
Stanford Exploration Project, Report 117, October 23, 2004, pages 183–??

Short Note

A Python solver for out-of-core, fault tolerant inversion

Robert G. Clapp1

INTRODUCTION

In the last ten years SEP has seen a progression in the way it does inversion. Earlier version
of Claerbout (1999) coded the conjugate gradient loop within a FORTRAN 77 main program.
Later, with the adoption of FORTRAN 90, the solver became a subroutine, operators were
in modules, and vectors were 1-D arrays of floats (and later complex). This solution proved
effective for a large range of problems. It was an ineffective for other problems and resulted in
several additional FORTRAN 90 packages. To handle non-linear problems Clapp and Brown
(1999) and Guitton (2000) introduced non-linear solvers. To handle problems that could not
fit within core memory, Sava (2001) introduced a out of core solver. All of these packages
have been used extensively at SEP over the years, but they all suffer some weaknesses that are
related to coding in Fortran 90.

During the same period we have seen people in the geophysical community take a more
object-oriented approach to the problem than FORTRAN 90 allows. Deng et al. (1996), Gock-
enbach and Symes (1999), and Harlan (2004b) used C++ as their controlling inversion frame-
work. Schwab and Schroeder (1997); Schwab (1998) and Harlan (2004b) designed inversion
systems within Java. For at least Deng et al. (1996) and Gockenbach and Symes (1999),
memory limits was one of the reasons for the object-oriented language choice.

The size and complexity of the inversion problems at SEP has dramatically increased.
These problems now involve operators that can take days to weeks to run (Sava and Biondi,
2003; Clapp, 2003b) and can involve multiple instances of complex operations (Clapp, 2003a).
Running these problems on Beowulf clusters poses a problem. The odds of a multi-week job
running without a node failing is low. In addition, multiple instances of the same, or similar
operator, is problematic (increasing with the complexity of the problem) in FORTRAN 90.

In this paper I discuss a new solution to the instability and complex problem description.
I describe a Python inversion library which uses abstract vector and operator descriptions.
From these abstract classes I derive specific classes to handle out-of-core problems. Operators
become wrappers around SEPlib programs and vectors wrappers around SEPlib files. Deng et
al. (1996) is a similar solution using C++ and SU. The difference is my Python library is built

1email: bob@sep.stanford.eda

183

184 R. Clapp SEP–117

upon the framework described in Clapp (2004), which handles fault tolerance within parallel
programs, and provides the building blocks for easy restarting of inversions.

I will begin by discussing the abstract vector and object design. I will then discuss the
specific cases of out-of-core vectors and operators. I will conclude with a simple example of
using the library.

ABSTRACT CLASSES

A linear inverse system general involves three basic classes. The vector class is a collector
class for a series of numbers. The operator class is some type of mapping between vector
objects. The solver class does the actual inversion by calling the operator objects given an
initial model and data vector.

Vectors and super vectors

Vectors are composed of two parts: an array of numbers and a description of the space the
reside in. The space they reside in is arbitrary but all vectors must be able to perform some
basic mathematical operations. They must be able to be scaled by a number, able to add,
multiply, and take the dot product of themselves and another vector in the same space. In
addition, they must be able to perform some operations related to the space they reside in.
They need to be able clone themselves and they need to be able to check whether or not
another vector resides in the same space.

For coding simplicity I expanded this minimal set. Each derived vector class must define
the following functions.

clone Make a copy of both the space the vector resides in and the vector values.

clone_space Make a copy of just the space the vector resides in.

zero Fill the vector values with zeros.

random Fill the vector values with random numbers.

scale Scale the vector by a number.

add Add the vector to another vector.

scale_add Add the vector to another vector multiplied by a scalar.

scale_addscale Scale the vector and add it to another vector scaled by some scalar.

dot Return the dot product of the vector with another vector.

load Given a vector space, read/or create the vector values.

SEP–117 Python solver 185

size A rudimentary method to check vector space similarity.

clean Remove all remnants of the vector.

In addition to the SEP.vector.vector described above, an additional arbitrary class is nec-
essary. This class, SEP.vector.super, is collection of vectors. Take for example a regularized
inversion problem,

d ≈ Lm (1)

0 ≈ εAm,

where L relates the data d and the m, A is a regularization operator, 0 is a vector filled with
0s existing in the range space of A, and ε is some twiddle parameter. A super vector would be
the combination of d and 0.

Operators and combination operators

When it comes to writing an object oriented conjugate gradient based inversion library there
are two schools of thought. One is a Bayesian approach that correlates vectors with their
decorrelators. In the Bayesian approach, Harlan (2004b,a) being one example, an inverse
covariance function is associated with each vector. The approach taken in this library, and
the approach taken by Gockenbach and Symes (1999) among others, think more in terms of
operators. Operators know the space that their domain and range vectors reside in. For this
library I took the latter approach. My decision was based more on code complexity issue more
than anything else. When building complex inversion operators, the programmer has to be
much more careful if the component operators do not know the space of their domain and
range vectors.

The abstract class SEP.operator.operator is initialized with a string descriptor, domain
vector, and a range vectors. The space these vectors exist in are stored in the operator. The
operator has several additional functions.

init_op(restart) Initialize the operator.

job_desc(iter) Return an ASCII string describing the operator given the current iteration.
This will be used to keep track of the progress of the inversion.

forward_op(model,data,add,restart) Run the forward operation possibly by adding to the
data, and with the ability to signify a restart of the operation.

adjoint_op(model,data,add,restart) Run the adjoint operation possibly by adding to the
model, and with the ability to signify a restart of the operation.

check_operator(domain,range) A function to check to make sure the domain and range
vector conform to the domain and range vectors with which the operator was initialized.

186 R. Clapp SEP–117

forward(domain,range,status,iter,add,restart) A wrapper for running the forward opera-
tion. The additional status and iter parameters are used to record the starting and finished
of forward operation to enable restarting.

adjoint(domain,range,status,iter,add,restart) The same idea as the forward function, this
time for wrapping the adjoint operation.

To build more complex operations there are two component operator classes
SEP.vector.chain and SEP.vector.array. Both of the complex operators are initialized by
a string descriptor and an array of operators. The SEP.vector.chain chains two operators,
an example is the preconditioning problem,

d ≈ LSp (2)
0 ≈ εp,

where S is the preconditioning operator and p is a vector in the domain of S. In this case
SEP.vector.chain would be formed from L and S. A condition of forming this operator is
that the range vector of operator i must exist in the same space as the domain vector of i+1.
When this operator is initialized it will automatically create all of the intermediate spaces. The
other class, SEP.vector.array creates a new operator which is a matrix of existing operators.
For examples we can think of the regularization inverse problem in terms of the matrices,

(

d
0

)

=

(

L
εA

)

(m) . (3)

The SEP.vector.array is initialized by the array of operators and the number of collums and
rows in the new array operator. In forming the operator the library makes sure that all of the
domain and range vectors make sense (for the regularization problem the domain of L and A
must be the same. From these two building blocks any inverse problem can be described.

Solver

With the ease in forming complex operators, the solver becomes a rather trivial code. All of the
linear solvers are derived from a basic SEP.solver.solver class. This class is initialized with
a model vector, residual vector, an operator, a step function, the number of iterations to run,
and optional verbosity flag, and whether or not the job is being restarted. The initialization
process is limited to first cloning model vector and the residual vector to form the gradient
and the vector resulting from Lg. It then initializes the step function, calculates and stores (or
in the case of restarts, reads) the tasks it needs to perform. Taking a linear step becomes the
following trivial code fragment.

def step(self,iter):

self.op.adjoint(self.g,self.rr,self.status,iter)

self.op.forward(self.g,self.gg,self.status,iter)

self.status.update_status(str(iter)+".step",["started"])

SEP–117 Python solver 187

if not self.stepper.step(self.x,self.g,self.rr,self.gg): return None

self.status.update_status(str(iter)+".step",["finished"])

return 1

Three solvers are derived from this base class: SEP.solver.smp, SEP.solver.reg, and
SEP.solver.prec. These classes simply form the objects needed by the solver class.

OUT-OF-CORE EXTENSION

The vector and operator classes described above were extended to perform an out-of-core
inversion.

Vector

From the SEP.vector.vector class, and a class that knows how to read SEPlib description
files (SEP.file.sep_file), the SEP.sep_vector.sfloat and SEP.sep_vector.scmplx were
created. These classes use the SEPlib program Math to do the required vector operation. The
space cloning and check is done by accessing functions derived from SEP.file.sep_file.

Operator

Out of core operations are done by the SEP.operator.oc. This class inherits from both the
SEP.operator.operator class and SEP.operator.run_oc. The SEP.operator.run_oc class
handles building the command line. The class has no required options but several optional
arguments.

pars A SEP.par.sep_pars object containing the list of command line arguments to run with
operator call.

add_com The argument to add to the function call when adding (defaults to add=y).

restart_com The argument to add to the function call when restarting.

adjoint_com The argument to add to the function call when running the adjoint (defaults to
adj=y)

data_tag The tag associated with the data (defaults to data=)

model_tag The tag associated with the model (defaults to model=)

The SEP.operator.oc is initialized by the name of the program to run and a domain and range
vectors of the type sep_vector, and arbitrary additional arguments. The additional arguments
are passed to initialize the SEP.perator.oc_run. The adjoint_op and forward_op use the
SEP.operator.oc_run class to build the commands string and then executes the program.

188 R. Clapp SEP–117

Parallel operator

To understand this section it useful to refer to Clapp (2004). If an operator is in fact a parallel
operator then the SEP.operator.oc_par class should be used. This class inherits from the
SEP.operator.oc. The parallel operator is initialized with a parallel job object. It expects the
domain and range vectors to have been specified in the job creation with the keys ‘domain’ and
‘range’. The forward and adjoint operation function are defined in the same manner described
above with the exception that domain and range vectors are turned into parfile objects and
running the job involves executing parjob.run.

EXAMPLE

This example is taken from Claerbout (1999) and is completely inappropriate for an out-of-
core solver. It is a simple 1-D interpolation problem that takes a second to run on a modern
computer and takes 5 minutes to run out-of-core. I am using it because of the simplicity of
the concepts. We begin by grabbing all of the command line arguments and checking to make
sure data and model are specified.

args=SEP.par.sep_args() #get arguments

dname=args.par("data",error=1)

mname=args.par("model",error=1)

We then create the data and model float vectors. In the case of the data is read from a file and
the model is defined.

data =SEP.sep_vector.sfloat(tag=dname)

model=SEP.sep_vector.sfloat(name=mname)

model.set_axis(200,0.,.4)

We then write out the description of the model to disk and zero the file.

model.write_file()

model.zero()

Our data fitting operator is simple linear interpolation. It takes the coordinates of the data as
input and we direct the stdout to /dev/null.

interp_args=SEP.par.sep_pars(name="interp")

interp_args.add_string("coord=coord.H")

interp_args.add_param(">","/dev/null")

SEP–117 Python solver 189

We create the argument list for the preconditioner. In this case we just need to direct stdout to
/dev/null and specify the type of filter.

precpar=SEP.par.sep_pars(name="devnull")

precpar.add_param("filter",2)0

precpar.add_param(">","/dev/null")0

Next we create our operator objects. In both cases the domain vector is the model. In the
case of the interpolation operator the range is the data. For the preconditioning the range is
also described by the model space.

interp=SEP.operator.oc("Interp1.x",model,data,pars=interp_args)

prec=SEP.operator.oc("prec.x",model,model,pars=precpar)

We create our step function.

step=SEP.cgstep.cgstep("matcg")

Finally we create our solver object and iterate for 20 iterations. Figure 1 shows the result of
the inversion. The ‘*’ are the known data and the line is the estimated curve.

Figure 1: A simple linear interpo-
lation result unsing the out-of-core
library.The ‘*’ are the known data
and the line is the estimated curve.
bob2-inverse [CR]

solver=SEP.solver.prec("interp1d",model,data,interp,prec,step,20,.1,verb=0)

if not solver.solve():

SEP.util.err("Trouble iterating")

CONCLUSION

Fortran 90 is ill-suited for handling complex inversion problems and dealing with hardware
instability for multi-week jobs. Using Python and treating programs as operators offers an
attractive alternative to completely rewriting code.

190 R. Clapp SEP–117

REFERENCES

Claerbout, J., 1999, Geophysical estimation by example: Environmental soundings image
enhancement: Stanford Exploration Project, http://sepwww.stanford.edu/sep/prof/.

Clapp, R. G., and Brown, M., 1999, Applying SEP’s latest tricks to the multiple suppression
problem: SEP–102, 91–100.

Clapp, M. L., 2003a, Directions in 3-D imaging - Strike, dip, both?: SEP–113, 363–368.

Clapp, M. L., 2003b, Velocity sensitivity of subsalt imaging through regularized inversion:
SEP–114, 57–66.

Clapp, R. G., 2004, Fault tolerant parallel SEPlib: SEP–117.

Deng, H. L., Gouveia, W., and Scales, J. A., 1996, The cwp object-oriented optimization
library: http://www.cwp.mines.edu/html_reports/coool/main.html.

Gockenbach, M. S., and Symes, W. W., 1999, The hilbert class library:
http://www.trip.caam.rice.edu/txt/hcldoc/html/index.html.

Guitton, A., 2000, Implementation of a nonlinear solver for minimizing the Huber norm:
SEP–103, 281–289.

Harlan, W. S., 2004a, C++ implementation of gauss-newton and conjugate-gradients optimiza-
tion: http://billharlan.com/pub/code/conjugate_gradients/.

Harlan, W. S., 2004b, Gauss-newton and conjugate-gradient optimization:
http://billharlan.com/pub/code/inv/.

Sava, P., and Biondi, B., 2003, Wave-equation mva: Born rytov and beyond: SEP–114, 83–94.

Sava, P., 2001, oclib: An out-of-core optimization library: SEP–108, 199–224.

Schwab, M., and Schroeder, J., 1997, A seismic inversion library in Java: SEP–94, 363–381.

Schwab, M., 1998, Enhancement of discontinuities in seismic 3-D images using a Java esti-
mation library: Ph.D. thesis, Stanford University.

