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Poroelastic fluid effects on shear for rocks with soft anisotropy

James G. Berryman1

ABSTRACT

A general analysis of poroelasticity for vertical transverse isotropy (VTI) shows that four
eigenvectors are pure shear modes with no coupling to the pore-fluid mechanics. The re-
maining two eigenvectors are linear combinations of pure compression and uniaxial shear,
both of which are coupled to the fluid mechanics. After reducing the problem to a 2 × 2
system, the analysis shows in a relatively elementary fashion how a poroelastic system
with isotropic solid elastic frame but with anisotropy introduced through the poroelastic
coefficients interacts with the mechanics of the pore fluid and produces shear dependence
on fluid properties in the overall poroelastic system. The analysis shows, for example,
that this effect is always present (though sometimes small in magnitude) in the systems
studied, and can be quite large (up to a definite maximum increase of 20 per cent) in some
rocks — including Spirit River sandstone and Schuler-Cotton Valley sandstone.

INTRODUCTION

An important paper by Gassmann (1951) concerns the effects of fluids on the mechanical
properties of porous rock. His main result is the well-known fluid-substitution formula (that
now bears his name) for the bulk modulus in undrained, isotropic poroelastic media. He also
postulated that the effective undrained shear modulus would (in contrast to the bulk modulus)
be independent of the mechanical properties of the fluid when the medium is isotropic. That
the independence of shear modulus from fluid effects is guaranteed for isotropic media at very
low or quasistatic frequencies was shown recently by Berryman (1999) to be tightly coupled
to the original bulk modulus result of Gassmann; each result implies the other in isotropic
media. It has gone mostly without discussion in the literature that Gassmann (1951) also
derived general results for anisotropic porous rocks in the same 1951 paper. It is not hard to
see that these results imply that, contrary to the isotropic case, some of the overall undrained
shear moduli in fact may depend on fluid properties in anisotropic media, thus mimicking the
bulk modulus behavior. However, Gassmann’s paper does not remark at all on this difference
in behavior between isotropic and anisotropic porous rocks. Brown and Korringa (1975) also
address the same class of problems, including both isotropic and anisotropic cases, but again
they do not remark on the shear modulus results in either case. Norris (1993) studies partial
saturation in isotropic layered materials in the low-frequency regime (' 100 Hz) and takes as a
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fundamental postulate that Gassmann’s results hold for the low frequency shear modulus, but
it seems that some justification should be provided for such an assumption, and furthermore
some indication of its range of validity established.

On the other hand, Hudson (1981), in his early work on cracked solids, explicitly demon-
strates differences between fluid-saturated and dry cracks and relates his work to that of Walsh
(1969) and O’Connell and Budiansky (1974), but does not make any connection to the work of
either Gassmann (1951), or Brown and Korringa (1975). Mukerji and Mavko (1994) show nu-
merical results based on work of Gassmann (1951), Brown and Korringa (1975) and Hudson
(1981) demonstrating the fluid dependence of shear in anisotropic rock, but again they do not
remark on these results at all. Mavko and Jizba (1991) use a simple reciprocity argument to es-
tablish a direct, but approximate, connection between undrained shear response and undrained
compressional response in rocks containing cracks. Berryman and Wang (2001) show that
deviations from Gassmann’s results sufficient to produce shear modulus dependence on fluid
mechanical properties require the presence of some anisotropy on the microscale, thereby ex-
plicitly violating the microhomogeneous and microisotropy conditions implicit in Gassmann’s
original derivation. Berryman et al. (2002a) go further and make use of differential effective
medium analysis to show explicitly how the undrained, overall isotropic shear modulus can
depend on fluid trapped in penny-shaped cracks. Meanwhile, laboratory results for wave prop-
agation [see Berryman et al. (2002b)] show conclusively that the shear modulus does indeed
depend on fluid mechanical properties for low-porosity, low-permeability rocks, and high-
frequency laboratory experiments ( f > 500 kHz).

One thing lacking from all the preceding work is a simple example showing how the pres-
ence of anisotropy influences the shear modulus, and specifically when and how the shear
modulus becomes fluid dependent. Our main purpose in the present work is therefore to
demonstrate, in a set of rather simple examples, how the overall shear behavior becomes
coupled to fluid compressional properties at high frequencies in anisotropic media — even
though overall shear modulus is always independent of the fluid properties in microhomo-
geneous isotropic media at sufficiently low frequencies, whether drained or undrained. Two
other distinct but related analyses addressing this topic have been presented recently by the
author (Berryman, 2004b,c). Both of these prior papers have made explicit use of layered
media, composed of isotropic poroelastic materials, together with exact results for such media
based on Backus averaging (Backus, 1962). In contrast, the present analysis does not make
use of such a specific model, and is therefore believed to be about as simple as possible, while
still achieving the level of understanding desired for this rather subtle technical issue. One
important simplification we make here in order to separate the part that is due to poroelas-
tic effects, from the part that would be present in any elastic (i.e., possibly zero permeability
porous medium) is to model each material as if the elastic part is entirely isotropic, while the
poroelastic effects [i.e., the Biot-Willis coefficients (Biot and Willis, 1957) for the anisotropic
overall material] provide the only sources of anisotropy in the system. Thus, we specifically
distinguish two possible sources of anisotropy, the elastic or “hard” anisotropy that is assumed
not to be present here, and the poroelastic or “soft” anisotropy that is the source of the effects
we want to study in this paper.

Our analysis for general transversely isotropic media is presented in the next three sec-
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tions. In particular, the section on eigenvectors also introduces the effective undrained shear
modulus relevant to our general discussion. Examples are then presented for glass, granite,
and sandstone. The paper’s results and conclusions are summarized in the final section. Some
mathematical details are collected in the Appendix.

FLUID-SATURATED POROELASTIC ROCKS

In contrast to traditional elastic analysis, the presence in rock of a saturating pore fluid in-
troduces the possibility of an additional control field and an additional type of strain variable.
The pressure p f in the fluid is a new field parameter that can be controlled. Allowing sufficient
time for global pressure equilibration permits us to consider p f to be a constant throughout the
percolating (connected) pore fluid, while restricting the analysis to quasistatic processes. (But
ultimately we are not interested in such quasi-static processes in this paper, as we are trying
to reconcile laboratory wave data with the theory.) The change ζ in the amount of fluid mass
contained in the pores [see Biot (1962) or Berryman and Thigpen (1985)] is a new type of
strain variable, measuring how much of the original fluid in the pores is squeezed out during
the compression of the pore volume while including the effects of compression or expansion
of the pore fluid itself due to changes in p f . It is most convenient to write the resulting equa-
tions in terms of compliances rather than stiffnesses, so the basic equation to be considered
takes the following form for isotropic media:
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The constants appearing in the matrix on the right hand side will be defined in the following
two paragraphs. It is important to write the equations this way rather than using the inverse
relation in terms of the stiffnesses, because the compliances si j appearing in (1) are simply
related to the drained elastic constants λdr and Gdr in the same way they are related in normal
elasticity, whereas the individual stiffnesses obtained by inverting the equation in (1) must
contain coupling terms through the parameters β and γ that depend on the pore and fluid
compliances. Thus, we find that

s11 =
1

Edr
=

λdr + Gdr

Gdr (3λdr +2Gdr )
(2)

and

s12 = −
νdr

Edr
, (3)

where the drained Young’s modulus Edr is defined by the second equality of (2) and the
drained Poisson’s ratio is determined by

νdr =
λdr

2(λdr + Gdr )
. (4)
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When the external stress is hydrostatic so σ = σ11 = σ22 = σ33, equation (1) telescopes
down to

(

e
−ζ

)

=
(

1/Kdr −α/Kdr

−α/Kdr α/B Kdr

)(

σ

−p f

)

, (5)

where e = e11 + e22 + e33, Kdr = λdr + 2
3 Gdr is the drained bulk modulus, α = 1 − Kdr/Km

is the Biot-Willis parameter (Biot and Willis, 1957) with Km being the bulk modulus of the
solid minerals present, and Skempton’s pore-pressure buildup parameter B (Skempton, 1954)
is given by

B =
1

1+ Kp(1/K f −1/Km)
. (6)

New parameters appearing in (6) are the bulk modulus of the pore fluid K f and the pore mod-
ulus K −1

p = α/φKdr where φ is the porosity. The expressions for α and B can be generalized
slightly by supposing that the solid frame is composed of more than one constituent, in which
case the Km appearing in the definition of α is replaced by Ks and the Km appearing explicitly
in (6) is replaced by Kφ (see Brown and Korringa, 1975; Rice and Cleary, 1976; Berryman
and Wang, 1995). This is an important additional complication (Berge and Berryman, 1995),
but — for the sake of desired simplicity — we will not pursue the matter further here.

Comparing (1) and (5), we find that

β =
α

3Kdr
(7)

and

γ =
α

B Kdr
. (8)

As we develop the ideas to be presented here, we will need to treat Eqs. (1)–(6) as if
they are true locally, but perhaps not globally. In particular, if we assume overall drained
conditions, then p f = a constant everywhere. But, if we assume locally undrained conditions,
then p f ' a constant in local patches, but these local constant values may differ from patch to
patch. This way of thinking about the system is intended to mimic the behavior expected when
a high frequency wave propagates through a system having highly variable (or just uniformly
very low) fluid permeability everywhere.

RELATIONS FOR ANISOTROPY IN POROELASTIC MATERIALS

Gassmann (1951), Brown and Korringa (1975), and others have considered the problem of
obtaining effective constants for anisotropic poroelastic materials when the pore fluid is con-
fined within the pores. The confinement condition amounts to a constraint that the increment
of fluid content ζ = 0, while the external loading σ is changed and the pore-fluid pressure p f

is allowed to respond as necessary and thus equilibrate.



SEP–115 Soft anisotropy 449

To provide an elementary derivation of the Gassmann equation for anisotropic materials,
we consider the anisotropic generalization of (1)
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Three shear contributions have been immediately excluded from consideration since they can
easily be shown not to interact mechanically with the fluid effects. This form is not com-
pletely general in that it includes orthorhombic, cubic, hexagonal, and all isotropic systems,
but excludes triclinic, monoclinic, trigonal, and some tetragonal systems that would have some
nonzero off-diagonal terms in the full elastic matrix. Also, we have assumed that the mate-
rial axes are aligned with the spatial axes. But this latter assumption is not significant for the
derivation that follows. Such an assumption is important when properties of laminated mate-
rials having arbitrary orientation relative to the spatial axes need to be considered, but we do
not treat this more general problem here.

If the fluid is confined (or undrained on the time scales of interest), then ζ ≡ 0 in (9) and
p f becomes a linear function of σ11, σ22, σ33. Eliminating p f from the resulting equations, we
obtain the general expression for the strain dependence on external stress under such confined
conditions:
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The si j ’s are fluid-drained constants, while the s∗
i j ’s are the fluid-undrained (or fluid-confined)

constants. The fundamental result (10) was obtained earlier by both Gassmann (1951) and
Brown and Korringa (1975), and may be written simply as

s∗
i j = si j −

βiβj

γ
, for i , j = 1,2,3. (11)

This expression is just the anisotropic generalization of the well-known Gassmann equation
for isotropic, microhomogeneous porous media.

EIGENVECTORS FOR TRANSVERSE ISOTROPY

The 3 × 3 system (10) can be analyzed fairly easily, and in particular the eigenfunctions and
eigenvalues of this system can be obtained in general. However, such general results do not
provide much physical insight into the problem we are trying to study, so instead of proceeding
in this direction we will now restrict attention to transversely isotropic materials. This case



450 Berryman SEP–115

is relevant to many layered earth materials and also industrial systems, and it is convenient
because we can immediately eliminate one of the eigenvectors from further consideration.
Three mutually orthogonal (but unnormalized) vectors of interest are:

v1 =





1
1
1



 , v2 =





1
−1
0



 , v3 =





1
1

−2



 . (12)

Treating these vectors as stresses, the first corresponds to a simple hydrostatic stress, the sec-
ond to a planar shear stress, and the third to a pure shear stress applied uniaxially along the
z-axis (which would also be the symmetry axis for a layered system, but we are not treating
such layered systems here). Transverse isotropy of the system under consideration requires:
s11 = s22, s13 = s23, and for the poroelastic problem β1 = β2. Thus, it is immediately apparent
that the planar shear stress v2 is an eigenvector of the system, and furthermore it results in no
contribution from the pore fluid. Therefore, this vector will be of no further interest here, and
the system can thereby be reduced to 2×2.

Compliance formulation

If we define the effective compliance matrix for the system as S∗ having the matrix elements
given in (11), then the bulk modulus for this system is defined in terms of v1 by

1
Ku

= vT
1 S∗v1 =

1
Kdr

−γ−1 (2β1 +β3)2 , (13)

where the T superscript indicates the transpose, and 1/Kdr ≡
∑3

i , j=1 si j . This is the result
usually quoted as Gassmann’s equation for the bulk modulus of the undrained (or confined)
anisotropic (VTI) system. Also, note that in general

3
∑

i=1

βi = 2β1 +β3 = α/Kdr . (14)

Thus, even though v1 is not an eigenvector of this system, it nevertheless plays a fundamental
role in the mechanics. Furthermore, this role is quite well-understood. What is perhaps not so
well-understood then, especially for poroelastic systems, is the role of v3. Understanding this
role will become our main focus for the remainder of this discussion.

The true eigenvectors of the 2×2 subproblem of interest (i.e., in the space orthogonal to the
four pure shear eigenvectors already discussed) are necessarily linear combinations of v1 and
v3. We can construct the relevant contracted operator for the 2×2 subsystem by considering:

(

vT
1
vT

3

)

S∗ (

v1 v3
)

≡
(

9A∗
11 18A∗

13
18A∗

13 36A∗
33

)

(15)

(in all cases the ∗ superscripts indicate that the pore-fluid effects are included) and the reduced
matrix

6∗ = A∗
11v1v

T
1 + A∗

13(v1v
T
3 +v3v

T
1 )+ A∗

33v3v
T
3 , (16)



SEP–115 Soft anisotropy 451

where

A∗
11 = [2(s∗

11 + s∗
12 +2s∗

13)+ s∗
33]/9,

A∗
13 = (s∗

11 + s∗
12 − s∗

13 − s∗
33)/9, (17)

A∗
33 = (s∗

11 + s∗
12 −4s∗

13 +2s∗
33)/18.

Providing some understanding of these connections and the implications for shear modulus
dependence on fluid content is one of our goals.

First we remark that A∗
11 = 1/9Ku , where Ku is again the undrained (or Gassmann) bulk

modulus for the system in (13). Therefore, A∗
11 is proportional to the undrained bulk com-

pliance of this system. The other two matrix elements cannot be given such simple interpre-
tations in general. To simplify the analysis we note that, at least for purposes of modeling,
anisotropy of the compliances si j and the poroelastic coefficients βi can be treated indepen-
dently. Anisotropy displayed in the si j ’s corresponds mostly to the anisotropy in the solid elas-
tic components of the system, while anisotropy in the βi ’s corresponds mostly to anisotropy in
the shapes and spatial distribution of the porosity. We will therefore distinguish these contri-
butions by calling anisotropy appearing in the si j ’s the “hard anisotropy,” and the anisotropy
in the βi ’s will in contrast be called the “soft anisotropy.”

Now, it is clear (also see the discussion in the Appendix for more details) that the eigenvec-
tors having unit magnitude f (θ ) for this problem (i.e., for the reduced operator6∗) necessarily
take the form

f (θ ) = v1 cosθ +v3 sinθ , (18)

where v1 = v1/
√

3 and v3 = v3/
√

6 are the normalized eigenvectors. Two solutions for the
rotation angle are: θ− and θ+ = θ− + π

2 , guaranteeing that the two solutions (the eigenvectors)
are orthogonal. It is easily seen that the eigenvalues are given by

3∗
± = 3

[

A∗
33 + A∗

11/2±
√

(A∗
33 − A∗

11/2)2 +2(A∗
13)2

]

(19)

and the rotation angles are determined by

tanθ∗
± =

3∗
±/3− A∗

11√
2A∗

13

=
[

A∗
33 − A∗

11/2±
√

(A∗
33 − A∗

11/2)2 +2(A∗
13)2

]

/
√

2A∗
13. (20)

One part of the rotation angle is due to the drained (fluid free) “hard anisotropic” nature of the
rock frame material. We will call this part θ̄ . The remainder is due to the presence of the fluid
in the pores, and we will call this part δθ ≡ θ ∗ − θ̄ for the “soft anisotropy.” Using a standard
formula for tangents, we have

δθ± = tan−1
[

tanθ∗
± − tan θ̄±

1+ tanθ∗
± tan θ̄±

]

. (21)

Furthermore, definite formulas for θ̄± are found from (20) by taking γ → ∞ (corresponding
to air saturation of the pores).
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Since

tanθ∗
+ · tanθ∗

− = −1, (22)

it is sufficient to consider just one of the signs in front of the radical in (20). The most con-
venient choice for analytical purposes turns out to be the minus sign (which corresponds to
the eigenvector with the larger component of pure compression). Furthermore, it is also clear
from the form of (20) that often the behavior of most interest to us here occurs for cases when
A∗

13 6= 0.

In the limit of a nearly isotropic solid frame (so the “hard anisotropy” vanishes and thus
we will also call this the “quasi-isotropic” limit), it is not hard to see that

A∗
33 '

1
12Gdr

−
(β1 −β3)2

9γ
, (23)

where Gdr is the drained shear modulus of the quasi-isotropic solid frame. Similarly, the
remaining coefficient

A∗
13 ' −

(β1 −β3)(2β1 +β3)
9γ

, (24)

since all the solid contributions approximately cancel in this limit.

To clarify the situation further, we will enumerate three cases:

Case I. A∗
33 − A∗

11/2 6= 0, A∗
13 = 0.

Whenever A∗
33 − A∗

11/2 6= 0 and A∗
13 → 0, we find easily that θ∗

− → 0, while θ∗
+ → π/2. In

this case, v1 and v3 are themselves the eigenvectors, while the eigenvalues are proportional to
A∗

11 and A∗
33. In the quasi-isotropic limit, A∗

13 can vanish only if β1 −β3 = 0, in which case
A∗

33 also does not depend on fluid properties. For media differing significantly from the quasi-
isotropic limit, A∗

13 could vanish for some physically interesting situations, but the resulting
physical constraints are too special (and complicated) for us to consider them further here.

Case II. A∗
33 − A∗

11/2 = 0, A∗
13 6= 0.

For this case, tanθ∗
± = ±1, so θ∗

± = ±π/4. The two eigenvectors are v1/
√

6 ± v3/
√

12, with
no dependence on the fluid properties. However, the eigenvalues continue to be functions of
the fluid properties. This seems to be a rather special case, but again considering the quasi-
isotropic limit, we find that A∗

33 − A∗
11/2 ' ν/2E + [(2β1 +β3)2 − 2(β1 −β3)2]/18γ , where

ν is Poisson’s ratio and E is Young’s modulus. For this combination of the parameters to
vanish for special values does not appear to violate any of the well-known constraints (such
as positivity, etc.) on these parameters. For example, if β1 = 0, the term depending on the
fluid properties clearly makes a negative contribution, which might be large enough to cancel
the contribution from the solid. But, for now, this case seems rather artificial, so we will not
consider it further here.
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Case III. A∗
33 − A∗

11/2 6= 0, A∗
13 6= 0.

This case is the most general one of the three, and the one we will study at greater length in
the remainder of this discussion.

We want to understand how the introduction of liquid into the pore space affects the shear
modulus. We also want to know how the anisotropy influences, i.e., aids or hinders, the impact
of the liquid on the shear behavior. To achieve this understanding, it should be sufficient to
consider the case when (A∗

13)2 � (A∗
33 − A∗

11/2)2, assuming as we do that both factors are
nonzero. Then, expanding the square root in (19), we have

3∗
+ = 6A∗

33 +1 and 3∗
− = 3A∗

11 −1, (25)

where1 is defined consistently by either of the two preceeding expressions or by 21≡3∗
+ −

3∗
− +3A11 −6A33 and is also given approximately for cases of interest here by

1'
3(A∗

13)2

A∗
33 − A∗

11/2
. (26)

In the quasi-isotropic soft anisotropy limit under consideration, we find

1'
2(β1 −β3)2(2β1 +β3)2/27γ 2

ν/E + [(2β1 +β3)2 −2(β1 −β3)2]/9γ
. (27)

All of the mechanical effects of the liquid that contribute to this formula appear in the factor
γ . The order at which γ appears depends on the relative importance of the two terms in
the denominator of this expression. If the second term ever dominates, then one factor of γ
cancels, and therefore 1 ∼ O(γ−1), and furthermore 1 ∼ 2(β1 − β3)2/3γ if |β1 − β3| <<
|2β1 +β3|. If instead what seems to be the more likely situation holds and the first term in the
denominator dominates, then 1∼ O(γ −2). So in either of these cases, as long as β1 −β3 6= 0
(which is the condition for soft anisotropy), we always have contributions to 1 from liquid
mechanical effects. There do not appear to be any combinations of the parameters for which
the fluid effects disappear whenever the material is in the class of anisotropic solids considered
here.

Stiffness formulation

The dual to the problem just studied replaces compliances everywhere with stiffnesses, and
then proceeds as before. Equations (15)–(18) are replaced by

(

vT
1
vT

3

)

C∗ (

v1 v3
)

≡
(

9B∗
11 18B∗

13
18B∗

13 36B∗
33

)

(28)

(in all cases the ∗ superscripts indicate that the pore-fluid effects are included) and the reduced
matrix

(

6∗)−1 = B∗
11v1v

T
1 + B∗

13(v1v
T
3 +v3v

T
1 )+ B∗

33v3v
T
3 , (29)
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where

B∗
11 = [2(c∗

11 + c∗
12 +2c∗

13)+ c∗
33]/9,

B∗
13 = (c∗

11 + c∗
12 − c∗

13 − c∗
33)/9, (30)

B∗
33 = (c∗

11 + c∗
12 −4c∗

13 +2c∗
33)/18.

It is a straightforward exercise to check that the two reduced problems are in fact inverses of
each other. We will not repeat this analysis here, as it is wholly repetitive of what has gone
before. The main difference in the details is that the expressions for the B’s in terms of the
β’s are rather more complicated than those for the compliance version, which is also why we
chose to display the compliance formulation instead.

Effective and undrained shear moduli Ge f f and Gu

Four shear moduli are easily and unambiguously defined for the anisotropic system under
study. Furthermore, since we are treating only soft anisotropy, all of these moduli are the
same, i.e., G i = Gdr for i = 1, . . . , 4. These are all related to the four shear eigenvectors of
the systems, and they do not couple to the pore-fluid mechanics. But, the eigenvectors in the
reduced 2×2 system studied here are usually mixed in character, being quasi-compressional
or quasi-shear modes. It is therefore somewhat problematic to find a proper definition for a
fifth shear modulus. The author has analyzed this problem previously (Berryman, 2004b),
and concluded that a sensible (though approximate) definition can be made using G5 = Ge f f .
There are several different ways of arriving at the same result, but for the present analysis the
most useful of these is to express Ge f f in terms of the product3+3− (the eigenvalue product,
which is also the determinant of the 2 × 2 compliance system). The result, which will be
quoted here without further discussion [see Berryman (2004b) for details], is

1
3Ku

·
1

2Ge f f
≡3+3− = 18

[

A∗
11 A∗

33 − (A∗
13)2] , (31)

which we take as the definition of Ge f f here. And, since A∗
11 = 1/9Ku , we have

1
Ge f f

= 12
[

A∗
33 − (A∗

13)2/A∗
11

]

. (32)

To obtain an isotropic average overall undrained shear modulus, we next take the arithmetic
mean of these five shear compliances:

1
Gu

≡
1
5

5
∑

i=1

1
G i

. (33)

Combining these definitions and results gives:

1
Gu

−
1

Gdr
= −

4
15

(β ′
1 −β ′

3)2

1−αB
αB
Kdr

=
4
15

(β ′
1 −β ′

3)2

1−αB

[

1
Ku

−
1

Kdr

]

, (34)
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where the β ′s are defined by β ′
i = βi Kdr/α. The final equality is presented to emphasize the

similarity of the present results to those of both Mavko and Jizba (1991) and Berryman et al.
(2002b). Setting β ′

1 = 0, β ′
3 = 1, B = 1, and α ' 0 recovers the form of Mavko and Jizba

(1991) for the case of a very dilute system of flat cracks.

TABLE. Elastic and poroelastic parameters of the three rock samples considered in the text.
Bulk and shear moduli of the grains Km and Gm , bulk and shear moduli of the drained porous

frame Kdr and Gdr , the effective and undrained shear moduli Ge f f and Gu, and the
Biot-Willis parameter α = 1− Kdr/Km . The porosity is φ.

Elastic/Poroelastic Sierra White Schuler-Cotton Valley Spirit River
Parameters Granite Sandstone Sandstone
Gm (GPa) 31.7 36.7 69.0
Gu (GPa) 28.3 17.7 12.41
Gdr (GPa) 26.4 15.7 11.33
Ge f f (GPa) 39.8 35.8 20.11
Km (GPa) 57.7 41.8 30.0
Kdr (GPa) 38.3 13.1 7.04

α 0.336 0.687 0.765
φ 0.008 0.033 0.052

EXAMPLES AND DISCUSSION

It is clear from (25) that fluid effects in 1 cannot increase the overall compliance eigenvalues
simultaneously for both the quasi-bulk and the quasi-shear modes. Rather, if one increases,
the other must decrease. Furthermore, it is certainly always true that the presence of pore
liquid either has no mechanical effect or else strengthens (i.e., stiffens) the porous medium in
compression. But this effect on the bulk modulus has been at least partially accounted for in
A∗

11 = 1/9K ∗ through the original contribution derived by Gassmann (1951). So presumably
the contribution of 1 to compliance cannot be so large as to negate completely the liquid
effects on the undrained bulk modulus.

Examples

To clarify the situation, we show some examples in Figures 1–8. The details of the analysis
that produces these figures are summarized in the Appendix. The main point is that, for the
compliance version of the analysis, the contours of constant energy are ellipses when the
vector f in (18) is interpreted as a stress. Analogously, when the vector is treated as a strain,
the contours of constant energy are ellipses for the dual (or stiffness) formulation. If we choose
to think of these figures as diagrams in the complex plane, then we note that — while circles
and lines transform to circles and lines when transforming back and forth between these two
planes — the shapes of ellipses are not preserved (except, of course, in the special case –
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Figure 1: For a glassy porous material having bulk modulus Kdr = 18.52 GPa and shear modu-
lus Gdr = 13.89 GPa, the locus of points z = Reiθ — see equation (36) — having constant en-
ergy U = 900 GPa, when the linear combination of pure compression and pure uniaxial shear
is interpreted as strain field applied to the stiffness matrix (solid black line). The plot is in the
complex z-plane, with the inverse of the corresponding expression for the compliance energy
superposed for comparison (dashed blue line). Red circles at the two points of intersection
correspond to the two eigenvectors of the system of equations. The ellipse (solid black line)
in this plane corresponds to the more complex curve in Figure 2. jim2-GlassStrain2Box4
[NR]

which is precisely that of isotropy – when the ellipses degenerate to circles). Eigenvectors are
determined by the directions in which the points of contact of these two curves lie (indicated
by red circles).

Figures 1 and 2 present an example based on a glassy material. Typical values for the bulk
and shear moduli of glass were used: Km = 46.3 GPa and Gm = 30.5 GPa, respectively. The
value of the Biot-Willis coefficient was arbitrarily chosen as α = 0.6, so Kdr = 18.52 GPa.
Taking Poisson’s ratio as νdr = 0.2, we have Gdr = 13.89 GPa. Skempton’s coefficient was
chosen for simplicity to be B ≡ 1 in this and all the other examples as well. (This choice
is extreme because it implies that Ku = Km . But, since our interest here is in analysis of
the undrained shear modulus, the study of this limit is particularly useful to us.) The most
anisotropic choices of β1 and β3 were used that would not produce absurd (negative) values of
the diagonal coefficients for either s∗

i j or c∗
i j , and that also would not produce Gu > Gm . [Gu

determined by (32) amd (33) is a type of upper bound – actually the Voigt average. Values of
this bound that might exceed Gm need not be considered.] For glass, these values were found
to be β1 = 0.15α/Kdr and β3 = 0.70α/Kdr . The value of the energy used for normalization
was U = 900.0 GPa. Computed values for the effective and undrained shear moduli were
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Figure 2: Same parameters as Figure 1, but the linear combination of pure compression and
pure uniaxial shear is interpreted as a stress field and is applied to the compliance matrix
(dashed blue line). The plot is again in the complex z-plane, with the inverse of the cor-
responding expression for the stiffness energy superposed for comparison (solid black line).
Red circles at the two points of intersection correspond to the two eigenvectors of the system
of equations. The ellipse (dashed blue line here) corresponds to the more complex curve in
Figure 1. jim2-GlassStress [NR]
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Ge f f = 25.43 GPa and Gu = 15.28 GPa.

For the remaining three sets of examples, the values used for the moduli of the samples
are taken from results contained in Berryman (2004a), wherein it was shown how certain lab-
oratory data could be fit using an elastic differential effective medium scheme. These results
are summarized in the TABLE.
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Figure 3: Same as Figure 1 for Sierra White Granite using the parameters from the TABLE.
jim2-SW2Strain [NR]

Figures 3 and 4 present results for Sierra White granite. Laboratory data on this material
were presented by Murphy (1982). The values chosen for β1 and β3 were β1 = 0.05α/Kdr

and β3 = 0.90α/Kdr . The value of the energy used for normalization was U ' 900.0 GPa.
Computed values for the effective and undrained shear moduli were Ge f f = 39.8 GPa and
Gu = 28.3 GPa.

Figures 5 and 6 present results for Schuler-Cotton Valley sandstone. Laboratory data on
this material were also presented by Murphy (1982). The values chosen for β1 and β3 were
β1 = 0.20α/Kdr and β3 = 0.60α/Kdr . The value of the energy used for normalization was
U ' 900.0 GPa. Computed values for the effective and undrained shear moduli were Ge f f =
35.8 GPa and Gu = 17.7 GPa.

Figures 7 and 8 present results for Spirit River sandstone. Laboratory data on this material
were presented by Knight and Nolen-Hoeksema (1990). The values chosen for β1 and β3

were β1 = 0.25α/Kdr and β3 = 0.50α/Kdr . The value of the energy used for normalization
was U ' 900.0 GPa. Computed values for the effective and undrained shear moduli were
Ge f f = 20.11 GPa and Gu = 12.41 GPa.
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Figure 4: Same as Figure 2 for Sierra White Granite using the parameters from the TABLE.
jim2-SW2Stress [NR]
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Figure 5: Same as Figure 1 for Schuler-Cotton Valley Sandstone using the parameters from
the TABLE. jim2-SCV2Strain [NR]

DISCUSSION

We can compare the results obtained with results obtained for the same rocks using differential
effective medium theory to fit data. The two characteristics that will interest us here are:
(1) comparisons between the values chosen in our examples for the anisotropic β ′s and the
best fitting crack aspect ratios found in Berryman (2004a), and (2) comparisons between the
magnitudes of changes in the overall shear moduli from their drained to undrained values.

The preferred crack aspect ratios found for Sierra White granite, Schuler-Cotton Valley
sandstone, and Spirit River sandstone in Berryman (2004a) were respectively, 0.005, 0.015,
and 0.0125. Here we found that (β ′

1,β ′
3) for the same samples were, respectively, (0.05,0.90),

(0.20,0.60), and (0.25,0.50). Clearly, these values are at least weakly correlated with those
of the aspect ratios for the same samples, but no stronger conclusions can be reached at the
present time concerning these values.

Similarly, the comparisons of the changes in shear modulus magnitude from drained to
undrained also show a weak correlation. The increases in shear moduli observed in the mea-
sured laboratory data for Sierra White granite, Schuler-Cotton Valley sandstone, and Spirit
River sandstone are, respectively, about 10%, 10%, and 20%. As seen in the TABLE, the
magnitude of the changes predicted here is essentially about 10% in all three of these cases.
Thus, agreement is good both qualitatively and semi-quantitatively in all cases. We conclude
that the theory presented here is correctly predicting the magnitudes of these shear modulus
enhancements due to pore-fluid effects.
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Figure 6: Same as Figure 2 for Schuler-Cotton Valley Sandstone using the parameters from
the TABLE. jim2-SCV2Stress [NR]
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Figure 7: Same as Figure 1 for Spirit River Sandstone using the parameters from the TABLE.
jim2-SRSStrain [NR]

SUMMARY AND CONCLUSIONS

The preceding discussion shows how overall shear modulus dependence on pore-fluid me-
chanics arises in simple anisotropic (the specific example used was transversely isotropic)
media. The results demonstrate in an entirely elementary fashion how compression-to-shear
coupling enters the analysis for anisotropic materials, and furthermore how this coupling leads
to overall shear dependence on mechanics of fluids in the pore system.

These effects need not always be large. However, the effect can be very substantial (on the
order of a 10% to 20% increase in the overall shear modulus) in cracked or fractured materials,
when these pores are liquid-filled. The anisotropy and liquid stiffening effects then both come
strongly into play in the results we see, such as those illustrated in Figures 1–8. In particular, if
β1 ' β3, then soft anisotropy does not make a significant contribution. But, if either β1 << β3

or β1 >> β3, then the contribution can be significant. For example, we might expect these
cases to be relevant for systems with either vertical or horizontal fractures.
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APPENDIX A

The equation of an ellipse centered at the origin whose semi-major and semi-minor axes are
of lengths a and b and whose angle of rotation with respect to the x-axis in the (x , y)-plane is
ψ is given by

(x cosψ+ y sinψ)2/a2 + (−x sinψ+ y cosψ)2/b2 = 1. (A-1)

For comparison, when x = r cosθ , y = r sinθ , and a stress of magnitude r =
√

x2 + y2 is
applied to a poroelastic system, the energy stored in the anisotropic media of interest here
[using (16) and (18)] is given by

r2 f T (θ )6∗ f (θ ) ≡ U (r ,θ ) =

3r2
[

A11 cos2 θ +2
√

2A13 cosθ sinθ +2A33 sin2 θ

]

= R2U (r0,θ ). (A-2)

In the second equation R ≡ r/r0, and r0 in an arbitrary number (say unity) having the dimen-
sions of stress (i.e., dimensions of Pa). It is not hard to see that, when U (r ,θ ) = const , the
two equations (A-1) and (A-2) have the same functional form and, therefore, that contours of
constant energy in the complex (z = x + iy) plane are ellipses. Furthermore, we can solve for
the parameters of the ellipse by setting U = 1 (in arbitrary units for now) in (A-2) and then
factoring r2 out of both equations. We find that

3A11 =
cos2ψ

a2 +
sin2ψ

b2 ,

6
√

2A13 = sin2ψ
(

1
a2 −

1
b2

)

, (A-3)

6A33 =
sin2ψ

a2 +
cos2ψ

b2 .
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These three equations can be inverted for the parameters of the ellipse, giving:

1
a2 =

3A11 cos2ψ−6A33 sin2ψ

cos2ψ
,

1
b2 = −

3A11 sin2ψ−6A33 cos2ψ

cos2ψ
, (A-4)

tan2ψ =
2
√

2A13

A11 −2A33
.

Although contours of constant energy are of some interest, it is probably more useful to our
intuition for the poroelastic application to think instead about contours associated with applied
stresses and strains of unit magnitude, i.e., for r = 1 (in appropriate units) and θ varying from
0 to π [again see definition (18)]. We then have the important function U (1,θ ). [Note that,
when θ varies instead between π and 2π , we just get a copy of the behavior for θ between
0 and π . The only difference is that the stress and strain vectors have an overall minus sign
relative to those on the other half-circle. For a linear system, such an overall phase factor
of unit magnitude is irrelevant to the mechanics of the problem.] Then, if we set U (r ,θ ) =
const = R2U (r0,θ ) and plot z = Reiθ in the complex plane, we will have a plot of the ellipse
of interest with R determined analytically by

R =
√

U (r ,θ )/U (r0,θ ) =
√

const/U (r0,θ ). (A-5)

We call R the magnitude of the normalized stress (i.e., normalized with respect to r0).

The analysis just outlined can then be repeated for the stiffness matrix and applied strain
vectors. The mathematics is completely analogous to the case already discussed, so we will
not repeat it here. Since strain is already a dimensionless quantity, the factor that plays the
same role as r0 above can in this case be chosen to be unity if desired, as the main purpose of
the factor r0 above was to keep track of the dimensions of the stress components.
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