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Sensitivity kernels for
wave-equation migration velocity analysis

Paul Sava and Biondo Biondi

ABSTRACT

The success of migration velocity analysis methods is strongly dependent on the character-
istics of the linearized tomographic operator that is inverted to estimate velocity updates.
To study the properties of wave-equation migration velocity analysis, we analyze its sensi-
tivity kernels. Sensitivity kernels describe the dependence of data space elements to small
changes of model space elements. We show that the sensitivity kernels of wave-equation
MVA depend on the frequency content of the recorded data and on the background ve-
locity model. Sensitivity kernels computed assuming the presence of a salt body in the
background velocity show that these kernels are drastically different from idealized “fat
rays”. Consequently sensitivity kernels cannot be approximated by artificial fattening of
geometrical rays. Furthermore, our examples illustrate the potential of finite-frequency
MVA as well as the frequency-dependent nature of illumination for subsalt regions.

INTRODUCTION

Depth imaging of complex structures depends on the quality of the velocity model. However,
conventional Migration Velocity Analysis (MVA) procedures often fail when the wavefield is
severely distorted by lateral velocity variations and thus complex multipathing occurs. Biondi
and Sava (1999) introduce a method of migration velocity analysis using wave-equation tech-
niques (WEMVA), which aims to improve the quality of migrated images, mainly by correct-
ing moveout inaccuracies of specular energy. WEMVA finds a slowness perturbation which
corresponds to an image perturbation. It is thus similar to ray-based migration tomography
(Al-Yahya, 1989; Stork, 1992; Etgen, 1993), where the slowness perturbation is derived from
depth errors, and to wave-equation inversion (Tarantola, 1986) or tomography (Woodward,
1992; Pratt, 1999; Dahlen et al., 2000) where the slowness perturbation is derived from mea-
sured wavefield perturbations.

WEMVA has the potential of improving velocity estimation when complex wave propa-
gation makes conventional ray-based MVA methods less reliable. Imaging under rugged salt
bodies is an important case where WEMVA has the potential of making a difference in the
imaging results. In this paper, we analyze the characteristics of the tomographic operator in-
verted in WEMVA to update the velocity model, and contrast these characteristics with the
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well-known characteristics of ray-based tomographic operators.

One way of characterizing integral operators, e.g. tomography operators, is through sen-
sitivity kernels, which describe the sensitivity of a component of a member of the data space
to a change of a component of a member of the model space. In this paper, we formally intro-
duce the sensitivity kernels for wave-equation migration velocity analysis and show 2D and
3D examples.

The analysis of WEMVA sensitivity kernels provide an intuition on WEMVA’s poten-
tial for overcoming limitations of ray-based MVA. Some of these limitations are intrinsic,
other are practical. An important practical difficulty encountered when using rays to esti-
mate velocity below salt bodies with rough boundaries is the instability of ray tracing. Rough
salt topographies create poorly illuminated areas, or even shadow zones, in the subsalt re-
gion. The spatial distribution of these poorly illuminated areas is very sensitive to the veloc-
ity function. Therefore, it is often extremely difficult to trace the rays that connect a given
point in the poorly illuminated areas with a given point at the surface (two-point ray-tracing).
Wavefield-extrapolation methods are robust with respect to shadow zones and they always
provide wavepaths (i.e. sensitivity kernels) usable for velocity inversion.

Ray-tracing has intrinsic limitations when modeling wave-propagation through salt bod-
ies with complex geometry, because of the asymptotic assumption on which it is based.
This intrinsic limitation prevent ray-tracing from modeling the frequency-dependency of full-
bandwidth wave propagation. The comparison of sensitivity kernels computed assuming dif-
ferent frequency bandwidths illustrates clearly the drawbacks of the asymptotic assumptions.
Top-salt rugosity causes the WEM VA sensitivity kernels to be strongly dependent on the band-
width. Furthermore, in these conditions, sensitivity kernels are drastically different from sim-
ple “fat rays”. Therefore, they cannot be approximated by kernels computed by a bandwidth-
dependent fattening of geometric rays (Lomax, 1994).

We compute the sensitivity kernels for perturbations in the phase as well as perturbations
in the amplitude. We observe that there is a 90 degree phase shift between these two types of
kernels. It is interesting to notice that the 3-D kernels for phase perturbations are hollow in the
middle, exactly where the geometric rays would be. This result is consistent with the obser-
vations first made by Woodward (1990); then extensively discussed in the global seismology
community (Marquering et al., 1999; Dahlen et al., 2000), and further analyzed at SEP by
Rickett (2000).

THEORY

Fréchet derivative integral kernels

Consider a (nonlinear) function g mapping one element of the functional model space m to
one element of the functional data space d:

d=g(m). (1)
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The tangent linear application to g at point m = my is a linear operator Go defined by the
expansion

g(mg+4ém) = g(mg) + Godm+.... , 2

where dm is a small perturbation in the model space. The tangent linear application Gy is also
known under the name of Fréchet derivative of g at point mg (Tarantola, 1987).

Equation (2) can be written formally as
dd = Godm , (3)

where dm is a perturbation in the model space, and dd is a perturbation in the image space.
If we denote by 8d' the i"" component of §d, and by 8m (x) an infinitesimal element of §m at
location X, we can write

8d' = / G (x) dm(x) dv(x) . 4
v

Gf) is, by definition, the integral kernel of the Fréchet derivative G, V is the volume under
investigation, dv is a volume element of V and X is the integration variable over V. The
sensitivity kernel, a.k.a. Fréchet derivative kernel, Gf) expresses the sensitivity of 8d' to a
perturbation of §m (x) for an arbitrary location x in the volume V.

Sensitivity kernels occur in every inverse problem and have different meanings depending
of the physical quantities involved:

e For wideband traveltime tomography (Bishop et al., 1985; Kosloff et al., 1996; Stork,
1992), éd is represented by traveltime differences between recorded and computed trav-
eltimes in a reference medium. The sensitivity kernels are infinitely-thin rays computed
by ray tracing in the background medium.

e For finite-frequency traveltime tomography (Marquering et al., 1999; Dahlen et al.,
2000; Hung et al., 2000; Rickett, 2000), éd is represented by time shifts measured by
crosscorelation between the recorded wavefield and a wavefield computed in a reference
medium. The sensitivity kernels are represented by hollow fat rays (a.k.a. “banana-
doughnuts”) which depend on the background medium.

e For wave-equation tomography (Woodward, 1992; Pratt, 1999), éd is represented by
perturbations between the recorded wavefield and the computed wavefield in a reference
medium. The sensitivity kernels are represented by fat rays with similar forms for either
the Born or Rytov approximation.

e For wave-equation migration velocity analysis (Biondi and Sava, 1999; Sava and
Fomel, 2002; Sava and Biondi, 2004a,b), §d is represented by image perturbations. The
sensitivity kernels are discussed in the following sections.
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Wave-equation migration velocity analysis

Wave-equation migration velocity analysis (WEMVA) is based on a linear relation established
between perturbations of the slowness model §s and perturbations of migrated images ér. éd
and ér correspond, respectively, to dm and éd in equation (3).

Formally, we can write
or =Lgds, (®)]

where Ly is the linear first-order Born wave-equation MVA operator. The operator L incorpo-
rates all first-order scattering and extrapolation effects for media of arbitrary complexity. The
major difference between WEMVA and wave-equation tomography is that §d is formulated in
the image space for the former as opposed to the data space for the later. Thus, with WEMVA
we are able to exploit the power of residual migration in perturbing migrated images — a goal
which is much harder to achieve in the space of the recorded data.

By construction, the linear operator Ly depends on the wavefield computed by extrapo-
lation of the surface data using the background slowness, which corresponds to my in equa-
tion (2). Thus, the operator L depends directly on the type of recorded data and its frequency
content, and it also depends on the background slowness model. Thus, the main elements that
control the shape of the sensitivity kernels are

e the frequency content of the background wavefield,

e the type of source from which we generate the background wavefield (e.g. point source,
plane wave), and

e the type of perturbation introduced in the image space, which for this problem corre-
sponds to the data space.

In our examples, we define two types of image perturbations: a purely kinematic type
dry, implemented simply as a derivative of the image with respect to depth, which can be
implemented as a multiplication in the depth wavenumber domain (Sava and Biondi, 2004a,b)
as follows:

ory = —ik,r, (6)

and a purely dynamic type ér,, implemented by scaling the reference image r with an arbitrary
number:

Sry =er. (N

In both cases, the perturbations are limited to a small portion of the image. The main difference
between éry and dr, is given by the 90° phase-shift between the two image perturbations.
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EXAMPLES

In our first example, we consider a background wavefield emerging from a fixed point source
on the surface, but investigate the sensitivity kernels for various points in the image. Each
panel in Figure 1 depicts a superposition of three elements: the velocity model, the band-
limited wavefield corresponding to a point source on the surface, and the sensitivity kernel
corresponding to a point in the subsurface.

A fundamental problem with ray-based MVA is that rays are poor approximations of the
actual wavepaths when a band-limited seismic wave propagates through a rugose top of the
salt. Figure 1 illustrates this issue quite clearly. It shows three sensitivity kernels for fre-
quencies of 1 —26 Hz. The top panel in Figure 1 shows a wavepath that could be reasonably
approximated using the method introduced by Lomax (1994) to trace fat rays using asymptotic
methods. In contrast, the wavepaths shown in both the middle and bottom panels cannot be
well approximated using Lomax’ method. The amplitude and shapes of these wavepaths are
much more complex than a simple fattening of a geometrical ray could ever describe. The
bottom panel illustrates the worst situation for ray-based tomography because the rugosity of
the top of the salt has the same scale as the spatial wavelength of the seismic wave.

The fundamental reason why the true wavepaths cannot be approximated using fattened
geometrical rays is that they are frequency dependent. Figure 2 illustrates this dependency by
depicting the wavepath shown in the bottom panel of Figure 1 as a function of the temporal
bandwidth: 1 —5 Hz (top), 1 — 16 Hz (middle), and 1 — 64 Hz (bottom). The width of the
wavepath decreases as the frequency bandwidth increases, and the focusing and defocussing
of the energy varies with the frequency bandwidth.

In the next example (Figures 3 and 4) we compare the shapes of sensitivity kernels when
we change the type of source for the background wavefield, its frequency content and the
method used to generate an image perturbation in the subsurface. As for the preceding exam-
ple, we show the results as a superposition of the velocity model, the background wavefield
and the sensitivity kernel from a fixed point in the subsurface.

Figure 3 shows the sensitivity kernels for a point source on the surface, and Figure 4 shows
the sensitivity kernels for a plane-wave propagating vertically at the surface. In both pictures,
the left column corresponds to kinematic image perturbations of equation (6), and the right
column corresponds to amplitude image perturbations of equation (7) obtained by scaling of
the background image by an arbitrary number. From top to bottom, we show sensitivity ker-
nels of increasing frequency range: 1 —4 Hz, 1 —8 Hz, 1 — 16 Hz and 1 — 32 Hz. Once again,
we can see the large frequency dependence of the sensitivity kernels. The area of sensitivity
reduces with increased frequency which is a clear indication that a frequency dependent mi-
gration velocity analysis method like WEMVA can better handle subsalt environments with
patchy illumination and that illumination itself is a frequency dependent phenomenon which
needs to be addressed in this way.

Finally, we show wave-equation MVA sensitivity kernels for a 3D velocity model Figure 5
corresponding to a salt environment. We consider the case of a point source on the surface and
data with a frequency range of 1 — 16 Hz. Figure 6 shows the sensitivity kernel for a kinematic



204 Sava and Biondi SEP-115

location [km]
16

[w] wrdep

[w] yrdep

location [km]

[wot] yidep
14

9

@

Figure 1: Kinematic sensitivity kernels for frequencies between 1 and 26 Hz for various loca-
tions in the image and a point on the surface. Each panel is an overlay of three elements: the

slowness model, the wavefield corresponding to a point source on the surface at x = 16 km,
and wave paths (sensitivity kernels) from a point in the subsurface to the source. |paull-zifat
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Figure 2: Frequency dependence of kinematic sensitivity kernels between a location in the
image and a point on the surface. Each panel is an overlay of three elements: the slowness
model, the wavefield corresponding to a point source on the surface at x = 16 km, and wave
paths (sensitivity kernels) from a point in the subsurface to the source. The different wave
paths correspond to frequency bands of 1 —5 Hz (top), 1 — 16 Hz (middle) and 1 — 64 Hz
(bottom). The larger the frequency band, the narrower the wave path. The end member for an
infinitely wide frequency band corresponds to an infinitely thin geometrical ray.
[CR]
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Figure 3: The dependence of sensitivity kernels to frequency and image perturbation. From top
to bottom, the frequency range is 1 —4 Hz, 1 —8 Hz, 1 — 16 Hz and 1 — 32 Hz. The left column
corresponds to kinematic image perturbations, and the right column corresponds to dynamic
image perturbations. The wavefield is produced from a point source. |paull-fat2d.Tray2a
[CR.M]
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Figure 4: The dependence of sensitivity kernels to frequency and image perturbation. From
top to bottom, the frequency range is 1 —4 Hz, 1 —8 Hz, 1 — 16 Hz and 1 — 32 Hz. The left
column corresponds to kinematic image perturbations, and the right column corresponds to
dynamic image perturbations. The wavefield is produced by a horizontal incident plane-wave.
paull-fat2d. Tray2b | [CR,M]




208 Sava and Biondi SEP-115

image perturbation, while Figure 7 for a amplitude image perturbation. In both cases, the
shapes of the kernels are complicated, which is an expression of the multipathing occurring
as waves propagate through rough salt bodies. The horizontal slice indicates multiple paths
linking the source point on the surface with the image perturbation in the subsurface.

One noticeable characteristic is that the sensitivity kernels constructed from amplitude
image perturbations show the largest sensitivity in the center of the kernel, as opposed the
kinematic kernels which show the largest sensitivity away from the central path. This phe-
nomenon was discussed by Dahlen et al. (2000) in the context of finite-frequency traveltime
tomography. We illustrate it for WEMVA in Figure 8 with two horizontal slices in the sensi-
tivity kernels shown in Figures 6 and 7.
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Figure 5: 3D slowness model. | paul1-fat3.sC | [CR]
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Figure 6: 3D sensitivity kernels for wave-equation MVA. The frequency range is 1 — 16 Hz.
The kernels are complicated by the multipathing occurring as waves propagate through the
rough salt body. The image perturbation corresponds to a kinematic shift. |paull-fat3.fp3
[CR]
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Figure 7: 3D sensitivity kernels for wave-equation MVA. The frequency range is 1 — 16 Hz.
The kernels are complicated by the multipathing occurring as waves propagate through the
rough salt body. The image perturbation corresponds to an amplitude scaling. | paull-fat3.fq3
[CR]
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Figure 8: Cross-section of 3D sensitivity kernels for wave-equation MVA. The left panel corre-
sponds to an image perturbation produced a kinematic shift, while the right panel corresponds
to an image perturbation produced by amplitude scaling. The lowest sensitivity occurs in the
center of the kinematic kernel (left). In contrast, the maximum sensitivity occurs in the center
of the kernel (right). |paull-fat3.svty |[CR]

CONCLUSIONS

We construct 2D and 3D sensitivity kernels for wave-equation MVA and study their depen-
dence with respect to the data source, the frequency content, and the type of image perturba-
tion. Sensitivity kernels illustrate the complications of wave propagation in the cases of rough
salt bodies and the frequency-dependent illumination subsalt. With this type of analysis, we
also illustrate some of the reasons why traveltime tomography is less than ideal for subsalt
velocity analysis.
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