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Bounds on transport coefficients of porous media

James G. Berryman1

ABSTRACT

Transport coefficients such as electrical conductivity, thermal conductivity, fluid perme-
ability, etc., can all be treated in mathematically equivalent terms. So an analytical formu-
lation of conductivity bounds by Bergman and Milton can be used in a different way to
obtain rigorous bounds on, for example, the real thermal conductivity (which is the partic-
ular transport coefficient chosen for the present study) of a fluid-saturated porous material.
These bounds do not depend explicitly on the porosity, but rather on two formation factors
— one associated with the pore space and the other with the solid frame. The results are
then applicable to other physical properties such as fluid permeability. In particular, the
formation factors are measures of the microstructure (actually of the tortuosities) of the
porous medium, and are therefore the same dimensionless numbers for all these transport
processes within the same porous material.

INTRODUCTION

Bounds on various transport coefficients in heterogeneous media have been heavily studied
now for over forty years (Hashin and Shtrikman, 1962; Milton, 2002; Torquato, 2002). One of
the more interesting developments in this area has been the introduction of rigorous methods
for developing bounds on complex constants (closed curves in the complex plane), especially
the dielectric constant and conductivity of heterogeneous media (Bergman, 1978, 1980; Mil-
ton, 1980, 1981; Bergman, 1982; Korringa and LaTorraca, 1986; Stroud et al., 1986). These
methods represent a great technical achievement in this field, but they nevertheless can some-
times be difficult to apply to real data since they require high precision and strong consistency
among the data used in computing the bounds. In some cases it would be helpful for applica-
tions if some simpler and perhaps more robust methods and results were available.

In this short paper I consider the question of whether it is possible to make use of the
analytical methods in a different way to find bounds on transport coefficients. I will limit
discussion here to real coefficients, taking thermal conductivity as our main example, but
the results apply equally well to other transport coefficients including electrical conductivity
and fluid permeability (Berryman, 1992). Furthermore, the resulting bounds depend only
on commonly measured quantities in porous media called formation factors (Archie, 1942;
Korringa and LaTorraca, 1986), and they show no unusual sensitivity to measurement errors
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or any need for careful checking of consistency relations among the measurements.

THE ANALTYICAL FORMULATION

The Bergman-Milton (Bergman, 1978, 1980; Milton, 1980, 1981; Bergman, 1982; Korringa
and LaTorraca, 1986; Stroud et al., 1986; Berryman, 1992) analytical approach to understand-
ing some generic effective conductivity g∗ of two-component inhomogeneous media shows
that

g∗ = G(g1, g2) = g1G(1,0)+ g2G(0,1)+
∫ ∞

0

dxG(x)
1
g1

+ x
g2

, (1)

where G(1,0) and G(0,1) are constants depending only on the geometry and G(x) ≥ 0 is a
resonance density also depending only on the geometry. The integral in (1) is known as a
Stieltjes integral (Baker, 1975). Although the representation (1) has usually been employed
to study the behavior of g∗ in the complex plane when g1 and g2 are themselves complex
(corresponding to mixtures of conductors and dielectrics), I will restrict consideration here –
as Bergman did in his early work (Bergman, 1978) – to pure conductors so that g1, g2, and g∗

are all real and nonnegative.

In the limit that one or the other of the two constituents is a perfect insulator (gi = 0), or in
the more common case when one of the constituents is much more strongly conducting than
the other, I can define two quantities called formation factors (Archie, 1942) by

lim
g1→∞

g∗

g1
= lim

g1→∞
G(1, g2/g1) = G(1,0) =

1
F1

, (2)

and, similarly, by

lim
g2→∞

g∗

g2
= lim

g2→∞
G(g1/g2, 1) = G(0,1) =

1
F2

. (3)

In a porous material, where solid and pore fluid are each continuously connected through-
out the material, both formation factors are finite, and both satisfy F ≥ 1. The more com-
monly measured quantity of this type is the electrical formation factor for the continuous fluid
component. This measurement has some possible complications due to surface conductance
(Johnson et al., 1986; Wildenschild et al., 2000), but it is usually not contaminated by conduc-
tance through the bulk solid material because most rock grains can be correctly assumed to be
electrically insulating to a very good approximation. Since the formation factor is strictly a
measure of the microgeometry of the heterogeneous medium, it is the same number [except for
those possible complications already mentioned of surface electrical conduction (Johnson et
al., 1986; Wildenschild et al., 2000), which can be eliminated whenever necessary by known
experimental methods] for all mathematically equivalent conductivities. For this presentation,
I will use F1 to represent this formation factor associated with the pore space. On the other
hand, for thermal conduction the rock grains are the most highly conducting component and
the pore fluids tend to be much more poorly conducting – especially so in the case of saturating
air. So I will take F2 to be this formation factor associated with the solid frame of the porous
material.
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FORMATION FACTOR BOUNDS

To obtain some useful bounds, I again consider the form of (1)

G(g1, g2) =
g1

F1
+

g2

F2
+

∫ ∞

0

dxG(x)
1
g1

+ x
g2

. (4)

For reasons that will become apparent I want to compare the values of G(g1 +2g0, g2 +2g0)
and G(g1, g2) + 2g0, where g0 can take any positive value, but g0 is limited in the negative
range by the limitations that both g1 + 2g0 and g2 + 2g0 must always be nonnegative. A
straightforward, but somewhat tedious calculation shows that

G(g1 +2g0, g2 +2g0)− G(g1, g2)−2g0 =

2g0(g2 − g1)2 ∫ ∞

0
dxxG(x)

(1+x)(g2+xg1)[g2+xg1+2(1+x)g0] .
(5)

The right hand side of this equation is always positive whenever g0 > 0 and g1 6= g2. It
vanishes when g0 = 0 or g1 = g2. If g1 < g2, then for negative values of the parameter g0,
allowed values of g0 lie in the range 0 > 2g0 ≥ −g1. For such values of g0, the right hand side
of (5) is strictly negative.

The limiting case obtained by taking 2g0 → −g1 is most useful because, in this limit,
G(g1 +2g0, g2 +2g0) → (g2 − g1)/F2 — thus eliminating the unknown functional G(x) from
this part of the expression. Then, (5) shows that

G(g1, g2) ≥ g1 +
g2 − g1

F2
≡ S2(g1, g2), (6)

which is a general lower bound on G(g1, g2) without any further restrictions on the measurable
quantities g1 ≤ g2, and F2.

A second bound can be obtained (again in the limit 2g0 = −g1) by noting that
∫ ∞

0

dxxG(x)
(1+ x)(g2 + xg1)

≤

∫ ∞

0

dxG(x)
g2 + xg1

, (7)

and then recalling that
∫ ∞

0

dxG(x)
g2 + xg1

=
1

g1g2

[

G(g1, g2)−
g1

F1
−

g2

F2

]

. (8)

Substituting (7) into (5) produces an upper bound on G(g1, g2). By subsequently substituting
(8) and then rearranging the result, the final bound is

G(g1, g2) ≤ g2 +
g1 − g2

F1
≡ S1(g1, g2). (9)

Comparing (6) and (9), I see consistency requires that

g1 +
g2 − g1

F2
≤ g2 +

g1 − g2

F1
(10)
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must be true. Rearranging this expression gives the condition

0 ≤ (g2 − g1)
(

1−
1
F1

−
1
F2

)

, (11)

the validity of which I need to check. In the limit g1 = g2 = 1, a sum rule follows from (4),
and from this I have:

1−
1
F1

−
1
F2

=

∫ ∞

0

dxG(x)
1+ x

≥ 0. (12)

This shows explicitly that (11) is always satisfied as long as g2 ≥ g1. If this inequality g2 ≥ g1

does not hold, then the sense of the bounding inequalities is changed, so the expressions for
the upper and lower bounds trade places.

When g2 = const and g1 varies (as would be expected in a series of thermal conductivity
experiments with different fluids in the same porous medium), then (6) and (9) are both straight
lines that cross at g1 = g2. The general bounds are therefore

min(S1, S2) ≤ G(g1, g2) ≤ max(S1, S2), (13)

where S1 and S2 were defined in (6) and (9).

SECOND DERIVATION

Another derivation of the same bounds may provide additional insight into their significance.

Again starting from (4), this time I will go directly to the integral term and start making
approximations to it. First, consider

∫ ∞

0

dxG(x)
1
g1

+ x
g2

= g1

∫ ∞

0

dxG(x)
1+

xg1
g2

≥ g1

∫ ∞

0

dxG(x)
1+ x

, (14)

where the inequality holds whenever g1 ≤ g2. Then, similarly, I have

∫ ∞

0

dxG(x)
1
g1

+ x
g2

= g2

∫ ∞

0

dxG(x)
g2
g1

+ x
≤ g2

∫ ∞

0

dxG(x)
1+ x

, (15)

again whenever g1 ≤ g2. I can then make use of the identity in sumrule (12) to replace the
integral on the far right in both of these expressions. And, finally, applying (14) to (4) gives
exactly the lower bound (6), while applying (15) to (4) gives exactly the upper bound (9).
All the same comments about reversal of the sense of the inequalities applies here if instead
g1 ≥ g2. So, the final result is again (13).

This derivation has the advantage that it is clear from the inequalities (14) and (15) exactly
what approximations have been made in each case to arrive at the bounds on G(g1, g2).
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Figure 1: Comparison of the forma-
tion factor bounds (FF±), the Hashin-
Shtrikman bounds (HS±), and ther-
mal conductivity data from Asaad
(1955). Data are for sandstone sam-
ple B. jim1-gBasaadsmlgwg [NR]
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Figure 2: Comparison of the forma-
tion factor bounds (FF±), the Hashin-
Shtrikman bounds (HS±), and ther-
mal conductivity data from Asaad
(1955). Data are for sandstone sam-
ple C, including two distinct data sets.
jim1-gCasaadlglgwg [NR]
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Figure 3: Comparison of the forma-
tion factor bounds (FF±), the Hashin-
Shtrikman bounds (HS±), and ther-
mal conductivity data from Asaad
(1955). Data are for sandstone sam-
ple D. jim1-gDasaadlglgwg [NR]
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NUMERICAL EXAMPLES

Examples shown in Figures 1–3 make use of thermal conductivity and electrical formation
factor data from Asaad (1955). Three different sandstones (labelled B, C, D) were studied by
Asaad, and several different sets of experiments were performed on each. The Figures show
data from experiments B30, C10, C20, and D10. I plot both the new formation factor bounds
(FF) and the Hashin-Shtrikman bounds (HS) based on volume fraction information. A selec-
tion of the data is displayed in all three cases. Electrical formation factor measurements were
made on all three samples (F B

1 = 12.0, FC
1 = 23.0, F D

1 = 33.0). Frame formation factor can be
determined from measurements of thermal conductivity when the pores are evacuated. But a
value of effective grain thermal conductivity must be found. Asaad (1955) solved this problem
— using an extrapolation method — assuming that a certain geometric mean approximation
(which is just a straight line on a log-log plot) when fit to the data would then give an accurate
estimate of the point at which G(g1 = geff

2 , g2) ' geff
2 . Results displayed as they are here on the

log-log plots in Figs. 2 and 3 show that Asaad’s method is in fact quite accurate for all these
data. Then, Feff

2 ' geff
2 /G(0, g2), and I find F B

2 = 13.5, FC
2 = 15.9, F D

2 = 3.72. Measured
porosity values were φB = 0.220, φC = 0.158, φD = 0.126.

CONCLUSIONS

The results show an interesting common pattern in all three examples. The Hashin-Shtrikman
upper bound is always smaller, and therefore a better/tighter bound, than the upper FF bound.
But the situation is more complicated for the lower bounds. Near the point where all the
bounds cross, the lower Hashin-Shtrikman bounds are just slightly better for higher values of
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gfluid, but significantly better for the lower values. On the other hand, far from this convergence
point the lower FF bound is clearly superior to Hashin-Shtrikman, both at quite high and quite
low values of gfluid. In fact this is not surprising since it is in these asymptotic regimes that
the FF bounds tend to become exact estimates. So a reasonable conclusion I reach from these
observations is that the combination of the two Hashin-Shtrikman bounds and the lower FF
bound provides quite accurate estimates of overall conductivity for the entire range of pore-
fluid conductivities.

Future work along these lines will be directed towards improving the estimates obtained
from the analytical method by making more direct use of various known constraints on the
resonance density G and its integral moments.



158 Berryman SEP–117

REFERENCES

Archie, G. E., 1942, The electrical resistivity log as an aid in determining some reservoir
characteristics: Trans. AIME, 146, 54–62.

Asaad, Y., 1955, A Study of the Thermal Conductivity of Fluid-Bearing Porous Rocks: Ph. D.
Thesis, University of California – Berkeley.

Baker, G. A., Jr., 1975, Essentials of Padé Approximants, Academic, San Diego, California.

Bergman, D. J., 1978, The dielectric constant of a composite material — A problem of classi-
cal physics: Phys. Rept., 43, 378–407.

Bergman, D. J., 1980, Exactly solvable microscopic geometries and rigorous bounds for the
complex dielectric constant of a two-component composite material: Phys. Rev. Lett., 44,
1285–1287.

Bergman, D. J., 1982, Rigorous bounds for the complex dielectric constant of a two-component
composite: Ann. Phys., 138, 78–114.

Berryman, J. G., 1992, Effective stress for transport properties of inhomogeneous porous rock:
J. Geophys. Res., 97, 17409–17424.

Hashin, Z., and Shtrikman, S., 1962, A variational approach to the theory of the effective
magnetic permeability of multiphase materials: J. Appl. Phys., 33, 3125–3131.

Johnson, D. L., Koplik, J., and Schwartz, L. M., 1986, New pore-size parameter characterizing
transport in porous media: Phys. Rev. Lett., 57, 2564–2567.

Korringa, J., and LaTorraca, G. A., 1986, Application of the Bergman-Milton theory of bounds
to the permittivity of rocks: J. Appl. Phys., 60, 2966–2976.

Milton, G. W., 1980, Bounds on the complex dielectric constant of a composite material: Appl.
Phys. Lett., 37, 300–303.

Milton, G. W., 1981, Bounds on the complex permittivity of a two-component composite
material: J. Appl. Phys., 52, 5286–5293.

Milton, G. W., 2002, The Theory of Composites, Cambridge University Press, Cambridge, UK.

Stroud, D., Milton, G. W., and De, B. R., 1986, Analytical model for the dielectric response
of brine-saturated rocks: Phys. Rev. B, 34, 5145–5153.

Torquato, S., 2002, Random Heterogeneous Materials: Microstructure and Macroscopic Prop-
erties, Springer, New York.

Wildenschild, D., Roberts, J. J., and Carlberg, E. D., 2000, On the relationship between mi-
crostructure and electrical and hydraulic properties of sand-clay mixtures: Geophys. Res. Lett.,
27, 3065–3068.


