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Short Note

Velocity uncertainty: Non-linearity and the starting guess

Robert G. Clapp1

INTRODUCTION

The last few years have seen a significant increase in research assessing risk. Several papers
deal with assessing risk from a geostatistical framework (Shanor et al., 2002; Gambus-Ordaz
et al., 2002). The general methodology is to create equi-probable models based on simplified
covariance descriptions and probability functions. Each point is visited in turn and a value
selected based on a priori probability distribution, surrounding point value, and the covariance
description.

In previous work I showed how we accomplish something similar in a global inversion
problem. As long as a decorrelator exists (such as a regularization operator that is an in-
verse noise covariance operator) adding random noise into the residual space will create equi-
probable models (Clapp, 2001a). This methodology can be applied to tomography in two
distinct ways. If random noise is added to components in the residual vector corresponding
to the regularization operator, we produce models that have not only correct covariance but
also a reasonable variance. These models add fine layered features that standard tomography
can not resolve. From realization to realization these features change in shape and amplitude.
They do not effect the kinematics of the final image, but do have an effect on the amplitudes
(Clapp, 2003a).

The second choice, adding noise to the portion of the residual vector corresponding to
the data fitting goal, does have a more significant effect on the velocity and the final image
(Clapp, 2004). Adding noise in this space corresponds to selecting an alternate set of data
points. These new data points aren’t simply random perturbations from the original model. In
the case of tomography, they are similar to not selecting the maximum amplitude of a move-out
measure, but a trend of lower or higher move-out. The added complexity is that the migration
velocity analysis problem is not linear. We routinely will do several non-linear iterations to
come up with the final answer. How to best deal with this non-linearity is unclear.

In this paper I take a slightly different tact from the one taken Clapp (2004). I perform four
iterations of non-linear tomography. In the first two iterations I create five equi-probable real-
izations for the move-out functions. For the last two iterations I choose the minimum-energy
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move-out function. The resulting twenty-five models provide an interesting and instructive
measure of the uncertainty involved in standard migration velocity analysis and its effect on
final image.

REVIEW

In inversion we try to estimate some model m given some data d and an operator L that
maps between the quantities. If our problem is poorly constrained, we can employ Tikhonov
regularization (Tikhonov and Arsenin, 1977), adding a roughening operator A to our objective
function Q. To balance the two components of the objective function we introduce a twiddle
parameter ε and end up with

Q(m) = ||d−Lm||2 + ε2||Am||2. (1)

The two terms in our objective function serve different purposes. The first deals with data
fitting and the second model styling. We can write the minimization in a slightly different
form in terms of two fitting goals,

0 ≈ rdata = d−Lm (2)

0 ≈ rmodel = εAm,

where 0 is a vector of zeros, rdata is the data residual vector, and rmodel is the model. Our
regularization operator, at best, usually only accounts for second order statistics, producing
a model that is often unrealistic. In previous papers (Clapp, 2000, 2001a) I showed how by
adding Gaussian random noise to the rmodel we can add variance to our models and give the a
more realistic texture.

If we decorrelate our data residual vector by adding an inverse noise covariance operator
N,

0 ≈ rdata = N(d−Lm) (3)
0 ≈ rmodel = εAm,

we can account for uncertainty in our data (Clapp, 2001b). This is similar, but not the same as,
using stochastic simulation (Isaaks and Srivastava, 1989a,b) to create several different datasets.
The two most notable differences are that we can handle much more spatially variant and com-
plex covariance descriptions and we have the effect of a model styling goal in our inversion.

Tomography

In order to use this methodology our tomography problem has to be set up in a similar fashion
to that of fitting goals (3). This isn’t necessarily straight forward. Our first problem is that
tomography is a non-linear process. The standard approach in ray-based tomography is to lin-
earize around an initial slowness model s0. Our linearized tomography operator T0 is formed
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by rays traced through the background slowness. We then write a linear relation between the
change in slowness 1s and the change in travel-time 1t.

When doing migration velocity analysis in the depth domain, we are not dealing with
travel-times but instead move-out as a function of some parameter (offset or azimuth) (Stork,
1992). Biondi and Symes (2003) showed how for angle domain migration there is a link
between travel-time error dt , local dip φ, the local slowness s depth of the reflection z, the
reflection angle θ , and scaling γ of the background slowness model. This relation can be
written in terms of an operator D which maps from 1.−γ to 1t and whose elements are

D(θ ,φ, z,s) =
zs sin(θ )2

cos(φ)∗ (cos(θ )2 − sin(θ )2)
. (4)

For our regularization operator we can use a steering filter (Clapp et al., 1997; Clapp, 2001a)
oriented along reflector dips. Our basic linearized fitting goals become

0 ≈ rdata = Dγ −T01s (5)
0 ≈ rmodel = εA(s0 +1s).

The added term in our regularization fitting goal As0 is due to the fact that we want to smooth
slowness not change in slowness. Clapp (2003a) and Chen and Clapp (2002) showed that
adding noise to rmodel produced velocity models with what looked like thin layers that had
little effect on image kinematics but noticeable effects on amplitudes.

We run into problems when we want to explore the effect of adding noise to rdata. Our γ

values, and therefore our data fitting error exist in some irregular space (potentially consistent
angle sampling, but irregular in space). This makes making an effective noise covariance
operator difficult.

Multiple realization methodology

Clapp (2004) suggested breaking up the tomography problem into two portions: creating sev-
eral realizations of γ maps and using them as input to the tomography problem. Estimating
the gamma field is in itself difficult. The standard approach is to calculate semblance over
a range of move-out values. The move-out at given point is then the maximum semblance at
the location. To reduce noise, the semblance field is often smoothed. This is still far from in
ideal solution. We are constantly fighting a battle between selecting local minima (not enough
smoothing) and missing important move-out features (too much smoothing).

In Clapp (2004) the various γ maps were created by selecting a smooth set of random
number and converting them into γ values based on a normal score transform (Isaaks and
Srivastava, 1989a). This approach was somewhat successful, but suffered from the fact that we
don’t, and effectively can’t scan over an infinite set of move-outs. Therefore our distribution
function is misleading. Methods to correct for the limited range proved adhoc.

Instead I am going to start from the approach outlined in Clapp (2003b). My goal is
to estimate a smooth set of semblance values gsmooth. I begin by selecting the maximum
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semblance at each point gmax. I solve the simple minimization problem

0 ≈ rdata = Wg(gmax −gsmooth) (6)
0 ≈ rmodel = εAgsmooth,

where A is again a steering filter, and Wg is a function of the semblance value at each location.
After estimating gsmooth I select the maximum within a range around gsmooth to form a new
gmax, and repeat the estimation. At each iteration, the window I search around and the amount
of smoothing (ε) decreases. To create a series of models I introduce random noise into rdata
scaled by the variance in the semblance at each location. With different sets of random noise
I get different realistic models.

EXAMPLE

Clapp (2004) took nine different realizations of a single linearizion of a complex synthetic
model (Figure 1). There were several problems with this approach. The most significant prob-
lem was that a single non-linear iteration, was far from sufficient. After one iteration, we still
have significant move-out that another non-linear iteration of tomography has a chance of us-
ing. When doing multiple non-linear iterations we have two choices to make at each iteration.
First, should we use the minimum energy model (no random perturbation) or introduce ran-
dom perturbations? Second, if we are adding random perturbations, how many models should
we create at each non-linear iteration?

Figure 1: The left panels shows the velocity model used as input to the finite difference scheme
used to create the data. The right panel is the resulting migrating the data with the correct
velocity. The fine structure seen below 1.6km is the reservoir. bob3-model [CR,M]
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For this experiment I decided to create five random perturbed models in the first non-linear
iteration. From these five models I generated twenty five models during the second non-linear
iteration. I then used these twenty-five models in a conventional migration velocity updating
scheme. This gives some measure on the effect of the starting guess on the final solution.
Each of the twenty-five models were equally reasonable points from which start a tomographic
loop. The difference between the final images gives me some measure of the uncertainty in
this updating scheme.

The left panel of Figure 2 shows my starting guess for the velocity problem. The right
panel shows the resulting image. The velocity was created by applying a strong smoother to
the correct velocity field then scaling the resulting model by .9. Figure 3 shows the results
after one non-linear iteration. The top panel are the five realizations of γ . The center panels
are the resulting five velocity models, and the bottom five panels are the migrated images using
these velocity models. The anticline trend is in all of the realizations but we still see significant
differences in how the velocity estimate deals with the listric fault.

Figure 2: The left panel shows the initial velocity model. The right panel the resulting migra-
tion. bob3-iter0 [CR,M]

After four iterations, now with twenty-five different models, the differences are more dra-
matic. Figure 4 show the twenty-five different gamma panels. We see an overall reduction
in the amount move-out (closer to gray), but the realizations still have significantly different
character. The twenty-five velocity models (Figure 5) also show significant variation, espe-
cially as we go deeper in the model. After four iterations we see significant differences in
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Figure 3: The top panel are the five realizations of γ . The center panels are the resulting
five velocity models, and the bottom five panels are the migrated images using these velocity
models. bob3-iter1 [CR,M]
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the images (Figure 4). In most of the models we have focused the anticline structure, but the
images have significant variation below. The basement reflectors are discontinuous in many
of the models.

CONCLUSION

Multiple reasonable starting points for migration velocity analysis are generated by adding
uncertainity to the moveout analysis procedure. It is demonstrated on a complex synthetic that
these different starting points can have large effect on the final velocity model and the resulting
image.
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Figure 4: The twenty-five gamma panels after the third non-linear iteration. Note how we are
overall closer to 1.0 (gray), but we still see differences in the various panels. bob3-iter3_g
[CR]
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Figure 5: The final twenty-five velocity models. bob3-iter4_v [CR,M]
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Figure 6: The twenty-five different images. Note the differences, especially in the reservoir.
bob3-iter4_i [CR]
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