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Robust moveout without velocity picking

Kevin Wolf, Daniel Rosales, Antoine Guitton, and Jon Claerbout1

ABSTRACT

At every point in a CMP gather, a local estimate of RMS velocity is:

V 2
RM S =

x
t

dx
dt

,

where dt/dx is the local stepout. We form a median stack of these local velocity estimates
to obtain stable estimates of RMS velocity without the conventional need to form many
hyperbolic stacks.

INTRODUCTION

Velocity estimation is still a fundamental problem in seismic exploration. There are numerous
methods to estimate the stacking velocity model based on velocity spectra (Taner and Koehler,
1985; Lumley, 1992). However, all these methods depend on the ability to pick the velocity
from a series of coherency panels. These methods of velocity estimation are sensitive to noise
levels in the data.

A way to make velocity estimation robust in the presence of noise is to use median stacks
within CMPs. A problem with CMP stacks is that data from a large range of offsets are merged
despite intrinsic variations in gain, frequency, NMO stretch, array response, and AVO. We
estimate VRM S with a robust median estimator of slowness squared terms; each term manufac-
tured from neighboring traces only. Our goal is to develop a robust code that will reasonably
move out all 40 of the worldwide Yilmaz-Cumro shot profiles (Yilmaz, 1987) without need
for individualized parameter choices.

METHOD

A simple way to represent a wave traveling at constant velocity with slowness s is as an
expanding circle:

t2
= τ 2

+ x2s2, (1)
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where t is traveltime, τ is traveltime depth and x is offset (Claerbout, 1995). Differentiating
with respect to x at constant traveltime depth τ we obtain:

s2
=

t
x

dt
dx

, (2)

where dt/dx is Snell’s parameter p. Snell’s parameter is related to the apparent horizontal
velocity. It can also be regarded as a measure of the local stepout (dip) at any given time and
offset along a hyperbola.Therefore, from equation (2) it can be seen that multiplying the local
dip of hyperbolas in the (x ,t) plane by the ratio of their time and space cordinates yields an
estimate of slowness squared. This estimate of slowness is independent of where it is measured
along the event in the (x ,t) plane; consequently, a NMO correction of the slowness squared
section will result in horizontal lines of constant slowness.

In order to obtain a dip estimate for the events in the plane we employ the method of
Fomel (2002). This technique estimates local stepouts with plane wave destructor filters. Only
one dip is estimated at every time and offset position, which makes this method sensitive to
crossing events or coherent noise. A solution to this problem is to estimate multiple dips at
every location and to select those of interest (Fomel, 2002). Once the dips have been estimated,
the slowness can be computed in a straightforward manner by mulitplying each dip estimate
by t/x . A map of local slowness (squared) is then obtained that need only be converted to a
velocity profile for a given CMP gather.

To achieve this goal, a NMO correction with an approximate velocity trend can be applied
to roughly flatten the hyperbolas. Finally, a median stack over the x coordinate provides a
reasonable estimate of s2 as a function of τ . To ensure local bad dip estimates do not skew the
results of the method, data points corresponding to atypical slowness values are disregarded,
and the final result is smoothed in time. Once the estimate of slowness squared is obtained,
we convert it to VRM S.

TEST CASES

To assess the usefulness of the proposed method we applied it to a synthetic data set and to
several shots from the set of 40 worldwide Yilmaz-Cumro shot profiles.

Synthetic Example

The proposed methodology was first tested on a simple synthetic example in order to check
the validity of the approach. Figure 1a shows the synthetic example, which is an idealized
case with neither crossing events nor aliasing, allowing robust dip estimation to occur.

The variable brightness of the estimated local dip in Figure 1b represents the calculated
value of dip, and shows that the estimate is robust for this simple synthetic example. Figure
1c, calculated s2 after NMO correction with the synthetic velocity profile, shows the expected
trend with slowness values decreasing slightly at later times. There are some anomalous values
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Figure 1: (a) Synthetic data, (b) estimated local dip, and (c) estimated s2 after NMO correction.
kevin1-synthetic [ER]

of s2 at small offsets due to the minimal dip of the reflectors at those locations, but they will
be removed by the median stacking procedure.

The estimated RMS velocity function of the synthetic data is shown in Figure 2. The solid
line represents the velocity function used to create the synthetic data. The two dashed lines
show the estimated velocity, one estimate from the orginal s2 panel, and the other from the
s2 panel that has been NMO corrected (Figure 1c). The two results are similar, suggesting
that in order to obtain a robust estimate of slowness the velocity used to flatten the hyperbolas
of s2 before the median stack does not need to be very accurate. As long as data do not
have extremely large offsets, a rough estimate of velocity for NMO correction should flatten
the hyperbolas of s2 adequately, allowing the median stacking routine to obtain a reasonable
estimate of s2.

The results of using the two estimated velocity functions for NMO correction are shown
in Figure 3. Figure 3b uses the s2 estimate without NMO correction, and Figure 3c uses the
s2 velocity estimate with NMO correction. In both cases the estimated velocity function does
a good job of flattening the hyperbolas in the synthetic data. The results are encouraging and
suggest that the method will work even if the velocity for NMO correction of the plane of s2

is inaccurate.
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Figure 2: RMS velocity profile
used for the synthetic model, and
estimated RMS velocity profiles
with and without the NMO correc-
tion applied to the estimate of s2.
kevin1-synvelocity [ER]

Figure 3: (a) Synthetic data, (b) NMO corection using velocity estimated without NMO cor-
rection, and (c) NMO correction using velocity estimated with NMO correction. No picking
was required to flatten this gather. kevin1-synresults [ER]
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Field Data Examples

Once the method was shown to work on an idealized synthetic case, we tested it on some real
shot gathers to see how robust the method is when working with real data and the problems
inherent with them. Theoretically, CMP gathers should be used for this analysis, however we
have decided to use the Yilmaz-Cumro shot gathers to test our method. The 40 shots in the
dataset provide varying data quality and numerous challenges, which will thoroughly test the
robustness of our method.

Figure 4a shows shot 14 from the Yilmaz-Cumro shot gather dataset. The shot is a fairly
clean record consisting of many hyperbolic events that should give a good velocity estimate.
Examining Figure 4b, which shows the dip estimate, there are areas at the top of the profile
that have negative dips. These result from the low velocity direct arrivals visible in the data;
the dip estimator picks the aliased energy for its dip estimate. In the same area in Figure 4c
the negative dip estimates result in a negative estimate for the value of s2. Although this is an
undesirable result, these values will be accounted for and disregarded by the median stacking
routine. The estimate of s2 has had an NMO correction applied to it with an arbitrary velocity
of 2.5 km/s. Although most of the hyperbolas are not well flattened, synthetic example results
show that this has little effect on the output from the median stack.

Figure 4: (a) Shot gather 14 with AGC, (b) estimated local dip, and (c) estimated s2 after
NMO correction of 2.5 km/s. kevin1-14display [ER]
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The estimated RMS velocity profile created by median stacking Figure 4c is shown in
Figure 5. At early times the estimate varies due to a lack of information from large offsets
required to help constrain the velocity. For this reason the begining of the estimate is erased
and replaced by extending a reasonable value back to time zero. The estimate also fluctuates
at later times in the record, because the data become noisier, causing dip estimates to become
unstable.

Figure 5: Estimated RMS veloc-
ity profile for the data in Figure 4.
kevin1-14velocity [ER]

The result of applying the NMO correction with the estimated velocity function is shown
in Figure 6b. Data are flattened in most areas, especially away from the beginning of the
section where there is little offset information, and before the data becomes noisier at later
times. Examining the strong reflector at approximately 5.2 seconds in Figure 6a, which is in
the noisier part of the record and clearly non-hyperbolic, Figure 6b shows that enough velocity
information is present in order to effectively flatten the event. This result is encouraging.

The method was also tested on shot 27 from the Yilmaz-Cumro dataset, shown in Figure
7a. The shot has numerous hyperbolas at early times, but noise levels hide hyperbolic events
at later times. The dip estimate (Figure 7b) and s2 estimate (Figure 7c) each show negative
values associated with the direct arrival, and the noisier part of the record but, again, these are
handled by the median stacking routine.

The estimated RMS velocity (Figure 8) was also extended back to zero time in order to
remove bad values where there is little far offset information. The estimate seems reasonable
until around 4.5s; where it starts to fluctuate. This is where the noise level in the data in-
creases, and the poor estimate in this location occurs. The results of the NMO correction with
this velocity estimate is shown in Figure 9b. Again the data has been reasonably flattened,
particularly at times where the velocity estimate was well constrained.
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Figure 6: (a) Shot gather 14 with AGC, (b) results of the NMO corection on shot 14 using the
estimated RMS velocity in Figure 5. kevin1-14results [ER]

CONCLUSIONS

The proposed velocity estimation method performs well in the test cases presented. Estimates
are robust for areas of reasonable data quality. In these areas enough information is available
for the median stacking routine to eliminate poor data points, and gently smoothing the esti-
mate in time gives a good estimate of velocity. In poor data quality areas, or at early times
with little offset information, estimates are less reliable and unstable. Although estimates are
not always exact in these areas, they do provide a decent starting estimate of velocity without
velocity spectra analysis or manual picking.
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Figure 7: (a) Shot gather 27 with AGC, (b) estimated local dip, and (c) estimated slowness2

after NMO correction with velocity of 2.5 km/s. kevin1-27display [ER]

Figure 8: Estimated RMS veloc-
ity profile for the data in Figure 7.
kevin1-27velocity [ER]
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Figure 9: (a) Shot gather 27 with AGC, (b) results of the NMO corection on shot 27 using the
estimated RMS velocity in Figure 8. kevin1-27results [ER]
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