulus of the random polycrystal (Hill, 1952).

The advantage of studying polycrystals of laminates is that we have available an array
of theoretical results from which to choose. For example, since each grain is composed of
isotropic constitutents, standard Voigt and Reuss bounds (Hill, 1952), as well as the more re-
strictive Hashin-Shtrikman bounds (Hashin and Shtrikman, 1962; 1963) on composites made
up of isotropic constituents are all available. Then, we can instead, or in addition, consider
Voigt and Reuss bounds on the laminated grain materials. Formulas for these bounds have
already been given here in Eqs. (4), (5), and (8), respectively for K R, µV , and µR. The re-
maining formula is well-known to be

KV = [2(c11 + c12)+4c13 + c33]/9. (9)

Then, it is useful to distinguish between “correlated” and “uncorrelated” bounds. For example,
the most familiar bounds — after the uncorrelated Voigt and Reuss bounds (i.e., the volume



164 Berryman SEP–117

Figure 1: Various bulk modulus
bounds: The outer most bounds
(blue dot-dash lines) are the stan-
dard Hashin-Shtrikman bounds (HS)
based only on information about the
layer constituents and their volume
fractions. The black solid lines are
the Voigt and Reuss bounds (XV,XR)
obtained from appropriate averages
of laminate constants in (3). The
inner most bounds (also blue dot-
dash lines) are the Peselnick-Meister
bounds (PM) for hexagonal polycrys-
tals. For contrast, the Dederich-
Zeller bounds (DZ) (see Appendix
B) are also shown (dashed red lines).
jim2-K4bounds [NR]
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Figure 2: Same as Figure 1 for
the various shear modulus bounds.
jim2-mu4bounds [NR]
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averaged mean and harmonic mean respectively of the consitutents’ constants) — are the
uncorrelated Hashin-Shtrikman bounds:

K ±
H S =

[

N
∑

n=1

fn

Kn +4µ±/3

]−1

−4µ±/3 (10)

and

µ±
H S =

[

N
∑

n=1

fn

µn + ζ±

]−1

− ζ±, (11)

where

ζ± =
µ±

6

(

9K± +8µ±

K± +2µ±

)

, (12)

with K+ and K− being the highest and lowest values of Kn in the system, and similarly
µ+ (µ−) being the highest (lowest) value of the shear modulus. Milton (1981) presented
examples of correlated bounds where the correlations were introduced specifically through
spatial correlation functions. But here we introduce correlations instead through the laminated
grains. The bounds (4), (5), (8), and (9) are then correlated Voigt and Reuss bounds because
of the assumed internal grain-like structure.

We see in Figures 1 and 2 that these bounds (XR and XV) for the polycrystalline case are
fairly substantial improvements over the uncorrelated Hashin-Shtrikman bounds (HS±), which
are themselves substantial improvements over the uncorrelated version of the Voigt and Reuss
bounds (the Voigt bound is not shown here, but is just a straight line in each plot between the
end points of these curves).

A correlated version of the Hashin-Shtrikman bounds can be computed also, as has been
shown by Peselnick and Meister (1965) and Watt and Peselnick (1980) (see Appendix A for
the details of these formulas, but not their derivation). We see that these bounds are very tight
indeed in comparison to all the others considered here. In particular, note that K R computed
from (4) falls outside the correlated Voigt and Reuss bounds (curves XV and XR) of Figure 1.

For contrast, Figures 1 and 2 also plot another set of bounds derived by Dederichs and
Zeller (1973) that is also intended for use in uncorrelated systems (see Appendix B for the
formulas and a brief discussion). The DZ bounds behave quite differently from those of the
correlated bounds XR, XV, PM±. It is easy to see why this is so. In the laminates, as the
volume fractions become small for one constituent at one end of the curves and for the other
constituent at the other end, the low volume fraction constituent is approaching a flat disc-
like geometry. It is well-known (Milton, 1981) that in this circumstance results for disc-
like inclusions tend to dominate the behavior and, therefore, tend to hug the upper Hashin-
Shtrikman bound in the lower left-hand limit, and then to hug the lower Hashin-Shtrikman
bound in the upper right-hand limit of the Figures. We see that this is so for the correlated
bounds XR, XV, PM±. But the DZ± bounds are uncorrelated and do not show this type of
behavior at all.
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Figure 3: Illustrating the graphi-
cal construction leading to the op-
timum parameters for the compari-
son material of the lower and up-
per Peselnick-Meister-Watt bounds:
(G−, K−), (G+, K+), shown as red
circles. The case shown is for the
middle point of the examples shown
in Figures 1 and 2 (volume frac-
tion of 0.50). Values of the con-
stants entering the expressions (see
Appendix A) are: KV = 30.2162,
c44 = 7.2727, c66 = 22.0000, G R

eff =

14.8082, and GV
eff = 15.5653, in units

of GPa. The two parts of the blue
solid curve are determined by (14)
and (16). jim2-PMW [NR]
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The best and also most relevant bounds here are obviously the Peselnick-Meister-Watt
bounds (Peselnick and Meister, 1965; Watt and Peselnick, 1980), which are presented and
briefly discussed in Appendix A. Figure 3 [following some similar figures in Watt and Pesel-
nick (1980)] shows how the parameter sets for the elastic comparison materials are determined.
The allowed regions in Figure 3 are the bounded area in the upper right-hand corner, and the
similarly bounded area in the lower left-hand corner. The red circles are therefore the points
in the (G±,K±)-plane that produce the optimum bounds. It is clear that the value of GV

eff plays
a very dominant role in the structure of this Figure as the singularity in the blue solid curve
occurs exactly at this value.

For the case of constant bulk modulus Kn = K , Figure 3 should be contrasted with Figure
4. Obviously, the structure is much simpler, as the singularities in (22) and (24) have dis-
appeared through direct cancelation with the numerator. It is still the case however that the
allowed regions in Figure 4 are the bounded areas in upper right-hand corner, and the lower
left-hand corner. Again the red circles are the points in the (G±,K±)-plane that produce the
optimum bounds. However, it is no longer clear from this Figure whether G V

eff is playing any
role in the analysis or not.

While attempting to find an answer to this question, the author has spent some effort
manipulating the form of the equations for the shear modulus bounds and has found what
may be a more enlightening form of these equations. (The derivation will not be given here
as it is rather straightforward to find the result again, once the final expression is known.) The
resulting simplified formula for the Peselnick-Meister-Watt bounds on overall shear modulus
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Figure 4: As in Figure 3 for the case
of constant bulk modulus, in which
case KV = K R = K , and GV

eff = G R
eff.

Values of the constants entering the
expressions (see Appendix A) are:
K = 50.0000, c44 = 7.2727, c66 =

22.0000, GV
eff = 16.5546, in units of

GPa. jim2-PMWconK [NR]
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of a polycrystal of laminates when Kn = K is:

µ±
P M =

[

1
5

(

1
GV

eff + ζ±

+
2

c44 + ζ±

+
2

c66 + ζ±

)]−1

− ζ±, (13)

where

ζ± =
G±

6

(

9K +8G±

K +2G±

)

with G± = c44 or c66. (14)

Using standard methods, it is not hard to show that, if instead of optimum values of ζ±, we use
ζ± = 0 or ∞, then (13) reduces to the formulas (8) and (5) for the correlated Reuss and Voigt
bounds on the polycrystal’s overall shear modulus.

We see that GV
eff still plays a dominant role here — in the company of c44 and c66 — as

one of the three values (after multiplication by 2) that are the shear eigenvalues of the elastic
system. Furthermore, GV

eff is determined for this case exactly by Eq. (6).

DISCUSSION

The results obtained so far show that, for the shear modulus Geff of uniaxial shear for a trans-
versely isotropic system, we have 2GV

eff = ω+ when the bulk modulus of the system is uniform.
In this case, the quasi-shear eigenvector is exactly in the same direction as the uniaxial shear
component, so the quantity 2GV

eff — while more generally a strict upper bound on the eigen-
value ω+ — is exactly equal to it in this special case. Thus, the uniaxial shear mode is in this
instance an eigenvector of this system. This happens in particular when Kn = K is a constant
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for random polycrystals of laminates. The simplified formula (13) for the bounds is therefore
the main new result of this paper. When compared to (8), it is suggestive that some very simple
forms for Hashin-Shtrikman bounds on shear can probably be found for many such polycrys-
talline systems, and especially so for granular laminates. The constant bulk modulus limit is a
most convenient place to begin a search for such simplified expressions for the bounds.

Once these HS bounds are known, it is an elementary operational exercise to determine
self-consistent (SC) estimates based just on the analytical form of the bounds. Monotonicity
of the functional

M(ζ ) =

[

1
5

(

1
GV

eff + ζ
+

2
c44 + ζ

+
2

c66 + ζ

)]−1

− ζ , (15)

appearing in (13), is easy to prove [see Berryman (1982)] for examples of such proofs), and
furthermore ζ (K , G) = (G/6)(9K + 8G)/(K + 2G) is a monotonic functional of both argu-
ments. These facts guarantee that there is a unique solution to the self-consistency relation

µSC ≡ M(ζ (K ,µSC )), (16)

and, furthermore, this solution always lies between the bounds. To provide an example, con-
sider the case of Figure 4 when the volume fractions are both 50%. Then, µ44 = 7.2727,
µ66 = 22.0000, Geff = 16.5546, µP M− = 13.1164, µP M+ = 13.8659, and µSC = 13.5537.
So the self-consistent estimate is not closely correlated with the value of Geff, which is itself
usually found outside the correlated bounds on µ. Figure 5 illustrates these results for the full
range of volume fractions with the same choice of constituents.

Figure 5: Comparison of the
shear modulus estimates over all
choices of volume fraction, for the
same case considered in Figure 4.
jim2-mucomparison [NR]
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The results in Fig. 5 show very clearly that self-consistent values fall between the bounds
as expected, and that the bounds themselves are in any case very close together for this high
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contrast example. Thus, an exact result for shear modulus has not been found [so the analogy
to Hill’s formula (1) is not perfect]. Nevertheless, for most practical purposes, the results show
that the predictions of the theory using such correlated bounds — and related self-consistent
estimates — will often be as good as, or perhaps better than, the precision of experimental
measurements. (Maximum error incurred by using the self-consistent estimate in the example
of Figure 5 is about 2%.) The value of Geff, while playing an important role in the analysis,
clearly should not be interpreted as the actual value of the effective overall shear modulus for
the random polycrystal. Geff does however contribute about 20% of the overall magnitude of
the effective shear modulus.

In conclusion, we note that, applications of the analytical results presented here include
benchmarking of numerical procedures used for studying elastic behavior of complex com-
posites, as well as estimating coefficients needed in up-scaled equations for elasticity and/or
poroelasticity of heterogeneous systems. In particular, up-scaling methods typically determine
the form of the effective equations of motion, but most often do not provide any means (or at
least any very useful means) of estimating/computing the elastic/poroelastic coefficients. The
methods described here are therefore expected to be especially useful for earth sciences and
oil reservoir engineering applications, as well as for obvious uses in the practice and theory of
elastic composites and heterogeneous media.

APPENDIX A: PESELNICK-MEISTER-WATT BOUNDS FOR HEXAGONAL
SYMMETRY

Hashin-Shtrikman-style bounds (Hashin and Shtrikman, 1962; 1963) on the bulk and shear
moduli of isotropic random polycrystals composed of hexagonal grains have been derived by
Peselnick and Meister (1965), with later corrections by Watt and Peselnick (1980) The main
results are presented here using notation consistent with that of our text, in order to emphasize
the connections to the analysis presented. To keep this summary brief, we will merely quote
the results and refer the reader to the original papers for the derivations.

Parameters used to optimize the Hashin-Shtrikman bounds are K± and G±, which have
the significance of being the bulk and shear moduli of two isotropic comparison materials.
G+, K+ are the values used in the formulas for the upper bounds, and G−, K− for the lower
bounds. Formulas for the bounds are:

K ±
P M = K± +

KV − K±

1−2β±(GV
eff − G±)

, (17)

and

µ±
P M = G± +

B±
2

1+2β± B±
2

, (18)

where

α± =
−1

K± +4G±/3
, β± =

2α±

15
−

1
5G±

, γ± =
1
9

(α± −3β±), (19)
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and

B±
2 =

1
5

[GV
eff − G±

D±

+
2(c44 − G±)

1−2β±(c44 − G±)
+

2(c66 − G±)
1−2β±(c66 − G±)

]

, (20)

with

D± = 1−β±(c11 + c12 + c33 −3K± −2G±)−9γ±(KV − K±). (21)

Optimum values of the moduli for the comparison materials have been shown to be (in our
notation)

K− =
KV (G R

eff − G−)
(GV

eff − G−)
(22)

with

0 ≤ G− ≤ min(c44, G R
eff,c66), (23)

and

K+ =
KV (G+ − G R

eff)
(G+ − GV

eff)
(24)

with

max(c44, GV
eff,c66) ≤ G+ ≤ ∞. (25)

Note that, when G− = 0, K− = K R, because K R = KV G R
eff/GV

eff from the product formulas
(Berryman, 2004). Also, note that, if Kn = K is constant, then K± = KV = K R = K for any
choice of G±, since then we also have that GV

eff = G R
eff.

For the laminated materials considered here, the minimum condition in (23) will never be
satisfied by c66 except in the trivial case of constant shear modulus. Each of the other two
arguments can possibly become the minimum under certain nontrivial circumstances. For the
materials considered here, it follows from (7) that the maximum condition in (25) will always
be uniquely satisfied by c66, except again for the trivial case of constant shear modulus.

Peselnick and Meister (1965) had originally obtained all the results here except for the
additional condition in (23) that permits c44 to be replaced in certain circumstancs by G R

eff.
This new condition was added later by Watt and Peselnick (1980).

APPENDIX B: BOUNDS OF DEDERICHS AND ZELLER FOR MULTIPHASE
MEDIA

One of the bounds of Dederichs and Zeller (1973) is based on the assumption that, inside each
grain of a multiphase material, the distribution of different phases is independent of the shape
of the grain, and also independent of the phases of contiguous grains. Grains are therefore
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assumed to be completely uncorrelated, both internally and externally. The results obtained
for bulk modulus are:

K ±
DZ =

[

N
∑

n=1

fn

Kn +4g±/3

]−1

−4g±/3, (26)

where

g− = c44 and g+ = c66 (27)

in our present notation [see eq. (7)]. Similarly, for shear modulus, we have

µ±
DZ =

[

N
∑

n=1

fn

µn + ζ±

]−1

− ζ±, (28)

where

ζ− =
c44

6
〈9/µ+8/K 〉

〈1/µ+2/K 〉
=

g−

6

(

9 〈1/K 〉−1 +8g−

〈1/K 〉−1 +2g−

)

(29)

and

ζ+ =
c66

6
〈9K +8µ〉

〈K +2µ〉
=

g+

6

(

9 〈K 〉+8g+

〈K 〉+2g+

)

. (30)

These bounds on bulk modulus are the same as those of Beran and Molyneux (1966)
and Miller (1969). The upper bound on shear modulus is the same as that of McCoy (1970)
and Silnutzer (1972). Because of the simple functional form of both sets of bounds, it is
easy to show (Berryman, 1982) that they are always at least as restrictive as — and, for non-
negligible volume fractions of inclusions, normally a significant improvement upon — the
Hashin-Shtrikman bounds (Hashin and Shtrikman, 1962; 1963).

We chose to consider these bounds here because they depend only on simple volume av-
erages of the constituent elastic constants, and also because they show — by way of contrast
to the other bounds (see Figures 1 and 2) — that it does indeed matter what assumptions are
made about the microstructure of the composite.
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