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Short Note

Improving the amplitude accuracy of downward continuation op-
erators (Part 2)

Ioan Vlad and Thomas Tisserant1

INTRODUCTION

One-way wavefield continuation methods correctly account for traveltimes, but the amplitude
and phase of the images they produce can still be improved. Zhang et al. (2002; 2003a;
2003b) present theoretical formulations of amplitude-improving corrections for shot-profile
migration. Vlad et al. (2003) show concrete ways of implementing Zhang’s theory for both
finite-difference and mixed-domain extrapolators, with applications to constant-velocity, lat-
erally smooth and heterogeneous cases.

The above-described corrections consist of two parts: one that is applied at the z = 0
boundary, and one that is applied in the propagation operator. The boundary condition cor-
rection depends only on the velocity at the surface, while the propagation correction takes the
entire interval velocity model into account and is directly proportional to its vertical gradi-
ent, vz , vanishing where this becomes zero. As a result, the effect of the boundary condition
correction can be tested in isolation, using constant velocity models. Figure 1 in Vlad et al.
(2003) shows that the Zhang boundary condition correction improves the phase and brings the
amplitudes very close to the ones computed analytically, especially in the case of the mixed-
domain implementation. Valenciano et al. (2004) show the effect of applying it to propagation
through the Marmousi model. They also present a more intuitive interpretation of the boundary
condition correction, and an alternative method for computing it.

Vlad et al. (2003) show in their Figure 2 that the propagation operator correction is equiv-
alent to the WKBJ one in a v(z) medium. They also apply it to the v(x , z) model presented in
Figure 3 of their paper. However, the results (their Figure 4) did not show a visible effect of
the correction. In the first section that follows, we explain why that was the case for that very
particular velocity model, and we quantitatively show that the propagation operator correction
does have visible effects. In the last section of this paper, we discuss the application of the
Zhang corrections to the linearized downward continuation operator used in wave equation
migration velocity analysis.
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APPLICATION TO PROPAGATION IN A MORE GENERAL V (X , Z ) MODEL

The velocity model used by Vlad et al. (2003) for examining the effects of the amplitude
corrections was particularly unsuitable for the problem. It belonged actually to a limit case in
which the amplitude corrections canceled themselves. We will show below why that was the
case and we will analyze the effects of the corrections by picking amplitudes at each midpoint
in a wavefield depth slice.

At each downward continuation step, the propagation amplitude correction applied to the
wavefield is:
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where vz denotes the vertical gradient of the velocity. When variations of velocity in the x
direction exist, this exponential is strictly noncommutative with the downward continuation
step. The noncommutativity however becomes weak in the particular case when the laterally
varying velocity is symmetrical with respect to a horizontal plane. In the case of such sym-
metry, corrections of the same magnitude along midpoint, but of different sign (because of an
opposing sign for vz) cancel each other. The corrections in the lower half of the velocity model
in Figure 3 of Vlad et al. (2003) were therefore erasing the effects of the ones performed in
the upper half. As a result, Figure 4 of Vlad et al. (2003) was not showing any results of the
correction.

Recognizing that such a symmetrical configuration is not very plausible geologically, we
downward continued (with split-step) only through the upper half of the respective velocity
model. This half is depicted in Figure 1. The top panels in Figure 2 show the wavefield at a
depth of 1000m. The four panels represent all the combinations of applying (“+”) or not (“-”)
the boundary condition correction (“L”) and/or the propagation correction (“G”). The lower
half of the figure shows the maximum amplitudes picked for each midpoint. The effect of
the propagation correction (Curves “-L+G” and “+L+G”) is visible now as increased focusing
and reduced amplitude decay with offset. The boundary condition correction (Curves “+L-G”
and “+L+G”) also has a strong effect; it especially diminishes the amplitude decay. We expect
the two Zhang corrections to increase, when cummulated, power for large dips and for large
incidence angles on the reflector.

APPLICATION TO LINEARIZED DOWNWARD CONTINUATION

Linearized downward continuation – purpose and description

Let us define a slowness perturbation 1s = s − s0 as a difference between two slowness mod-
els, one of which (s0) is named the “background slowness”. By undertaking several approxi-
mations, the most notable of which is Born, the mixed-domain downward continuation opera-
tor can be written as an explicit function of the slowness perturbation. This allows an explicit
relation between the slowness perturbation and the wavefield. In conjunction with the imaging
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Figure 1: Top panel: Upper half of the velocity model used by Vlad et al. (2003). Figure 2
shows the amplitudes produced by propagation through this velocity model. Bottom panel:
Rays shot from (0,0), shown for an enhancement of the intuitive appreciation of the focusing
during the propagation. nick3-g1 [CR]

condition, this allows writing an explicit relation between the slowness perturbation and the
image. This relation is the basis of Wave-Equation Migration Velocity Analysis (WEMVA),
a complete flowchart of which is presented in Figure 3. This procedure finds the velocities in
the following way: using the recorded data and the background slowness, it creates a back-
ground image. This image is then improved so that it is closer to the optimally focused one,
then the two images are subtracted to create an image perturbation. This is transformed into
a wavefield perturbation through an inverse imaging condition, then is upward continued, to
create an adjoint scattered wavefield. This in turn is transformed into a slowness update by
inverting the linearized downward continuation operator. This operator is linearized so that
its inversion will be computationally cheap. A complete derivation is provided by Biondi and
Sava (1999), with more explanations in Sava (2000).

If we denote the wavefield as U , the linearized downward continuation (complexified local
Born-Fourier method), according to Appendix B in Vlad (2002), is given by:

Uz=n1z =

(

n
∏

1

T

)

Uz=0 +
n
∑

j=1

[(n− j
∏

1

T

)

S1sz= j1z

( j
∏

1

T

)

Uz=0

]

, (2)

where T is the background wavefield downward continuation operator:

T = ei1z
√

ω2so2−(1−iη)2|km|2 , (3)
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Figure 2: “L” denotes the boundary condition correction, “G” denotes the propagation correc-
tion, a "+” shows that the respective correction was applied, and a “-” shows that it was not.
Top panels: Wavefield generated by a shot at (0,0) in the velocity model from Figure 1, and
recorded at the bottom of that velocity model. Bottom panel: Maximum amplitudes picked
for each x location in the top panels. nick3-g2 [CR]
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Figure 3: WEMVA flowchart, pro-
vided for illustrating the use of
linearized downward continuation.
nick3-wemva [NR]

and S is the scattering operator:

S =
i1zω2so

√

ω2so2 − (1− iη)2|km|2
. (4)

The boundary condition correction

We tested the amplitude correction at the boundary condition by downward propagating a shot
and picking the amplitudes of the wavefield recorded at a certain depth. Since our particular
purpose of using WEMVA is finding velocity anomalies that generate focusing-effect AVO
(Vlad and Biondi, 2002), we used the same focusing-generating velocity model as that pre-
sented in the lower right panel of Figure 6 of Vlad (2002). For convenience, we present it in
the upper panel of Figure 4, also tracing wavefronts through it for a better visualization of the
kinematics of propagation. The time delays induced by the presence of the low-velocity slab
have not been shown because they are under the common picking threshold – this is a typical
focusing-effect AVO case.

To obtain the curves in the lower panel of Figure 4, for each of the three methods, we
propagated a wavefield through the velocity model in the upper panel of the figure (with the
low-velocity slab), and another wavefield through the constant-velocity background only. For
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each x location, we picked the maximum amplitudes of each wavefield at the depth of 6000m,
and we divided the amplitudes obtained from the model with the slab by the amplitudes ob-
tained from the constant-velocity background. A deviation from the value of 1 indicates the
presence of the wavefield scattered by the slab. We performed this procedure using three dif-
ferent algorithms: (1) – Linearized downward continuation with no amplitude correction ap-
plied; (2) – Linearized downward continuation with boundary condition amplitude correction
applied at the surface; (3) – Pseudospectral wave propagation (Biondi, 2002), for reference.
The application of the boundary condition correction has brought the values closer to those of
the reference curve. A possible shot-profile formulation of WEMVA would therefore benefit
from the application of the boundary condition correction.

Figure 4: Top panel: Velocity model for testing the amplitude behavior of the linearized
downward continuation operator. A shot has been generated at (0,0) and the wavefield is
recorded at a depth of 6 km. The thin slab has a velocity of 1647 m/s, contrasting to the
background of 1830 m/s. Wavefronts have been traced for better visualization of propagation
kinematics. Bottom panel: Curve “-L” – Linearized downward continuation with no am-
plitude correction applied; Curve “+L” – Linearized downward continuation with boundary
condition amplitude correction; Curve “Ref” – Pseudospectral wave propagation. nick3-g3
[CR]
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The propagation operator correction

Things are different, however, for the amplitude correction which is applied during the prop-
agation. Equation 28 of Vlad et al. (2003) states that the correction to be applied at each
downward continuation step is
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Counting a possible linearization of the exponential in front and the presence of vz , this is an
expression of degree 5 in velocity. Moreover, at each depth step this has to be multiplied with
the first-order-in-slowness propagation step in Equation 2 . The result would be a expression
of at least degree 6. Discarding terms of order higher than 1 would result in losing an impor-
tant amount accuracy in the propagation step itself, since a part of it will be multiplied with
higher-order amplitude correction terms. We conclude that the propagation operator amplitude
correction is not applicable to linearized downward continuation because of compounding lin-
earization errors that will affect both the kinematics and the amplitudes.

CONCLUSIONS

We continue the work of Vlad et al. (2003) on implementing the Zhang amplitude corrections
for wavefield extrapolation imaging. We apply the corrections to the case of propagation
through a less particular v(x , z) velocity model than the one used in the previous paper. The
corrections result in an increase in wavefield focusing. We apply with encouraging results the
boundary condition correction to the linearized downward continuation used in wave-equation
migration velocity analysis. The propagation operator correction, however, is not applicable
to linearized downward continuation.
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