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Incorporating topography into wave-equation imaging through
conformal mapping

Jeff Shragge and Paul Sava1

ABSTRACT

Conformal mapping is a technique used widely in applied physics and engineering fields
to facilitate numerical solution of boundary value problems involving solution domains
characterized by complex geometry. The predominant reason for applying a conformal
mapping procedure is to transform an irregular solution domain to one of symmetric ge-
ometry. The conformal map transform has the property that the angle between neighbor-
ing arc segments is (locally) conserved under the mapping. Accordingly, in the context
of wave-equation imaging under topography, conformal mapping can transform an irreg-
ular, topographically-influenced solution domain to a regular computational mesh. In this
paper, we demonstrate that the use of the conformal mapping transform coupled with
Riemannian wavefield extrapolation generates an orthogonal coordinate system and the
governing wavefield contination equation required for wave-equation migration directly
from a topographic surface. We illustrate the potential of this approach by migrating a
2-D prestack data set acquired on a geologic model of thrust belt.

INTRODUCTION

Migration of seismic land data acquired on topography presents a significant imaging chal-
lenge. One technique used to correct for the deleterious effects of topography in a more
accurate fashion than simple statics corrections is to include a wavefield datuming step in the
processing flow (Berryhill, 1979). Usually, this step propagates wavefields down to a com-
mon subsurface depth level. However, the presence of strong lateral velocity contrast directly
beneath the surface can generate significant wavefield triplication that leads to non-optimal
datuming results, especially if Kirchhoff-based methods are used. Therefore, a migration
workflow that includes an upward or downward wavefield continuation processing step should
produce better imaging results.

However, in practice wavefield continuation is seldom applied directly to data sets ac-
quired on topography without significant preprocessing. The predominant challenge is that
the metric of source and geophone arrays seldom conform to a regular computational mesh.
Rather, due to instrument cabling, geophone arrays are more likely to uniformly sample the
topographic surface. Two common solutions to this problem are either to employ a migration
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procedure involving wavefield injection (Jiao et al., 2004), or to perform an upward-datuming
prior to migration (Bevc, 1997). Migration by wavefield injection commences at the global
topographic maximum where the data recorded at this station are injected into the wavefield.
The wavefield is then continued downward and data are injected into the wavefield whenever
the extrapolation step reaches the height of the topography. Two drawbacks of this approach
are that data need to be regularized beforehand to a uniform grid usually through interpolation,
and that the additional number of fine-scale extrapolation steps significantly increase cost. Up-
ward wavefield datuming or “flooding the topography” procedures are employed to generate a
regular wavefield above the highest point. This processing step can be done successfully with
Kirchhoff or other migration operators. One downside of this approach is, again, the increased
preprocessing cost. In general, although these methods produce good results, a significant
amount of data preprocessing is required to render Cartesian-based wave-equation migration
approaches applicable and, as a result, data fidelity may be compromised.

In this paper, we argue that many of the difficulties with state-of-the-art migration from
topography technology could be precluded by abandoning the Cartesian coordinate system for
one conformal with the topographic surface. To find such a method, we observe that wave-
equation imaging is a specific example of a boundary value problem (BVP) that has a solution
domain defined by a polygonal boundary. (Images are the superposition of the monochro-
matic solutions to a number of BVPs of different frequency.) This observation motivates us to
examine the results of other applied fields that routinely solve BVPs, such as aerospace and
mechanical engineering.

One method routinely employed to help solve BVPs is conformal mapping. This proce-
dure defines how to transform the physical solution domain to a more symmetric canonical
domain through mapping in the complex plane (Kythe, 1998). Relating this concept to wave-
equation imaging from topography, we suggest using conformal mapping to transform the
topographically-influenced physical domain to a canonical domain characterized by a rect-
angular computational grid. We term this new orthogonal calculation mesh a “topographic”
coordinate system. Moreover, the forward and inverse conformal map transforms are also
used in defining the wavefield extrapolation equations appropriate for the canonical domain.
Consequently, we are both able to perform wavefield extrapolation and to apply the imaging
condition in the topographic coordinate domain. The final image is generated by mapping the
topographic coordinate image to the physical domain using the inverse conformal mapping
transform.

We begin the paper with an overview of conformal mapping illustrated by some simple
examples. We then review Riemannian wavefield extrapolation (Sava and Fomel, 2004) and
the steps required to generate appropriate wavefield extrapolation equations. Prestack migra-
tion results are presented for a data set acquired over a 2-D geological model characterized
by severe elevation relief, strong near-surface velocity contrast, and complicated folding and
faulting. The paper concludes with a discussion on the relative merits and drawbacks of the
proposed approach.



SEP–117 Migration from topography 29

CONFORMAL MAPPING

Conformal mapping is a topic of wide-spread interest in the field of applied complex analysis.
Generally, this subject deals with the manner in which point sets are mapped between two
different analytic domains in the complex plane. In this paper, we refer only to domains that
are simply- (i.e. not multiply) connected. A mapping between complex planes may be thought
of as a rule relating how a field of points defined on a domain in the z-plane, z = x+ iy, maps
to the w-plane, w = u(x , y)+ iv(x , y), according to a mapping function, w = f (z) (see the
example in Figure 1). If for each point in the z-plane domain there corresponds a unique
number in the w-plane, then the mapping function is analytic. In addition, if for each point in
the w-plane there corresponds precisely one point in the z-plane, then the mapping is one-to-
one and the transformation is invertible. The Cauchy-Riemann equations (Nehari, 1975) are
the necessary and sufficient conditions for function f (z) to be analytic in a domain of interest.
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Figure 1: An example of a conformal mapping between the z-plane, z = x + iy, and the w-
plane, w(z) = u(x , y)+ iv(x , y), according to mapping function w = z2. In this example, the
shaded region in the z-plane maps to the shaded region in the w-plane. Coordinates (u,v) are
given by (x2− y2, 2xy). Lines in the w-plane: u = 1, u = 4, v = 2, and v = 8, map to the
following lines in the z-plane: x2− y2 = 1, x2− y2 = 4, xy = 1. Note also that orthogonality
of line intersections in the w-plane are preserved in the z-plane. jeff1-map1 [NR]

A conformal map is distinguishable from other mappings between complex planes by
characteristic properties. Most important to this discussion is the following property:

Conservation of Angle: A conformal mapping of two continuous arcs that locally form an
angle α0 in the z-plane will generate two continuous arcs seperated by the same local
angle α0 in the w-plane.

Figure 1 illustrates the property that grid lines orthogonal in the w-plane are orthogonal in the
z-plane under a conformal map. By extension, non-Cartesian orthogonal coordinate systems
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can be created in the z-plane (or conversely in the w-plane) by a conformal mapping of a
rectangular coordinate system in the w-plane (z-plane).

The first major developments in the theory of conformal mapping originated with the map-
ping theorem of Riemann (1851), who proved the existence of a unique analytic mapping
between any two simply-connected, analytic domains:

Riemann Mapping Theorem: Let D be a simply-connected region. Then there exists a bi-
jective conformal map f : D→ U ,where U is the open unit disk. By extension, if
G is a another simply-connected domain, there exists a mapping g : G→ U . Hence,
there exists a composite mapping operation, f · g−1 : D→ G, between two arbitrary
simply-connected domains.

Figure 2 illustrates the Riemann mapping theorem between three domains pertinent to the
current discussion. Figure 3 presents an example of a conformal mapping between a square
and unit circule (the mapping g in Figure 2).

f g
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g f
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Figure 2: Illustration of the Riemann Mapping Theorem between a physical domain with an
undulating upper surface, the unit circle, and a rectangular canonical domain. In this example,
a forward mapping function, f , exists between the physical domain and the unit circle and,
because the mapping is one-to-one, an inverse mapping f −1 also exists. Forward and inverse
mapping functions (g and g−1) also exist between the rectilinear domain and the unit circle.
Hence, the composition of functions f · g−1 denotes a mapping between the physical and
canonical domains, while the inverse mapping is given by g · f −1. The mapping locations
of points labeled 1 through 4 are specified to ensure that the sides in the physical domain
correspond to the sides in the canonical domain. jeff1-Riemap [NR]

We will use the Riemann mapping theorem to transform the topographic domain to a rect-
angular computational mesh. Assisting us is an extensive catalog of conformal maps between



SEP–117 Migration from topography 31

common geometrical domains. Pertinent to the current discussion are the conformal maps be-
tween the unit circle (UC) and the upper half plane (U H P), f : UC→U H P and its inverse
f −1 : UC←U H P ,

f : z→ z−i
z+i , (1)

f −1 : i 1+z
1−z ← z,

and the mapping between the U H P and a rectangle with sides of arbitrary length, g : U H P→
Rect , and its inverse g−1 : U H P← Rect ,

g : w(k)=
∫ z

0
dζ√

1−ζ 2
√

1−k2ζ 2
(2)

g−1 : sn(w;k),

where g is an elliptic integral of the first kind, k is a function of the ratio of the length of the
two sides, and sn(w;k) is a Jacobian elliptic function (Nehari, 1975). Appendix A discusses a
method for computing conformal map transforms between arbitrary polygons and the U H P .

Figure 3: Conformal mapping be-
tween a square coordinate system and
the unit circle. jeff1-confexamp
[NR]

w−planez−plane

Table 1 outlines a work flow to generate a topographic coordinate system through con-
formal mapping. The first step is to define the enclosure of the physical domain where the
topographic surface defines the upper boundary. We create the lower boundary by mirroring
the topography at twice the maximum extrapolation depth. The side boundaries are defined
by straight lines that join the top and bottom segments. We denote the border points zbnd

topo,
where subscript topo and superscript bnd refer to topography and boundary points, respec-
tively. The four corner points of the physical domain are also specified. The next two steps
involve calculating the forward and inverse mapping functions, f and f −1, between the topo-
graphic surface and the unit circle. The fourth step is to generate a rectilinear boundary and
to define its four corner points. We denote this boundary zbnd

rect , where subscript rect refers to
rectangle. The next two steps involve calculating forward and inverse mappings functions, g
and g−1, between the boundary of the rectangle and the unit circle.

To discern where in the canonical domain to form the coordinate system grid, we need to
find the mapping of the topography boundary points on the rectangular domain boundary. This
is accomplished by calculating the image of the boundary points under composite mapping
operations, zbnd

im = g−1 · f (zbnd
topo). A rectangular grid is then set up at the image points to create

computational grid, zcs
rect , where superscripts cs denote coordinate system.

Table 1. Work flow to calculate topographic coordinates with conformal mapping.
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Step Description Notation
1 Define physical domain boundary and 4 corner points zbnd

topo
2 Calculate mapping f : T opo→U H P→UC wbnd

topo = f (zbnd
topo)

3 Calculate mapping f −1 : UC→U H P→ T opo zbnd
topo = f −1(wbnd

topo)
4 Define canonical domain border and 4 corner points zbnd

rect
5 Calculate mapping g : Rect→U H P→UC wbnd

rect = g(zbnd
rect )

6 Calculate mapping g−1 : UC→U H P→ Rect zbnd
rect = g−1(wbnd

rect )
7 Find image of topography in the rectangle zbnd

im = g−1( f (zbnd
topo))

8 Construct rectilinear grid using zbnd
im (zbnd

topo) zcs
rect

9 Map grid zcs
rect to physical domain zcs

topo = f −1(g(zcs
rect ))

The final step is to map the rectilinear coordinate system, zcs
rect , from the canonical domain

back to the topographic coordinates under composite mapping operation, zcs
topo= f −1 ·g(zcs

rect ).
Point set zcs

topo defines a coordinate system appropriate for performing wavefield continuation
directly from topography at the acquisition locations. The next section details how this point
set is used to generate the appropriate extrapolation equations.

RIEMANNIAN WAVEFIELD EXTRAPOLATION

Performing wavefield extrapolation on topographic computational meshes computed through
conformal mapping requires parameterizing the acoustic wave-equation by a set of variables
that describe the coordinate system. In 2-D, we denote these variables the extrapolation direc-
tion, τ , (analogous to depth in Cartesian wavefield extrapolation), and the direction orthogonal,
γ (analogous to horizontal offset in Cartesian wavefield extrapolation). Variables τ and γ are
related to the topographic coordinate system point set through (τ ,γ ) = (<(zcs

topo),=(zcs
topo)).

Figure 4 presents a sketch of the topographic coordinate system geometry.

Figure 4: Cartoon illustrating the to-
pography coordinate system. Vari-
able τ = τ (x , z) is the extrapola-
tion direction and parameter τ t may
be considered a topographic “front”.
Variable γ = γ (x , z) is the coordinate
across the extrapolation step at a con-
stant τ step, and parameter γ g may
be considered a topographic “ray”.
jeff1-topocoord [NR] g−1γ

3τ

g+1γgγg−2γ g+2γ

1τ

2τ

τ4

Z

X

The 2-D acoustic wave-equation for wavefield, U, at frequency, ω, governing propagation
in topographic coordinates is (Sava and Fomel, 2004),

1
α J

[

∂

∂τ

(

J
α

∂U

∂τ

)

+
∂

∂γ

(

α

J
∂U

∂γ

)]

=−ω2s2
U, (3)
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where s is the slowness of the medium, α a distance scaling factor in the extrapolation direc-
tion τ , and J a Jacobian of transformation of coordinate γ (analogous to a geometrical ray
spreading factor). Parameters α and J are defined by,

α =
[

∂x
∂τ

∂x
∂τ
+ ∂z

∂τ
∂z
∂τ

]
1
2 , (4)

J =
[

∂x
∂γ

∂x
∂γ
+ ∂z

∂γ
∂z
∂γ

]
1
2 ,

where x and z are the coordinates of the underlying Cartesian basis. Note that parameters α

and J are solely components of the coordinate system and are independent of the extrapolated
wavefield values.

Analogous to wavefield continuation on a Cartesian mesh, a dispersion relation must be
specified that forms the basis for all derived extrapolation operators in a topographic coordi-
nate system. The relation being sought is the wavenumber along the extrapolation direction,
kτ . Following Sava and Fomel (2004), the partial derivative operators in (3) are expanded
out to generate a second-order partial differential equation with non-zero cross derivatives.
Fourier-domain wavenumbers are then substituted for the partial differential operators acting
on wavefield, U, and the quadratic formula is applied to yield the expression for kτ ,

kτ =
iα
2J

∂

∂τ

(

J
α

)

±

[

ω2s2α2−
[

α

2J
∂

∂τ

(

J
α

)]2

+
iα
J

∂

∂γ

(α

J

)

kγ −
α2

J 2 k2
γ

]
1
2

. (5)

One relatively straightforward way to apply wavenumber kτ in an extrapolation scheme
is to develop the topographic coordinate system equivalent to a phase-screen extrapolation
operator (Sava, 2004). In the following example, we treat solely the kinematic, one-way prop-
agation of recorded wavefields. This asymptotic approximation leads us to drop the first order
partial differential terms in (5),

kτ =±
√

a2ω2−b2k2
γ , (6)

where a = sα and b = α/J . The expansion of kτ about reference parameters a0 and b0 is,

kτ ≈ kτ0+
∂kτ

∂a

∣

∣

∣

∣

a0,b0

(a−a0)+
∂kτ

∂b

∣

∣

∣

∣

a0,b0

(b−b0) , (7)

where subscript 0 denotes reference. Partial derivatives with respect to parameters a and b are,

∂kτ

∂a

∣

∣

∣

∣

a0,b0

= ω 1
√

1−
(

b0kγ
ωa0

)2
≈ ω

[

1+
c1

(

b0kγ
ωa0

)2

1−3c2

(

b0kγ
ωa0

)2

]

, (8)

∂kτ

∂b

∣

∣

∣

∣

a0,b0

= −ω
b0
a0

(

kγ

ω

)2
1

√

1−
(

b0kγ
ωa0

)2
≈−ω

b0
a0

(

kγ

ω

)2
,

where the square root function in the denominator has been expanded using a Padé approx-
imation. The choice of numerical constants c1 = 1

2 and c2 = 0 yields a 15◦ finite-difference
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term. Thus, the phase-screen approximation for extrapolation wavenumber, kτ , is,

kτ ≈ kτ0+ω (a−a0)+ω

[

c1

(

a0
b0

)2
(a−a0)− b0

a0
(b−b0)

]

(

kγ

ω

)2

1−3c2

(

b0
a0

)2 (

kγ

ω

)2 . (9)

This expression can be generalized to include multiple reference media through a phase-shift
plus interpolation (PSPI) approach (Gazdag and Sguazzero, 1984) over the two parameters;
however, this extension is not treated here. The approximation for wavenumber, kτ , given in
(9) is used in a conventional wavefield extrapolation scheme that extends the recorded wave-
field away from the acquisition surface to the required subsurface locations. This involves
solving a one-way wave-equation which, in discrete extrapolation steps of 1τ , requires a re-
cursive computation of the following:

U(τ +1τ ,γ ,ω)=U(τ ,γ ,ω) eikτ 1τ . (10)

Our prestack migration example is computed using a shot profile migration code. This
involves extrapolating the source and receiver wavefields, S and R, independently using,

Sτ+1τ = Sτ e−ikτ 1τ , (11)

Rτ+1τ = Rτ eikτ 1τ ,

and applying an imaging condition at each extrapolation level to generate image, I(τ ,γ ),

I(τ ,γ )=
∑

i

∑

w

S(τ ,γ ,ω;si)R (τ ,γ ,ω;si), (12)

where the line over the receiver wavefield indicates complex conjugate. Image I(τ ,γ ) is
then mapped to a Cartesian coordinate system using sinc-based interpolation operators in the
neighborhood of each mapped point to generate the final image, I(x , z).

NUMERICAL EXAMPLES

We test the combined conformal mapping and Riemannian wavefield extrapolation approach
on a synthetic dataset computed on a rugged topographic surface. The geological model is
a merger of common geologic features from the Canadian Foothills in northeastern British
Columbia, Canada. The velocity model, shown in Figure 5, consists of steep thrust fault
planes and complex folds typical of a mountainous thrust region. The topographic boundary
of interest is demarcated by the velocity model discontinuity nearest to the surface. The total
relief of the Earth’s surface in this model is approximately 1600 m. Also note that the com-
plex near-surface velocity structure should present a significant imaging challenge (Gray and
Marfurt, 1995).

Figure 6 shows the result of using conformal mapping to construct a coordinate system that
incorporates the topography shown in Figure 5. One important observation is that topography
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Figure 5: Foothills velocity model constructed from composite 2-D geologic model from
northeastern British Columbia, Canada. Total elevation relief is approximately 1600 m. The
topographic boundary of interest is demarcated by the velocity model discontinuity nearest to
the surface. jeff1-Foothills.vel [ER]

causes focusing of the coordinate system. In particular, the coordinate system compresses
under local topographic maxima, and expands beneath local topographic minima. This sug-
gests that Jacobian spreading factor, J , in (3) will be strongly dependent on the local radius of
curvature of the topographic surface. However, as the topographic fronts move farther from
the surface, the topographic influenced diminishes and the fronts move toward becoming a flat
datum. (Hence, this approach could be used for wavefield datuming.)

A prestack wave-equation imaging test was conducted using a synthetic data set generated
by an acoustic, 2-D, finite-difference code through the model shown in Figure 5. The data
set is comprised of 278 shot gathers with a split-spread geophone geometry where absolute
offsets range between 15 m and 3600 m. Geophone and source spacing are 15 m and 90 m,
respectively. Data were generated on a regular Cartesian mesh. Thus, we interpolated the data
to fit on a grid uniform along the topographic surface. Data fidelity may have been lowered by
this processing step; however, we emphasize that this step is normally of modest importance
since field data likely are nearly uniformly-spaced on the topographic surface.

A sample shot record at horizontal location 14040 m is shown in Figure 7. Note that the
relief causes non-linear moveout of the direct arrival, and a substantial amount of topographic
scattering as illustrated by the horizontal banding across the section. No preprocessing of
the sections was done to remove these two potential noise sources, and the resulting image is
contaminated accordingly.

A preliminary prestack migration image is presented in Figure 8. The majority of reflec-
tors are well positioned; however, diffractions and discontinuous reflectors exist at locations
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Figure 6: Topographic coordinate system constructed using conformal mapping. Note the
compression of the rays under topographic maxima, and their extension under topographic
minima. The influence of topography on the coordinate system diminishes farther from the
surface. jeff1-Foothills.coords [CR]

Figure 7: Shot record from source
station 14040 m that shows the influ-
ence of topography. Note the non-
linear moveout of the direct arrivals,
and the significant amount of topo-
graphic scattering typified by hori-
zontal streaking across the section.
jeff1-singleshot [ER]
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directly beneath topographic minima and maxima. Although these anomalies may be caused
by the data regularization procedure, they more likely arise from limitations imposed by the
phase-screen approximation.

Also present are vertical streaks of higher (lower) amplitude directly under local topo-
graphic minima (maxima). We attribute these anomalous amplitudes to a combination of: i)
the simplicity of the weighing function used in the interpolation of the image between the
topographic and Cartesian coordinate systems; and ii) our non-consideration of the dynamic
terms in (6). Geological structure poorly imaged or absent include sections of the steeply-
dipping fold belt, which is probably due to limitations imposed by both the limited angular
bandwidth of the phase-screen approximation, and our use of only one reference medium.

Figure 8: Top: Foothills thrust model velocity model. Bottom: The preliminary prestack
migration image using Riemannian wavefield extrapolation on a coordinate system generated
through conformal mapping. jeff1-prestackimage [CR]
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DISCUSSION AND FUTURE WORK

The issues below are important for improving the quality of wave-equation migration directly
from topography images. In some cases, we discuss ideas not yet implemented, while in others
we speculate on directions of future research.

Muting direct arrivals: We did not mute out the direct arrivals from the shot gathers, which
probably introduced artifacts. In principle, a first-arrival mute is fairly easy to imple-
ment; however, their non-linear moveout requires introducing more complicated muting
functions. In the future, we will eliminate this source of image contamination.

Using improved mapping weighting functions: We speculate that amplitudes could become
more uniform along the reflectors through the use of a better weighting function. The
image is currently interpolated to the Cartesian domain using sinc-function operators,
where the image points are weighted by the mapping fold. A better weighting function
should include the Jacobian of the transformation between the two coordinate systems.

Including dynamic propagation terms: We have incorporated only the second-order par-
tial differential terms in the phase-screen approximation for extrapolation direction
wavenumber, kτ . Including the remaining two dynamic terms should lead to reflectors
of more uniform intensity, since these terms contribute to wavefield amplitudes.

Incorporating multiple reference media: The above image was generated using one refer-
ence medium (i.e., we performed Taylor expansions about a0 and b0). However, in prac-
tice many reference media (e.g., velocities) are often used to generate images through
the PSPI approach. Noting that the variability of coordinate spacing is significant (and
functions a and b thereby), we surmise that the incorporation of multiple reference me-
dia is likely necessary to eliminate existing kinematic errors and to improve diffraction
focusing.

Implementing a seperate wavefield datuming step: By extension, we have shown that this
procedure works as a datuming procedure. For example, a coordinate system generated
by conformal mapping could be used in an upward continuation scheme to establish the
wavefield at a uniform level above topography. Standard Cartesian migration technol-
ogy could then be applied directly to migrate the datumed wavefield.

CONCLUSIONS

Performing wave-equation migration directly from topographic surfaces is achievable with
a minimum of preprocessing in topographic coordinate systems. We show that conformal
mapping generates the required topographic coordinate systems, and that the conformal map
transform determines the appropriate wavefield extrapolation equations. We also conclude that
multiple reference media are likely needed to image under complicated topography, which is
consistent with wavefield extrapolation practice in a Cartesian coordinate system.
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By extension, we show that upward datuming on a coordinate system generated through
conformal mapping transformation could work as a pre-imaging processing step. Moreover,
upward datuming could be more effective than downward migration direct from topography,
since a constant velocity function would likely improve the range over which the phase-screen
approximation is accurate. Standard Cartesian-based migration technology could then be used
to downward continue the upward datumed wavefields.
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APPENDIX A

This appendix discusses the conformal mapping between polygons of arbitrary shape and the
upper half plane. Assisting us in this transformation is an important conformal map transfor-
mation, termed Schwarz-Christoffel mapping, that facilitates solution of a class of BVPs with
polygonal boundaries. Figure A-1 illustrates the transformation and also illustrates the basic
nomenclature.

f

−1fΓ −1n

Γ −1n
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X1 X2 X3 Xn

Γ1 Γ2

Xn−1

U
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z−plane w−plane
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w2

wn−1

3

n

Figure A-1: Schematic of the Schwarz-Christoffel transformation between a polygonal do-
main in the w-plane and the upper half plane (UHP), D = z : =(z) > 0, in the z-plane. This
transformation maps line segments 0i that lie on the y = 0 line in the z-plane to the line seg-
ments 0i that define the polygonal boundary of the w-plane according to mapping rule f .
Exterior angles, παi , are used in the transformation formula, and are defined by |αi | > 1 and
∑n

i=1 αn = 2. Points xi in the z-plane are mapped to points wi in the w-plane. jeff1-sctran
[NR]

The formula for calculating the transformation is,

w = f (z)= A+ B
∫ z

z0

n
∏

i=1

(ζ − xi )−αi dζ , (A-1)

where A and B are constants that determine the size and position of the polygon 0, and αi

denotes the exterior angle (see Figure A-1). Constants A and B are computed after defining
the mapping of 3 points (i.e., known points z0). The integration is carried out along any path
in the domain D that connects known point z0 and the point in question z.

The inverse Schwarz-Christoffel transformation is given by,

z = f (w)= C0+C
∫ w

w0

n
∏

i=1

(ζ −wi )−µi dζ , (A-2)

where µi are the interior angles, and integration is carried out along any path that connects
known mapping point w0 with the point in question w.

In numerical applications of Schwarz-Christoffel mapping, it is necessary to determine
numerically the (2n+2) parameters (i.e. all αi , xi and A, B) that appear in equations (A-1)
and (A-2). In conformal mapping literature, this problem is termed the ’parameter problem’
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(Kythe, 1998). The numerical solution to this problem requires selecting 3 points of the x-
axis that map to 3 preassigned points in the u-axis (i.e. p1, p2 and p3). This allows for
equation (A-1) to be segmented into the Schwarz-Christoffel integrals,

I1 =
∫ p2

p1
(ζ − p1)−α1(ζ − p2)−α2(ζ − p3)−α3 ...(ζ − pn−1)−αn−1(ζ − pn)−αn dζ

I2 =
∫ x3

p2
(ζ − p1)−α1(ζ − p2)−α2(ζ − p3)−α3 ...(ζ − pn−1)−αn−1(ζ − pn)−αn dζ (A-3)

...
...

In−2 =
∫ xn−1

xn−2
(ζ − p1)−α1(ζ − p2)−α2(ζ − p3)−α3 ...(ζ − pn−1)−αn−1(ζ − pn)−αn dζ

Fortunately, the ratio of any two sides of the mapped polygon is independent of scale factors
A and B. This allows the parameter problem to be written as the following series of equations:

Ij (x3, x4, ..., xn−1)= λj I1(x3, x4, ..., xn−1), j = 2,3, ...,n−2, (A-4)

where

λj =
∣

∣wj+1−wj
∣

∣

|w2−w1|
j = 3,4, ...,n−2. (A-5)

A solution to the Schwarz-Christoffel integrals begins by expanding the series of equa-
tions (A-5) in a first order Taylor power series about initial guesses, x (0)

i , of the true values, x̃i .
This leads to a system of equations that may be solved using Newton’s method:

I (0)
j +

n−1
∑

ν=3

h(1)
ν

∂ I (0)
j

∂xν

= λj

[

I (0)
1 +

n−1
∑

ν=3

h(1)
ν

∂ I (0)
1

∂xν

]

, j = 2, ...,n−2, (A-6)

where hν , the correction factors that are being solved for, are applied to yield the next estimate
of the vertex corners,

x (0)
ν = x (0)

ν +h(1)
ν . (A-7)

This process is repeated using nth iterative updates of h(n)
ν until the desired tolerance is reached.

Finally, the Schwarz-Christoffel integrals are improper because the integrand of each integral
becomes unbounded at the two points of integration. Kythe (1998) discusses using the Kan-
torovich method to regularize these integrals.


