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Seismic waves in finely layered VTI media: Poroelasticity,
Thomsen parameters, and fluid effects on shear waves

James G. Berryman'

ABSTRACT

Layered earth models are well justified by experience, and provide a simple means of
studying fairly general behavior of the elastic and poroelastic characteristics of seismic
waves in the earth. Thomsen’s anisotropy parameters for weak elastic and poroelastic
anisotropy are now commonly used in exploration, and can be conveniently expressed in
terms of the layer averages of Backus. Since our main interest is usually in the fluids
underground, it would be helpful to have a set of general equations relating the Thomsen
parameters as directly as possible to the fluid properties. This end can be achieved in a
rather straightforward fashion for these layered earth models, and the present paper de-
velops and then discusses these relations. Furthermore, it is found that, although there are
five effective shear moduli for any layered VTI medium, one and only one effective shear
modulus for the layered system contains all the dependence of pore fluids on the elastic or
poroelastic constants that can be observed in vertically polarized shear waves in VTI me-
dia. The effects of the pore fluids on this effective shear modulus can be substantial. An
increase of shear wave speed on the order of 10% is shown to be possible when circum-
stances are favorable, which occurs when the medium behaves in an undrained fashion,
and the shear modulus fluctuations are large (resulting in strong anisotropy). These ef-
fects are expected to be seen at higher frequencies such as sonic and ultrasonic waves for
well-logging or laboratory experiments, or at seismic wave frequencies for low permeabil-
ity regions of reservoirs, prior to hydrofracing. Results presented are strictly for velocity
analysis.

INTRODUCTION

Gassmann’s fluid substitution formulas for bulk and shear moduli (Gassmann, 1951) were
originally derived for the quasi-static mechanical behavior of fluid saturated rocks. It has
been shown recently (Berryman and Wang, 2001) that deviations from Gassmann’s results at
higher frequencies, especially for shear modes, can be understood when the rock is heteroge-
neous on the microscale, and in particular when the rock heterogeneity anywhere is locally
anisotropic. On the other hand, a well-known way of generating anisotropy in the earth is
through fine layering. Then, Backus’ averaging (Backus, 1962) of the mechanical behavior of
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the layered isotropic media at the microscopic level produces anisotropic mechanical behavior
at the macroscopic level. For our present purposes, the Backus averaging concept can also be
applied to fluid-saturated porous media, and thereby permits us to study how deviations from
Gassmann’s predictions could arise in an analytical and rather elementary fashion. We study
layers of isotropic elastic/poroelastic materials because this is a simple, explicitly calculable
model that nevertheless produces surprising results on the overall poroelastic shear modulus
behavior. [If we considered instead layers of anisotropic poroelastic materials, the effects we
want to study here concerning fluid-shear interactions would arrive before we begin, because
they are often automatically present in anisotropic poroelastic materials as was shown earlier
by Gassmann (1951) and others (Schoenberg and Douma, 1988; Sayers, 2002). So we could
not show what we have set out to show here concerning the fluid effects by considering such
inherently anisotropic models.] By studying both closed-pore and open-pore boundary condi-
tions between layers within the chosen model, we learn in great detail just how violations of
Gassmann’s predictions can arise in undrained versus drained conditions, or for high versus
low frequency waves.

We review some standard results concerning layered VTI media in the first two sections.
Then, we discuss singular value composition of the elastic (or poroelastic) stiffness matrix in
order to introduce the interpretation of one shear modulus (out of the five shear moduli present)
that has been shown recently (Berryman, 2004) to contain all the important behavior related
to pore fluid influence on the shear deformation response. These results are then incorporated
into our analysis of the Thomsen parameters (originally derived for weak anisotropy, but used
here for arbitrary levels of anisotropy). For purposes of analysis, expressions are derived
for the quasi-P- and quasi-SV-wave speeds and these results are then discussed from this new
point of view. Numerical examples show that the approximate analysis presented is completely
consistent with the full theory for layered media. Our conclusions are summarized in the final
section of the paper.

NOTATION AND SOME PRIOR RESULTS

Notation for VTI media

We begin by introducing some notation needed in the remainder of the paper. For transversely
isotropic media with vertical symmetry axis, the relationship between components of stress
ou;

. duj . . .
oy and strain e;; = %(u,-,j +uji)= % (ax,- + 3—I;f> (where u; is the jth component of the dis-

placement vector) is given by
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where a = b+ 2m (e.g., Musgrave, 1970; Auld, 1973), with i, j,k,/ each ranging from 1 to
3 in Cartesian coordinates. The matrix describes isotropic media in the special case when
a=c=A4+2u,b=f=Arandl=m = pu.

The Thomsen (1986) parameters €, 8, and y are related to these stiffnesses by

a—=c¢

€ = o 2)
2 2
5 — (f+D"—(c—1]) ’ 3)
2c¢(c—1)
m—1
vV = R “)

Certain interpretations are allowed for these parameters when they are small enough. For P-
wave propagation in the earth near the vertical, the important anisotropy parameter is §. For
SV-wave propagation near the vertical, the combination (c/[)(e —§) plays essentially the same
role as § does for P-waves. For SH-waves, the pertinent anisotropy parameter is y. All three
of the Thomsen parameters vanish for an isotropic medium, and the interpretations mentioned
are valid for weakly anisotropic media such that all these parameters are relatively small (< 1).
However, the definitions are also useful outside the range of these constraints, and we will use
the same definitions (and also continue to call them the “Thomsen parameters”) even when
the smallness condition is violated; there is no fundamental problem doing this as long as it
is recognized that the interpretations already mentioned in this paragraph are not necessarily
valid any more when the parameters are large. This generalization of the Thomsen parameters
will however require us to be careful in our subsequent usage of the parameters, as they cannot
always be assumed to be small here as is usual in other treatments. Unless explicitly stated
otherwise, the parameters €, y, and § are not small quantities in this paper.

It is also useful to note for later reference that
a =c(1+2e¢), m=I1(142y), and f~c(148)—2I, 5

where smallness of § was in fact assumed in the third expression. In TI media, ¢ and [/ are
directly related to the velocities normal to the layering. Then, €, y, and § measure the devia-
tions from these normal velocities at other angles. We present the relevant details of the phase
velocity analysis later in the paper.

Gassmann results for isotropic poroelastic media

To understand the significance of the results to follow, we briefly review a well-known result
due to Gassmann (1951) [also see Berryman (1999b) for a tutorial]. Gassmann’s equation
relates the bulk modulus K* of a saturated, undrained isotropic porous medium to the bulk
modulus K, of the same medium in the drained case:

K* =Ky /(1 —aB), (6)
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where the parameters o and B [respectively, the Biot-Willis parameter (Biot and Willis, 1957)
and Skempton’s pore-pressure buildup coefficient (Skempton, 1954)] depend on the porous
medium and fluid compliances. For the shear moduli of drained (u4,) and saturated (u*)
media, Gassmann’s quasi-static theory gives

W= War- (N

We want to emphasize once more that (7) is a result of the theory, not an assumption. The
derivation of (6) and (7) shows that both results are elementary (and coupled) consequences of
the theory. Furthermore, the two equations (6) and (7) taken together show that, for isotropic
microhomogeneous media, the entire fluid effect on the overall elastic behavior is all contained
in the parameter A* = K* — %M*, where A and p are the well-known Lamé parameters. This
result is crucial for understanding the significance of our later results to oil and gas exploration.

Backus averaging

Backus (1962) presented an elegant method of producing the effective constants for a thinly
layered medium composed of either isotropic or anisotropic elastic layers. This method applies
either to spatially periodic layering or to random layering, by which we mean either that the
material constants change in a nonperiodic (unpredictable) manner from layer to layer or that
the layer thicknesses might also be random. For simplicity, we will assume that the physical
properties of the individual layers are constant and isotropic. [For applications to porous earth
materials, we implicitly make the typical assumptions of spatial stationarity within these layers
as well as scale separation — i.e., the sizes of the pores are much smaller than the thickness
of the individual layers in which they reside.] The key idea presented by Backus is that these
equations can be rearranged into a form where rapidly varying (in depth) coefficients multiply
slowly varying stresses or strains.

The derivation has been given many places including Schoenberg and Muir (1989) and
Berryman (1999a). Another illuminating derivation has been given recently by Milton (2002).
We will not repeat any of the derivations here. The final results will be expressed in terms of
averages (Q), where the brackets (-) surrounding a variable Q(z) indicate the volume average
(or, equivalently, the linear average with depth in the vertically layered medium under consid-
eration) of the quantity Q. It follows that the anisotropy coefficients in equation (1) are then
related to the layer parameters by the following well-known expressions:
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m= (i), (11)
B f2 MZ
a—7+4m—4<k+2M>, (12)
and
b=a—2m. (13)

When the layering is fully periodic, these results may be attributed to Bruggeman (1937) and
Postma (1955), while for more general layered media including random media they should
be attributed to Backus (1962). The constraints on the Lamé parameters A and p for each
individual layer are 0 < u < oo and —%,u < A < 00. Although, for physically stable materials,
shear modulus @ and bulk modulus K = A + % @ must both be nonnegative, these relations
mean that A (and also Poisson’s ratio v) may be negative (but nevertheless bounded below,
since v > —1, and A > —2u/3). Large fluctuations in A for different layers are therefore
entirely possible, in principle, but may or may not be an issue for any given region of the
earth.

Large fluctuations in p are also possible, and the Backus averaging technique is fully
capable of handling all such fluctuations properly. But, if these fluctuations are too large,
then the weak anisotropy assumption of Thomsen’s original work (Thomsen, 1986) will be
violated and some care must be taken when writing approximate equations. We do not at any
point assume weak anisotropy in this paper [except equations (5) and (28)], since the shear
behavior we are trying to study will be shown to depend on the presence of strong anisotropy
in this sense. We will also find it useful to develop alternatives to some of Thomsen’s formulas
in order to deal with the strong anisotropy that arises in our analysis.

One very important fact known about the Backus averaging equations (Backus, 1962) is
that they reduce to isotropic results with a = ¢, b = f, and [ = m, if the shear modulus is
a constant (= n) — regardless of the behavior of A. This fact is also very important for
applications involving partial and/or patchy saturation (Mavko et al., 1998; Johnson, 2001).
Furthermore, this fact is closely related to the well-known bulk modulus formula of Hill (1963)
for isotropic composites having uniform shear modulus, and also to the Hashin-Shtrikman
bounds (Hashin and Shtrikman, 1961), which can be used to provide an elementary proof of
Hill’s equation. Nevertheless, this limit will not be of much interest to us here except as a
boundary condition on the results obtained. Furthermore, one of the main purposes of the
paper is to show how deviations from these limiting and rather restictive results affect the
predictions of the referenced work on partial and patchy saturation.

THOMSEN PARAMETERS € AND §

Thomsen’s €

An important anisotropy parameter for quasi-SV-waves (which is our main interest in this
paper) is Thomsen’s parameter €, defined in equation (2). Formula (12) for a may be rewritten
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as

2w =22 A \?
“‘<W>+C<x+2u> ’ o

which can be rearranged into the convenient and illuminating form

— (A+2 » ! Y 15
=t <k+2u><k+2u>_<k+2u«> ' (1)

This formula is very instructive because the term in square brackets is in Cauchy-Schwartz
form [(q2>(Q2> > (g Q)z], so this factor is nonnegative. Furthermore, the magnitude of this
term depends mainly on the fluctuations in the A Lamé parameter, and is largely independent
of w, since u appears only in the weighting factor 1/(A +2u). Clearly, if A = constant, then
this bracketed factor vanishes identically, regardless of the behavior of . Large fluctuations in
A will tend to make this term large. If in addition we consider Thomsen’s parameter € written
in a similar fashion as

2e=| (A +2 ! 1 » ! P\ 16
G_[< i m<k+2u>_ ]_ <A+2M><A+2u>_<k+2u«> ’ (1o

we find that the term enclosed in the first bracket on the right hand side is again in Cauchy-
Schwartz form showing that it always makes a positive contribution unless A +2u = constant,
in which case it vanishes. Similarly, the term enclosed in the second set of brackets is always
non-negative, but the minus preceding the second bracket causes this contribution to make a
negative contribution to 2¢ unless A = constant, in which case it vanishes. So, in general the
sign of € is indeterminate. The Thomsen parameter € may have either a positive or a negative
sign for a TI medium composed of arbitrary thin isotropic layers. Thomsen (2002) states that
€ > 0if K and u are positively correlated. But (16) shows that such correlations only produce
€ > 0 with certainty if they are also supplemented by the stronger condition that A > const [in
fact, L >~ const implies that there is a positive correlation between K and w, but the reverse
does not necessarily hold unless we also assume that the fluctuations in p are quite small —
an assumption that we do not make here].

Fluctuations of A in the earth have important implications for oil and gas exploration.
As we recalled in our earlier discussion, Gassmann’s well-known results (Gassmann, 1951)
show that, when isotropic porous elastic media are saturated with any fluid, the fluid has no
mechanical effect on the shear modulus ., but — when these results apply — it can have a
significant effect on the bulk modulus K = A + %M, and therefore on A. Thus, observed (high
spatial frequency) variations in layer shear modulus p should have no direct information about
fluid content, while such variations observed in layer Lamé parameter A, especially if they are
large variations, may contain important clues about variations in fluid content. So the observed
structure of € in (16) strongly suggests that small positive and all negative values of € may be
important indicators of significant fluctuations in fluid content (Berryman et al., 1999).
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Thomsen’s §

Thomsen’s parameter ¢ defined by Eq. (3) is pertinent for near vertical quasi- P-waves and can
also be rewritten as

e+ Ne=f=2D)
2c(c—1) '

This parameter is considerably more difficult to analyze than either y or € for various reasons,
some of which we will enumerate shortly. Thomsen (2002) provides some insight into the
behavior of § by noting that its sign depends only on the variations of the ratio V/V,. This
can be seen to be true from its definition by noting that

—f—zz—zz[<l>< L >_< : >]——21 LN (8)
¢ I VY AVE-PY R VT | e VPR W70 N

()= {5 9
Al )==—(=). (19)
vz = v\ v

Because of a controversy surrounding the sign of § for finely layered media (e.g., Levin,
1988; Thomsen, 1988; Anno, 1997), Berryman et al. (1999) performed a series of Monte
Carlo simulations with the purpose of establishing the existence or nonexistence of layered
models having positive §. Those simulation results should be interpreted neither as modeling
of natural sedimentation processes nor as an attempt to reconstruct any petrophysical relation-
ships. The main goal was to develop a general picture of the distribution of the sign of § using
many choices of constituent material properties. This analysis established a similarity in the
circumstances between the occurrence of positive § and the occurrence of small positive €
(i.e., both occur when Lamé A is fluctuating greatly from layer to layer). The positive values
of § are in fact most highly correlated with the smaller positive values of €. We should also
keep in mind the fact that € —§ > 0 is always true for models with isotropic layers (Postma,
1955; Berryman, 1979) and this fact also plays a role in these comparisons, determining the
unoccupied upper left hand corner of a § vs. € plot.

§ = (17)

where

SINGULAR VALUE DECOMPOSITION FOR STIFFNESS MATRIX

The singular value decomposition (SVD), or equivalently the eigenvalue decomposition, of
the real symmetric stiffness matrix appearing in (1) is relatively easy to perform. We can
immediately write down four eigenvectors:

0 0

(20)

S O = O O
SO = O OO
—_ o O O O O
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and their corresponding eigenvalues, respectively 2/, 21, 2m, and a —b = 2m. All four corre-
spond to shear modes of the system. The two remaining eigenvectors must be orthogonal to
all four of these and therefore both must have the general form

1
1
X
0 2D
0
0
Applying (21) to the stiffness matrix in (1) shows that the corresponding eigenvalue is
XxX=a+b+ fX, (22)
where the remaining condition that determines both X and y is
xX=2f4+cX. (23)
After substitution for x, we obtain a quadratic equation having the solutions
1 b— b—cT?
Xy=- —[u}i\/&k[u] . (24)
2 f f
The ranges of values for X are 0 < X4 < oo and, since X_ = —-2/X;, —oo < X_ <0.
The interpretation of the solutions X4 is simple for the isotropic limit where X = 1 and
X_ = =2, corresponding respectively to pure compression and pure shear modes. So, except

for special angles of propagation, these two modes always have mixed character, indicating
that pure compression cannot be excited in the system, and must always be coupled to shear.
Some types of pure shear modes can still be excited even in the nonisotropic cases, because
the other four eigenvectors in (20) are unaffected by this coupling, and they are all pure shear
modes. Pure compressional and shear modes are obtained as linear combinations of these two
mixed modes according to

1
1
X, X_ | _ -2
o 1 e [=aen] o | (25)
0 0 0
0 0 0
withr = =2(X4 —1)/[ X+ (X4 4+ 2)] for pure shear, and
1 1 1
1 1 1
X, X_|_ 1
o |51 o |7 (I+s) ol (26)
0 0 0
0 0 0
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with s = X (X4 —1)/(X+ +2) for pure compression.

To understand the behavior of X in terms of the layer property fluctuations or, alterna-
tively, in terms of the Thomsen parameters, it is first helpful to note that the pertinent functional

Fx)= % [—x + 8+ x2] is easily shown to be a monotonic function of its argument x. So it
is sufficient to study the behavior of the argument x =(a+b—c¢)/f.

Exact results for isotropic layers

Combining results from Eqgs. (8)—(12), we find after some work on rearranging the terms that

= (em) [l
o \r+2u A+2u A+2u

_8{<xf22u><k+lzu>_<xf2u>2” @7

where the correction involving m — u in the numerator is the difference of the shear modulus
from the layer-averaged shear modulus m, and will be the dominant correction when fluc-
tuations in w are small. The fact that ((m —w)/u) = (u) (1/n) —1 > 0, suggests that this
dominant correction to unity (since the leading term is exactly unity) for this expression will
be positive if A and p are positively correlated throughout all the layers, but the correction
could be negative in cases where there is a strong negative correlation between A and p. On
the other hand, the term in curly brackets in (27) is again in Cauchy-Schwartz form (i.e.,
(qz)(Qz) — (g 0)* > 0), and therefore is always non-negative. But, since it is multiplied by
—1, the contribution to this expression is non-positive. This term is also quadratic in the devi-
ations of u from its layer average, and thus is of higher order than the term explicitly involving
m — . So, if the fluctuations in shear modulus are very large throughout the layered medium,
the quadratic terms can dominate — in which case the overall result could be less than unity.
Numerical examples developed by applying a code of V. Grechka [used previously in a similar
context by Berryman etz al. (1999)] confirm these analytical results.

Our main conclusion is that the shear modulus fluctuations giving rise to the anisotropy due
to stacks of thin isotropic layers are (as expected) the main source of deviations of (27) from
unity. But now we can say more, since positive deviations of this parameter from unity are
generally associated with smaller magnitude fluctuations of the layer shear modulus, whereas
negative deviations from unity must be due to large magnitude fluctuations in these shear
moduli.

Approximate results if Thomsen parameters have small values

Using the definitions of the Thomsen parameters, we can also rewrite the terms appearing in
(27) in order to make connection with this related point of view. Recalling (5) and the fact that
b =a—2m, we have
a+b—c 3
—~ 1+
f c—2l

(c6+4ly)+ [c(e —8)—4ly], (28)

c—2l
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with some higher order corrections involving powers of § and products of § with € and y that
we neglected in this equation. We have added and subtracted equally some terms proportional
to &, and others proportional to y, in order to emphasize the similarities between the form (28)
and that found previously in (27). In particular, the difference € — 6 is known (Postma, 1955;
Berryman, 1979) to be non-negative and its deviations from zero depend on fluctuations in p
from layer to layer, behavior similar to that of the final term in (27). Since the formula (28)
is only approximate and its interpretation requires the use of various other results we derive
subsequently for other purposes, for now we will delay further discussion of this to a point
later in the paper. [See the discussion of Eq. (62).]

DISPERSION RELATIONS FOR SEISMIC WAVES

The equations of motion and their solutions for seismic waves in anisotropic media are well
known, and have been derived in many places including Berryman (1979) and Thomsen
(1986). The dispersion relations for phase velocities are

1
pwl = 3 {(a + Dk} 4+ (c+Dk3 + \/[(a — D2 —(c = D3P +4(f +z)21<f/<§} . (29

for quasi-compressional (4) waves and quasi-SV (—) waves (i.e., vertically polarized quasi-
shear waves, by which we mean the plane normal to the cross-product of the polarization
vector and the propagation vector is vertical) and

pw? = mk? 4 1k3, (30)

for horizontally polarized shear waves. In these equations, p is the overall density (includ-
ing fluids when present), @ is the angular frequency, k; and k3 are horizontal and vertical
wavenumbers (respectively), and the phase velocities are determined simply by V = w/k with

k=, /kf +k§. Elastically, the SH wave depends only on the two parameters / and m, which
are not dependent in any way on layer Lamé parameter A and, therefore, will play no role
in the poroelastic analysis. The densities of any fluids present affect all three wave speeds
equally, and cannot therefore contribute to shear wave bi-refringence by itself. Thus, we can
safely ignore SH except when we want to check for shear wave splitting — in which case the
SH results will be most useful as a baseline for such comparisons.

The dispersion relations for quasi-P- and quasi-SV-waves can be rewritten in a number
of instructive ways. One of these that we will choose for reasons that will become apparent
shortly is

1
pwi = 3 [(a+Dki +(c+Dk3 +

\/[(a +Dk + (¢ +DI3T? — 4l (ak] 4 ckIk2 +{(a = D(c =D = (f +l)2}kfk§]} - (3D

Written this way, it is obvious that the following two relations hold:

pw’ + pw’ = (a+Dki+(c+Dk3, (32)
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and
pw; - pw? = (aki + k> +[(a —1)(c —1) — (f +1)*1kik3, (33)

either of which could have been obtained directly from (29) without the intermediate step of
3.

We are motivated to write the equations in this way in order to try to avoid evaluating the
square root in (29) directly. Rather, we would like to arrive at a natural approximation that is
quite accurate, but does not involve the square root operation. The desire to do this is not new
(Thomsen, 1986), but our goal is different since we must necessarily treat strong anisotropy in
this paper. From a general understanding of the problem, it is clear that a reasonable way of
making use of (32) is to make the identifications

pw? = aki+cki — A, (34)
and
pw? =1k + A, (35)
with A still to be determined. Then, substituting these expressions into (33), we find that
(ak? +ck3 —1k* — M)A = [(a —1)(c — 1) — (f +D?1k3k3 (36)

Solving (36) for A would just give the original results back again. So the point of (36) is not
to solve it exactly, but rather to use it as the basis of an approximation scheme. If A is small,
then we can presumably neglect it inside the parenthesis on the left hand side of (36) — or we
could just keep a small number of terms in an expansion.

The leading term, and the only one we will consider here (but see the Appendix for further
discussion), is

A [(a—D(c—1)—(f +D*1kik3 _la=De=D—(f +1)?]
 (@-DIF+(e-DEE—A T (@—-D/k+Cc—D/k}

(37)

The numerator of this expression is known to be a positive quantity for layers of isotropic
materials (Postma, 1955; Berryman, 1979). Furthermore, it can be rewritten (without approx-
imation) in terms of Thomsen’s parameters as

[(a —D)(c—D)—(f +1)*] =2c(c—1)(e—9). (38)

Using the first of the identities noted earlier in (5), we can also rewrite the first elasticity factor
in the denominator as a —/ = (¢ —[)[1 4 2ce/(c —1)]. Combining these results in the limit of
k% — 0 (for relatively small horizontal offset), we find that

pwl > ck* +2c8ki, (39)
and

pw? ~ 1k* +2c(e — §)k?, (40)
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with A >~ 2¢(e — S)kf for very small angles from the vertical. These two equations may be rec-
ognized simply as small angle approximations to the weak-anisotropy equations of Thomsen
(1986). However, the main thrust of this paper (as we will soon see) requires strong anisotropy
and therefore also requires improved approximations, which can be obtained to any desired
order with only a little more effort by using (36) instead of the first approximation derived here
in (37). Note that Egs. (39) and (40) were derived without assumptions about the smallness of
€ Or 6.

Although the approximations being discussed in this section are of some practical interest
in their own right, their elaboration at this point would lead us away from the main theme of
the paper. So, to avoid further digression here from the issue of fluid effects on shear modulus,
we collect our remaining results concerning these dispersion relation approximations in the
Appendix.

INTERPRETATION OF P AND SV COEFFICIENTS FOR LAYERED MEDIA

General analysis for VTT media

The correction terms, i.e., those contained in the factor A in (35) for quasi-SV waves in
anisotropic media, are proportional to the factor

A=(a—Dc—D)—(f+D*=2c(c—1)(e—3), (41)

which is sometimes called the anellipticity parameter. Similarly, we will call A the anelliptic-
ity correction. For the case of strong anisotropy that we are considering here, the presence of
A /(c —1) in (40) just introduces ellipticity into the move out, but the higher order corrections
that we neglected can introduce deviations from ellipticity — hence anellipticity.

Clearly, from (40) for quasi-SV-waves [and in layered media at this order of approxima-
tion], the anellipticity parameter holds all the information about the presence or absence of
fluids that is not already contained in the density factor p. So it will be worth our time to study
this factor in more detail. First note that, after rearrangement, we have the general identity

A=(f+Da+c—2f—a)+@— f—2D)(c— f—2D), (42)

which is true for all transversely isotropic media.

In some earlier work (Berryman, 2003), the author has shown that it is convenient to intro-
duce two special-purpose effective shear moduli 1} and u3 associated with a and ¢, namely,

uy=a—m—f and 2us=c—f. (43)
Furthermore, it was shown that the combination defined by

Gerr = (1} +213)/3 (44)
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plays a particular role in the theory, as it is only this effective shear modulus for the anisotropic
system that can also contain information about fluid content. It turns out that (42) can be
rewritten in terms of this effective shear modulus if we first introduce two more parameters:

1 1 -
K= fai| gt | 45)

and
G =[3Gerr+m—4l] /3. (46)
Then, (42) can be simply rewritten as
A=3K. @7)

This result is analogous to, but distinct from, a product formula relating the effective shear
modulus G.rr and the bulk modulus

-1
K=f+[ L, fJ 48)

a—m—f c¢c—
to the eigenvalues of the elastic matrix according to
X+X- =6KG,yy. (49)
Eq. (49) can be motivated by noting that, in the isotropic limit, the eigenvalues are 3K and 2.

[Side notes concerning layered materials: In the isotropic limit, when u — constant, we
have K — f +2u/3, while X — f + . So these two parameters are not the same, but they
do have strong similarities in their behavior. In contrast, G.rf — u, while § — 0 in the same
limit. It is also possible to show for layered materials that in general [ < K — f < m, with the
lower limit being optimum, i.e., attainable.]

Also, since Thomsen’s § plays an important role in (39), it is helpful to note that (17) can
also be rewritten as

ca:—@—f—yﬁl—iiii§]

2(c—1) S

which shows that, at least for weakly anisotropic media (in which case the deviation from unity
inside the brackets is neglected), ¢§ is very nearly a direct measure of the quantity ¢ — f —2I.

Analysis for isotropic layers

The analysis presented in the previous subsection is general for all VTI elastic media. But we
can say more by assuming now that the anisotropy arises due to layers of isotropic elastic (or
possibly poroelastic) media. Then, using (8)-(12), we have the following relations

A+21
2w/’

f+y:c< 51)
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_ oo HE
c_f_zz_zc<k+zﬂ>, (52)

|Bs) -2 () |
a—f-2=2{({—2")_2 — . (53)
A+2u A2 \A+2u] \r+2u

Eq. (51) is an easy consequence of the Backus averaging formulas. Then, (52) shows that ¢
differs from f 4 2/ only by a term that measures the difference in the weighted average of u
and /. Eq. (53) shows that a differs from f 42/ in a more complicated fashion that depends
on the difference in the weighted average of (2m —[) and u, as well as a term that is higher
order in the fluctuations of the layer p values. Combining these results, we have

Gurrmm 2| [ ! u\ 54
T <k+2u><k+2u>_<k+2u«> ’ oY

showing that all the interesting behavior (including strong u fluctuations in the layers together
with A dependence) is collected in G.¢. Since the product of (52) and (53) is clearly of higher
order in the fluctuations of the layer shear moduli, it is not hard to see that, to leading order
when these fluctuation effects are small,

and

A~ (¢ =BG opp +m —4l). (55)

To give a quick estimate, note that if all the layers have the same value of Poisson’s ratio, then
the ratio r = A/u is constant. Then, it is easy to show that G.ry =m —4(m —1)/3(2+7r).
Since —2/3 < r < oo, the effective shear modulus for this class of models lies in the range
I < Gerr < m. From this fact, we can conclude that the important coefficient in (40) is given
to a good approximation by

2c(e —8) = 3Gops +m —4l, (56)

and ranges from 2/y to 8/y.

To study the fluid effects, the drained Lamé parameter X in each layer should be replaced
under undrained conditions by

A= K*—2u/3, (57)

where K* was defined by (6). Then, for small fluctuations in w, Eq. (56) shows that the leading
order terms due to these shear modulus variations contributing to € — § actually do not depend
on the fluids at all (since m — [/ does not depend on them). With no fluid in the pores, there is a
contribution to the shear wave speed for SV in layered media, just due to the fluctuations in the
shear moduli. One part of the contribution is always independent of any fluids that might be
present, but the magnitude of this contribution (which is always positive) is small whenever the
difference m — [ is also small. If m —1 is large, then the magnitude of the additional increase
due to liquids in the pores can be very substantial as we will see in the following examples.
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So the effects of liquids on G.rr will generally be weak when the fluctuations in p are weak,
and strong when they are strong.

Furthermore, when the product o B # 0, we first choose to define

m — Geff

ratiogg = (58)

m—1

so that, for all possible layered models, we have 0 < ratio,pg < 1. Then, we consider plotting
the quantity 1 —ratioyp/ratiog versus y (which we treat as a simple quantitative measure of
the fluctuations in the layer shear moduli). To generate a class of 900 models for each of three
choices of « (treated as a single constant for all layers in each individual model) in order to
illustrate the behavior of these quantities, I made use of a code of V. Grechka [used previously
in a joint publication (Berryman et al., 1999)]. This code chooses layer parameters randomly
from within the following (arguable, but generally reasonable) range of values: 1.5 <V, <5.0
km/s, 0.1 < V/V, <0.8, and 1.8 < p < 2.8 x 103 kg/m>. The results are displayed in Figure
1 for @ = 0.5, 0.8, and 0.9. We find empirically that (for B = 1) the values never exceed « for
any set of choices for the layer model parameters. This apparent fact (as determined by these
computer experiments) does not appear to be easy to prove from the general formula. But one
simple though nontrivial calculation we can do is based again on an assumption that the bulk
moduli in the layers are always proportional to the shear modulus, so K = su, for some fixed
value of of the proportinality factor s > 0. Then, for a given model, we find that

ratioyp B aB -
ratiog 1+4(1 —aB)/3s —

aB, (59)

in agreement with the empiricial result from the synthetic data shown in Figure 1.

To check the corresponding result for P-waves, we need to estimate §. Making use of (50),

we have
_ A -1 _
c3=—2c<“ l> 1—1—1<l> <“ l> . (60)
A42u w(A+2w1) A+20

Working to the same order as we did for the final expression in (56), we can neglect the second
term in the square brackets of (60). What remains shows that pore fluids would have an effect
on this result. The result is

uw—1
8t~ —2c* . 61
‘ ‘ <k*+2u> D

If desired, a similar replacement can also be made for G.fr in (44) using the fact that 2(u3 —
l) =c— f—2I. Eq. (61) shows that, since ¢* and 6* both depend on the A*’s (although in
opposite ways, since one increases while the other decreases as A* increases), the product of
these factors will have some dependence on fluids. The degree to which fluctuations in A* and
wu are correlated, or anticorrelated, as they vary from layer to layer will also affect these results
in predictable ways.
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Figure 1: .

Blue dots are for « = 0.9, red for « = 0.8, and green for « = 0.5. Note, that in each case, all
the points for a particular choice of o are bounded above precisely by the value of «. (A
general proof of this empirical observation is currently lacking.) ]Scatter plot illustrating how
G.yr varies over a physically sensible range of layered isotropic media (see text for details)
with 2700 distinct models and B = 1 [see Eq. (58) in the text for the definition of ratio,].
Blue dots are for « = 0.9, red for « = 0.8, and green for « = 0.5. Note, that in each case, all
the points for a particular choice of o are bounded above precisely by the value of «. (A

general proof of this empirical observation is currently lacking.) [NR]
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Interpretation of the results

Now we have derived all the results needed to interpret Eq. (28) and show how it is related to
(27). First, we note some of the main terms missing from (28) are those due to approximations
made to é and the denominators of (27), which have been approximated as f >~ ¢ — 2/ instead
of f ~c(1+48)—2l. Then, from (56), it is easy to see that the final term in (28) vanishes to
lowest order, and that the remainder is given exactly by the shear modulus fluctuation terms
in brackets in (53) — in complete agreement with the final terms of (27). Then, from (60), it
follows that the leading contribution to the factor ¢é +4ly is

§5+4ly ~20(L—_E (62)
c ~ Zc s
4 " 2u

in complete agreement with the second term on the right hand side of (27).

In the case of very strong fluctuations in the layer shear moduli, then (53) and (60) both
show that pore fluids effects are magnified due to the fluctuations in layer shear moduli and,
therefore, contribute more to the anisotropy correction factors 2c¢*(e* — §*) and 2c¢*6* for
undrained porous media. So these effects will be more easily observed in seismic, sonic,
or ultrasonic data under these circumstances. When these effects are present, the vertically
polarized quasi-shear mode will show the highest magnitude effect, the horizontally polarized
shear mode will show no effect, and the quasi-compressional mode will show an effect of
intermediate magnitude. It is known that these effects, when present, are always strongest at
45°, and are diminished when the angle of propagation is either 0° or 90° relative to the lay-
ering direction. We will test these analytical predictions with numerical examples in the next
section.

To summarize our main result here: The most significant contributions of the liquid de-
pendence to shear waves comes into the wave dispersion formulas through coefficient a (or
equivalently €). Equations (53) and (54) show that

a=2f—c+m+3G.y. (63)

For small fluctuations in u, coefficients a and ¢ have comparable magnitude dependence on
the fluid effects, but of opposite sign. For large fluctuations, the effects on a are much larger
(quadratic) than those on ¢ (linear). Propagation at normal incidence will never show much ef-
fect due to the liquids, while propagation at angles closer to 45° can show large enhancements
in both quasi-P and quasi-SV waves (when shear fluctuations are large), but still no effect on
SH waves.

COMPUTED EXAMPLES

From previous work (Berryman, 2003), we know that large fluctuations in the layer shear
moduli are required before significant deviations from Gassmann’s quasi-static constant result,
thereby showing that the shear modulus dependence on fluid properties can become noticeable.
To generate a model that demonstrates these results, again I made use of the same code of V.
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Grechka as described when presenting Figure 1. But this time I arbitrarily picked just one of
the models that seemed to be most interesting for the present purposes. The parameters of this
model are displayed in TABLE 1. The results for the various elastic coefficients and Thomsen
parameters are displayed in TABLE 2. The results of the calculations for V), and Vj, are shown
in Figures 1 and 2.

The model calculations were simplified in one way: the value of the Biot-Willis parameter
was chosen to be a uniform value of « = 0.8 in all layers. We could have actually computed
a value of o from the other layer parameters, but to do so would require another assumption
about the porosity values in each layer. Doing this seemed an exercise of little value because
we are just trying to show in a simple way that the formulas given here really do produce the
types of results predicted analytically, and also to get a feeling for the magnitude of the effects.
Furthermore, if « is a constant, then it is only the product o B that matters. Whatever choice of
constant & < 1 is made, it mainly determines the maximum value of the product o B for B in
the range [0, 1]. So, for a parameter study, it is only important not to choose too a small value
of o, which is why the choice @ = 0.8 was made. This means that the maximum amplification
of the bulk modulus due to fluid effects can be as high as a factor of 5 [= 1/(1 — «)] for the
present examples.

TABLE 1. Layer parameters for the three materials in a simple layered medium used to
produce the examples in Figures 2 and 3. For this model, y = 7.882 (indicating strong
anisotropy).

Constituent | K (GPa) | u (GPa) | z (m/m)
1 9.4541 | 0.0965 0.477
2 14.7926 | 4.0290 | 0.276
3 43.5854 | 8.7785 0.247
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TABLE 2. The VTI elastic coefficients and Thomsen parameters for the materials (see Table
1) used in the computed examples of Figures 2 and 3.

Elastic Parameters Case Case Case
and Density B=0 B:% B=1
a (GPa) 33.8345 | 50.3523 | 132.7003
c (GPa) 33.1948 | 50.4715 | 134.2036
f (GPa) 22.2062 | 38.5857 | 120.7006
[ (GPa) 4.0138 | 4.0138 4.0138
m (GPa) 6.7777 | 6.7777 6.7777
Gerr (GPa) 5.2797 | 5.8841 6.2417
5 -0.0847 | -0.0733 | -0.0399
€—94 0.0943 | 0.0745 0.0343
y 0.3443 | 0.3443 0.3443
o (kg/m?) 2120.0 | 2310.0 2320.0

We took the porosity to be ¢ = 0.2, and the overall density to be p = (1 — ¢)ps + @ Spr,
where p;, = 2650.0 kg/m3, S is liquid saturation (0 < § < 1), and p; = 1000.0 kg/m3. Then,
three cases were considered: (1) Gas saturation S = 0 and B = 0, which is also the drained
case, assuming that the effect of the saturating gas on the moduli is negligible. (2) Partial
liquid saturation S =0.95 and B = % [which is intended to model a case of partial liquid satu-
ration], intermediate between the other two cases. For smaller values of liquid saturation, the
effect of the liquid might not be noticeable, since the gas-liquid mixture when homogeneously
mixed will act much like the pure gas in compression, although the density effect will still be
present. When the liquid fills most of the pore-space, and the gas occupies less than about
3% of the entire volume of the rock, the gas starts to become disconnected, and we expect the
effect of the liquid to start becoming more noticeable, and therefore we choose B = % to be
representative of this case. And, finally, (3) full liquid saturation S =1 and B = 1, which is
also the fully undrained case. We assume for the purposes of this example that a fully sat-
urating liquid has the maximum possible stiffening effect on the locally microhomogeneous,
isotropic, poroelastic medium.

The results shown in Figures 2 and 3 are in complete qualitative and quantitative agreement
with the analytical predictions described, as expected.

DISCUSSION AND CONCLUSIONS

The primary question we address in this paper is this: Does the effective shear wave speed of
a long-wavelength quasi-SV wave in a finely layered VTI material depend on the fluid in the
porous layers, even though Gassmann’s results (Gassmann, 1951) say that — without doubt —
the shear modulus in each individual layer is mechanically independent of the fluid? Perhaps
surprisingly, we show that the answer to the question is positive. The quasi-SV wave always
does depend on the fluid mechanics, unless the shear modulus of all the layers is exactly a
uniform constant. Furthermore, the magnitude of this effect is largest when the layer shear
modulus fluctuations are large.
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Figure 2: Compressional wave speed V), as a function of angle 6 from the vertical. Two curves
shown correspond to choices of Skempton’s coefficient B = 0 for the drained case (dashed
line) and B = 1 for the undrained case (solid line). The case B = % (dot-dash line) is used
to model partial saturation conditions as described in the text. The Biot-Willis parameter was

chosen to be @ = 0.8, constant in all layers. [NR]
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Figure 3: Vertically polarized shear wave speed Vs, as a function of angle 6 from the vertical.
Two curves shown correspond to choices of Skempton’s coefficient B = 0 for the drained case
(dashed line) and B =1 for the undrained case (solid). The case B = % (dot-dash line) is used
to model partial saturation conditions as described in the text. The Biot-Willis parameter was

chosen to be @ = 0.8, constant in all layers. [NR]
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In addition, our analysis leads us to consider some different ways of expanding the for-
mulas for the dispersion relationships for the quasi-P and quasi-SV modes. These secondary
results may also have some practical benefits and are illustrated in the Appendix.

Although there are five effective shear moduli for any layered VTI medium, the main
result of the paper is that there is just one effective shear modulus for the layered system
that contains all the dependence of elastic or poroelastic constants on pore fluids — all that
can be observed in vertically polarized shear waves in VTI media. The relevant modulus
Gy is related to uniaxial shear strain and the relevant axis of symmetry is the vertical one,
normal to the bedding planes. The pore-fluid effects on this effective shear modulus can be
substantial when the medium behaves in an undrained fashion, as might be expected at higher
frequencies such as sonic and ultrasonic for well-logging or laboratory experiments, or at
seismic frequencies for lower permeability regions of reservoirs. These predictions are clearly
illustrated by the example in Figure 2.

The stiffness coefficients a, b, ¢, and f, all contain contributions from fluid effects for
undrained layers. However, only stiffness a and Thomsen parameter € contain terms quadratic
in layer shear modulus fluctuations, and these contributions are the ones creating the most
significant effects on shear waves for strong anisotropy.
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APPENDIX A
APPROXIMATE PHASE VELOCITIES

Probably the most common way to write the linearized equations for the phase velocities in
VTI media (Thomsen, 1986; 2002; Riiger, 2002) is

V,p(0) = Vyo[1 +85sin® 0 cos® 6 + e sin* 0], (A-1)
V2
Ve (0) >~ Vyo [1 + izo(e —8)sin2000529i| , (A-2)
VsO
and
Von(0) = Vyo[L 4y sin®0]. (A-3)

The approximations in all three cases are made based on assumed smallness of the parameters
8, €, y, which in fact may or may not hold for any particular layered medium. However,
the work in this paper demands better approximations than these, because the assumptions
of weak anisotropy are always violated in the cases of most interest, i.e., when the SV-wave
velocity actually does depend in a significant way on fluid content. Thomsen (2002) (in his
Appendix III) quotes another form of the dispersion relation for V,(6) that is more useful for
our purposes (modified here to correct an obvious typo in the leading term):

VH0) > V3 +2V,,,(8sin° 0 +nsin*6), (A-4)
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where szo =c/p, Vamo = Vpo(1+8), and n = (¢ — ) /(1 +26) is the combination of parameters
introduced by Alkhalifah and Tsvankin (1996). Although (A-4) is still an approximation, it
is much closer in form to the dispersion relation quoted here in (34). The form (A-4) still
assumes smallness of the anisotropy parameters, but the usual square root approximation has
not been made yet, so the correspondence with (34) is easier to scan. If we neglect higher order
contributions to A and thereby make the approximation that

A ~ 2k?c(e — 8)sin® 0 cos? 6, (A-5)
then (34) becomes
V(0) > V42V 38 sin® 6+ 2V (1+28)p sin* 6. (A-6)

If in addition we also make the small anisotropy approximations szOS ~ V2 §and szo(l +
28) ~ Vnzmo in (A-6), then the result recovers (A-4).

Our main goal in this Appendix is to make a direct comparison between the exact formulas
(34) and (35), the approximate formulas resulting from (34) and (35) when A is replaced by
its first approximation (37), and either standard equations (A-1) and (A-2) or approximation
(A-4) and some yet to be determined companion equation for quasi-SV waves. The easiest and
most consistent way to arrive at an appropriate approximate form for Vszv is to use the exact
relations (34) and (35) to determine what effective value of A,rs has been used in (A-4) and
then use it again in (35). We find

Aos(0) ~ 2k pV,, (€ — 8)sin” 6 cos™ 0 — 2k pV 367 (2 4 8) sin® 6. (A-7)

However, this formula has the undesirable characteristic that it does not vanish as it should
for & = 90°. The offending terms are second order in § and therefore are usually neglected for
weak anisotropy. But the weak anisotropy assumptions implicit in (A-4) are not valid in the
present context, so this is nevertheless a problem for us here. Making proper allowance for
this, we can arrive at a corrected A that has the desired behavior and still agrees with the prior
results under weak anisotropy conditions:

Acorr(0) = 2k*p V2, 1sin’ 6 cos? 6, (A-8)

nmo

and, therefore, that a good choice for Vszv to the same level of approximation is

VZ(0) = V2 + Acorr(0)/ k*p. (A-9)

N

But these modifications have led us back to the approximation (34) and therefore provide
nothing new. So instead of comparisons to (A-4) and (A-9), we will choose to make our com-
parisons to (A-1) and (A-2). In particular, these two equations amount to using

Acsp = 2k>pV 3y (e — 8)sin® cos® ), (A-10)

except for some higher order corrections in A.¢r which would always be small if the anisotropy
were really always weak. Although Egs. (A-8) and (A-10) are apparently the same, this fact
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Figure A-1: Compressional wave velocities as computed exactly from the dispersion relation
(34), by (34) using approximation (37) for A, and by the linear approximation (64). This
layered model is the same as in Figures 2 and 3 for the case B = 1. |jim1-compvels ‘ [NR]

is a bit misleading since A and its corrections arise in the final results in different ways be-
cause of differing square root approximations and different assumptions about the presence or
absence of strong anisotropy.

Numerical comparisons of these three sets of results for quasi-P and quasi-SV waves are
summarized in Figures 4 and 5 for one strong anisotropy example. The comparison is obvi-
ously not a fair one for the weak anisotropy equations since they are being used beyond their
acknowledged (and expected) range of validity. The main point of the exercise is to see that
the approximations made here give reasonable approximations to the exact results for the full
range of possible incidence angles for strong anisotropy conditions, while the standard results
do not fair as well. All the methods agree quite well for compressional waves in this model.
The evaluation of (35) using (37) to approximate A gives a clear improvement over (A-2) for
the quasi-SV wave velocity in a range of intermediate angles. Overall, the weak anisotropy
formulas (A-1) and (A-2) give better results for strong anisotropy in this case than might have
been expected.
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Figure A-2: Shear wave velocities as computed exactly from the dispersion relation (35), by
(35) using approximation (37) for A, and by the linear approximation (66). This layered model
is the same as in Figures 2 and 3 for the case B = 1. ‘ jim1-shearvels ‘ [NR]
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