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Short Note

An educated guess on the Vp/Vs ratio

Daniel A. Rosales1

INTRODUCTION

Data processing of converted waves generally yields estimated values for both P velocity and
S velocity in the area of study. These values are usually seen in the form of two parameters: 1)
the multiplication of both velocity fields, and 2) the ratio of both velocity fields. Traditionally
the ratio of the P and S velocities, which is known as the γ value, is the result of an extensive
combined analysis on the PS data and the single P-mode data. Knowledge of γ is important not
only for seismic processing but also for rock property estimation. Traditionally, γ is estimated
through a combined processing of the PS data and the PP data, as described by Thomsen
(1998) and Audebert et al. (1999).

In this note, I present an analytical procedure to estimate an initial value of γ that de-
pends only on the most basic processing scheme, the NMO stacking process. Several authors
have discussed the stacking process for converted waves (Tessmer and Behle, 1988; Castle,
1988; Iverson et al., 1989; Huub Den Rooijen, 1991). Tessmer and Behle (1988) apply con-
ventional NMO to converted waves where the RMS stacking velocity is designated as the
converted-wave velocity. This NMO procedure uses a hyperbolic approximation of the move-
out equation; so, there is not a satisfactory correction of the moveout.

I introduce a non-hyperbolic moveout equation that characterizes converted waves. This
moveout equation consists of three main terms. The third term depends on the γ function
giving us an equation to estimate an approximately constant value of γ , directly from the PS
data alone.

THEORY: NON-HYPERBOLIC MOVEOUT

The main characteristic of converted-wave data is their non-hyperbolic moveout. However,
for certain offset/depth ratios, it is possible to approximate the non-hyperbolic moveout as a
hyperbola (Tessmer and Behle, 1988).

Tessmer and Behle (1988) extend the work of Taner and Koehler (1969) for converted
waves. They apply a second-order approximation to the moveout equation to converted-wave
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data. In such cases the stacking velocity corresponds to the product of both P and S velocities
known as converted-wave velocity.

Castle (1988) presents the third-order-approximation coefficient terms for the converted-
wave moveout equation. In this note, I simplify this term and present it as a function of γ

alone.

Equation (1) is the expanded traveltime function of reflected PP or SS data presented by
Taner and Koehler (1969):
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where k indicates the stratigraphic layers present in the model. Here and hereafter, αk and
βk respectively denote the P velocity and the S velocity for the k th-layer. Tessmer and Behle
(1988) show that
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where v2
rms = αrms ·βrms , this is only true when γ is constant. The formal definition for c3 is

as follows (Castle, 1988):
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For one layer, equation (5) simplifies to
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which reduces to
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Now, the simple trick I use to make an educated guess for γ with PS data alone is to consider
[from the results of c1 and c2, equations (3) and (4)] that α2

rms = v2
rmsγ and β2
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−1,
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remember that γ is approximately constant in all layers. With these assumptions, equation (5)
simplifies to
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γ 2
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0v4
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Introducing the final results for c1, c2 and c3 into equation (1), I obtain an equation to perform
non-hyperbolic moveout for PS data that is dependent on only two parameters: 1) the multipli-
cation of the P and S velocities, or the converted wave rms velocity (vrms ), and 2) the Vp/Vs
ratio (γ ). It is also important to note that this equation is valid for a constant Poisson’s ratio
in all layers. With these simplifications and equations, it is possible to obtain an approximate
value of γ using PS data alone.
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Equation (9) is the central result of this paper. It is possible to note that the moveout equation
is more than a hyperbolic relation, since it involves a third term. Another important charac-
teristic of equation (9) is that it depends only on two parameters: 1) the converted-waves rms
velocity, and 2) the Vp/Vs ratio. This important characteristic will allow us to invert for a
value of γ . It is also important to note that the sensitivity of equation (9) to γ probably is not
too high, since the third term of the equation also depends on the offset-depth ratio.

It is important to note that for the specific case of α = β (this never happens in practice),
i.e., no converted waves, the value of γ equals 1, and equation (9) reduces to the conventional
normal moveout equation. This is also a result of the one layer assumption.

NUMERICAL EXAMPLES

Figure 1 presents a simple flat-layer model. Figures 2 and 3 show the result of modeling
the two-way travel time with the conventional normal moveout equation, and with the non-
hyperbolic moveout equation, using an initial velocity of 1100 m/s, a velocity gradient of 125
s−1 and a constant value of γ = 2.

Both results (Figures 2 and 3) present a hyperbolic moveout at near offset or small offset-
to-depth ratio. This result resembles the well known theoretical presentation of Tessmer and
Behle (1988). However, the non-hyperbolic moveout is dominant for large offsets and shallow
depths, as can be observed in Figure 2.

I also apply the non-hyperbolic moveout equation to a PS CMP gather from the Alba
dataset acquired on the Alba oil field in the North sea. The data set is a multicomponent 3-D
Ocean Bottom Seismic experiment. Figure 4 shows the original CMP gather before (left),
after (center) non-hyperbolic moveout, and after traditional hyperbolic moveout (right). I use
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Figure 1: Reflectivity model.
daniel2-mod5 [ER]

Figure 2: Modeled data, using
the non-hyperbolic equation
with a constant value of γ = 2.
daniel2-mod5NMO [ER,M]
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Figure 3: Modeled data, using the
the traditional hyperbolic equation.
daniel2-mod5NMO1 [ER,M]

an initial velocity value of 1100 m/s, and a velocity gradient of 125 s−1 and a constant γ =

2.0. Note that even though the events are not totally corrected, the non-hyperbolic correction
gives a better result for shallow events at large offsets. These events are flatter after the non-
hyperbolic moveout correction than with the hyperbolic moveout correction.

CONCLUSIONS AND FUTURE WORK

The non-hyperbolic equation introduced here is an approximation; therefore, I suggest it
should be used only as a way to obtain an initial constant value for the Vp/Vs ratio. This
ratio should be optimized later, using for example an iterative velocity-analysis technique with
wave-equation migration velocity analysis.

A future goal is to produce a γ -scan technique, similar to a velocity scan, to obtain the best
γ value. This final value will probably be a key element for more advanced velocity analysis
techniques.

Also, with the definition of a direct and more appropriate formulation for the PS travel
time with both P and S velocities, one tentative future step is to generate an inversion scheme
to estimate both P and S velocities from a single PS section.
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Figure 4: PS CMP gather from the Alba dataset, original gather (left), after non-hyperbolic
moveout (center), and after traditional hyperbolic moveout (right). I performed non-hyperbolic
moveout and traditional moveout both with an initial velocity of 1100 m/s, a velocity gradient
of 125 s−1 with γ = 2.0 for the non-hyperbolic case. daniel2-cmp_comp [ER,M]
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