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Adaptive phase-ray wavefield extrapolation

Jeff Shragge and Paul Sava1

ABSTRACT

Riemannian wavefield extrapolation (RWE) is a generalization of downward continuation
to coordinate systems that closely conform to the orientation of extrapolated wavefields.
If the coordinate system overturns, so does the computed wavefield, despite being extrap-
olated with a one-way solution to the acoustic wave-equation. This allows for accurate
imaging of structures of arbitrarily steep dips with simple operators equivalent to standard
15◦ extrapolators. An obvious question for RWE is which is an optimal coordinate system
for a given velocity model. One option is to compute ray coordinates as a solution to the
wide-band eikonal equation in a smoothed velocity model. However, this solution ignores
the natural variability and frequency dependence of wavepaths in cases of complicated
velocity models, for example under salt bodies. The solution advocated in this paper is
a recursive bootstrap procedure where a frequency-dependent coordinate system is com-
puted on-the-fly at every step from the gradient of the monochromatic wavefield phase of
the preceding few steps, coupled with standard RWE.

INTRODUCTION

Wavefield extrapolation extends surface-recorded data to depth through application of a wave-
equation operator. The choice of operator depends mainly on practical considerations (e.g.
computer memory, total flop count); however, one persistent theoretical constraint is the de-
gree of velocity model complexity. In laterally invariant media, closed-form Fourier-domain
operators (single square root, SSR) can accurately extrapolate surface recorded wavefields up
to 90◦ (Gazdag, 1978; Claerbout, 1985). However, such solutions are inapplicable in media
characterized by lateral velocity variation, and approximate solutions to the SSR equation are
employed. Consequently, the accuracy of the extrapolation operators degrades, particularly at
high angles relative to the downward extrapolation axis, and more sophisticated procedures
are required to ensure wavefield accuracy.

Improved wavefield extrapolation can be achieved in many ways. First, one may improve
the high-angle accuracy of an operator while retaining a Cartesian computational grid. Exam-
ples of this include incorporating higher-order terms in the expansion of Fourier domain op-
erators (e.g. Fourier finite-difference (Ristow and Ruhl, 1994), generalized screen propagator
(de Hoop et al., 2000)), or using tilted Cartesian coordinate systems (Zhang and McMechan,
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1997; Etgen, 2002; Shan and Biondi, 2004) that extend the accuracy of high-angle propaga-
tion. Second, seismic wavefields may be spatially partitioned into more manageable sections
and then independently extrapolated in preferred directions. For example, decomposing data
sections to form local beams for extrapolating along tubes of finite thickness (Hill, 2001; Al-
bertin et al., 2001; Gray et al., 2002; Brandsberg-Dahl and Etgen, 2003).

A third option is to abandon the strictures of Cartesian coordinates altogether and represent
the physics of one-way wavefield extrapolation in a generalized coordinate system that obeys
the tenets of differential geometry (Guggenheimer, 1977). In particular, one could use a ba-
sis (or coordinate system) that conforms to where the wavefronts propagate (Sava and Fomel,
2004). In this reference frame low-angle operators remain applicable, and the extrapolation
procedure is of high fidelity, even at arbitrarily large angles to depth axis. The strategy es-
poused in this paper is the latter: it is more prudent to adjust the coordinate system to conform
better with the physics than to force the physics to work in Cartesian coordinates, or on an a
priori spatial partition of the data or model space.

One judicious choice of non-Cartesian coordinate system is a basis derived from a suite
of rays. In this approach, the natural wavefield extrapolation direction is travel-time along a
ray, with orthogonal coordinates directed across the rayfront at a constant time step. How-
ever, unlike for Cartesian coordinates, the distance between adjacent rays may freely expand
or contract according to the lateral variations in the velocity model. Thus, properly defining
the coordinate metric requires additional parameters that account for the Jacobian-like coor-
dinate spreading. Given a rayfield and the associated Jacobian parameters, the solution to the
corresponding one-way acoustic wave-equation is generated in an ordinary fashion (Sava and
Fomel, 2004). The ray-coordinate wavefield solution is then interpolated back to a Cartesian
mesh through a simple mapping operation.

One of the practical difficulties of ray-coordinate-based wavefield extrapolation is devel-
oping a robust procedure for handling triplicating rayfields that naturally arise due to wavefield
multipathing. In particular, we need to prevent numerical instabilities from arising when cal-
culating coordinate Jacobian spreading and related parameters that require computing finite-
difference derivatives at the ray-crossing locations. Sava and Fomel (2004) apply a regulariza-
tion parameter that prevents division by zero. This procedure, though, can lead to anomalous
extrapolation amplitudes, which motivates us to seek out new methods for calculating rayfields
and circumventing the ubiquitous problem of ray-coordinate triplication.

Underlying ray-coordinate systems may be generated by assuming that the rayfield is
frequency-independent, and computing the solution to the wide-band eikonal equation (Čer-
vený, 2001). However, this approximation can be inappropriate for complex geology where
a stationary ray-coordinate system inadequately describes monochromatic wave propagation
over a range of frequencies. One example is the significant frequency-dependence of ray-
field illumination across salt-sediment interfaces characterized by large impedance contrasts
and rugose topography. Hence, an important question is how does one expect to maintain a
sufficient and consistent wavefield illumination when the underlying rayfield is itself strongly
dependent on frequency? Hence, a frequency-dependent ray-coordinate systems should be an
invaluable tool for enhancing imaging practice in complex media.
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This paper presents a procedure for constructing a frequency-dependent ray-coordinate
system in an adaptive manner directly from the wavefield. The key idea is that the rayfront
vectors at any given step are directly calculable from the phase-gradient of previous wavefield
solution steps. This naturally leads to a bootstrapping procedure where one alternates between
calculating the coordinate system for the next step, and the corresponding wavefield solution
at that step. The methodology is similar to the Riemannian wavefield extrapolation (RWE)
technique presented by Sava and Fomel (2004), where rayfields are traced through a smoothed
velocity model using a Huygens’ wavefront tracer (Sava and Fomel, 2001). The method dif-
fers, though, in that frequency-stationarity of the rayfield is not assumed, and the rayfield is
instead calculated on-the-fly from the monochromatic wavefield. This method also differs
from Shragge and Biondi (2003) in that an initial wavefield is not required as a precondition
for solution. Also included in this report is a companion paper, (Shragge and Biondi, 2004),
that discusses the strategy of using wavefield solutions precomputed on a background velocity
model to train an updated ray-coordinate system using phase-rays.

We begin this paper with a review of phase-ray theory, frequency-dependent coordinate
system generation, and ray-coordinate wavefield extrapolation. Then, we introduce the boot-
strap procedure by which the ray-coordinate system and accompanying wavefield solutions are
computed. Next, we show examples of wavefields extrapolated in adaptive phase-ray coordi-
nates, and conclude with a discussion of the complications posed by triplicating coordinate
systems. A more general formulation involving the oriented wave equation (Fomel, 2003)
has the potential to address this problem in a robust theoretical framework, although such
opportunity remains subject to future research.

THEORY

Phase-rayfields

A monochromatic acoustic wavefield, U, at frequency, ω, and spatial location, x, may be
represented by,

U(x,ω) = A(x,ω)eiφ(x,ω) , (1)

where A(x,ω) and φ(x,w) are the amplitude and phase functions, respectively. For monochro-
matic waves propagating through isotropic media, the gradient of phase function, ∇φ(x,w),
represents the instantaneous direction of energy transport and is a characteristic to the solu-
tion of the governing Helmholtz equation (Foreman, 1989). Analogous to the ray precept
in broadband theory, this vector quantity defines the instantaneous direction and magnitude
of one ray in a continuous ray manifold. However, to differentiate between the broadband
and monochromatic ray representations, we term the latter quantity phase-rays (Shragge and
Biondi, 2003). The governing differential equations for a phase-ray, ri , are presented in the
Exact-ray formulation of Foreman (1989). In Cartesian coordinates, the subscript i on r refers
to the projection of the ray along the x and z axes - rx and rz , respectively. The phase-ray
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equations, in summation notation, are,

dri

ds
=

∂φ

∂xi

[(

∂φ

∂xk

)(

∂φ

∂xk

)]−
1
2

, (2)

where φ is the above phase function, xi is a coordinate of the underlying Cartesian grid, and the
repeated index k here (and throughout the paper) represents a summation over all coordinate
indices. Scalar step magnitude, ds, is given by,

ds(x) = v(x)dτ , (3)

where v(x) is the velocity in the neighborhood of ray, ri (x), and dτ is an element of time along
the ray.

Calculating phase-rays thus requires isolating the gradient of the monochromatic phase
function. An efficient procedure is to calculate the ratio of the wavefield gradient to the wave-
field itself,

∇U

U
=

∇ A
A

+ i∇φ, (4)

which eliminates the oscillatory nature of the wavefield. Taking the imaginary component of
equation (4),

∇φ = =

(

∇U

U

)

, (5)

yields the required phase gradient. The right hand side of equation (5) is calculable only when
a wavefield solution is known. The solution for a ray, ri , is computed through integrating the
right hand sides of equations (2) using a one-sided, non-stiff integration method (e.g. Simp-
son’s 1/3 rule). Interestingly, ray solutions are uniquely determined given an initial starting
position by reason that equations (2) form a decoupled system of differential equations of first-
order. Accordingly, a phase-ray coordnate system is uniquely defined by specifying of a set of
initial coordinate points and a frequency, ω. Note that this specification makes the coordinate
system frequency dependent. Additional information on the theory of phase-rays is discussed
in both Shragge and Biondi (2003) and Foreman (1989).

Ray-coordinate wavefield extrapolation

Wavefield extrapolation in ray-coordinates requires casting the acoustic wave-equation not in
the usual Cartesian representation, but rather in a system parameterized by phase-ray variables.
In 2-D, these variables consist of τ , the one-way travel time from a source/receiver point along
the direction of a ray, and γ , the direction across the rayfront at a constant time step. A cartoon
illustrating ray-coordinate geometry is presented in Figure 1.

Note that the dimensions of time and space coordinates τ and γ are seconds and meters,
respectively.
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Figure 1: Cartoon illustrating the
phase-ray coordinate system and its
relation to the Cartesian basis. Vari-
able τ = τ (x , z) is the direction along
a single ray, and parameter τ t is an
isochron or rayfront. Variable γ =

γ (x , z) is the coordinate across the
rayfront at a constant τ step, and
parameter γ g is a ray. Grey lines
illustrate the mapping between ray
point (τ t ,γ g−1) and Cartesian point
(xo, zo). Angle θ is a rotation an-
gle between the ray and the z-axis
(assumed to be positive downward).
jeff1-raycoord [NR]
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The 2-D acoustic wave-equation for wavefield, U, at frequency, ω, in ray-coordinates is
(Sava and Fomel, 2003),

1
v J

[

∂

∂τ

(

J
v

∂U

∂τ

)

+
∂

∂γ

(

v

J
∂U

∂γ

)]

= −
ω2

v2 U, (6)

where v is the velocity function, and J is the ray-coordinate Jacobian or geometrical ray
spreading factor given by,

J =

[

∂xk

∂γ

∂xk

∂γ

]
1
2

. (7)

Importantly, parameter J is solely a component of ray-coordinates and is independent of wave-
field extrapolated on the coordinate system.

Analogous to wave-equation extrapolation in Cartesian coordinates, a dispersion relation
must be specified that forms the basis for all derived ray-coordinate extrapolation operators.
The relation being sought is the wavenumber along the ray direction, kτ . Following Sava and
Fomel (2003), the partial derivative operators in equation (6) are expanded out to generate
a second-order partial differential equation with non-zero cross derivatives. Fourier-domain
wavenumbers are then substituted for the partial differential operators acting on wavefield, U,
and the quadratic formula is applied to yield the expression for kτ ,

kτ =
iv
2J

∂

∂τ

(

J
v

)

±

[

ω2
−

[

v

2J
∂

∂τ

(

J
v

)]2

+
iv
J

∂

∂γ

( v

J

)

kγ −
v2

J 2 k2
γ

]
1
2

. (8)

Note, again, that quantity J
v

depends solely on the coordinate system and is independent of the
wavefield being propagated.
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One relatively straightforward manner to apply wavenumber kτ in an extrapolation scheme
is to develop the ray-coordinate equivalent of Claerbout’s classic 15◦ equation (Claerbout,
1985). This involves a second-order Taylor series expansion of the radical in equation (8),
and the identification of Fourier dual parameters kτ and kγ with their space domain derivative
counterparts −i ∂

∂τ
and −i ∂

∂γ
. The ray-coordinate formula corresponding to the 15◦ equation

is,

∂U

∂τ
≈ −

v

2J
∂
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(

J
v
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+ iωo +
iv

2ωo J
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∂
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−
v2
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]

∂2
U

∂γ 2 , (9)

where ωo may be considered as the effective (non-stationary) frequency,

ωo = ω

[

1−

(

v

2ωJ
∂

∂τ

(

J
v

))2
]

1
2

. (10)

Equation (9) may be solved in 2-D using fully implicit finite difference methods (e.g. Crank-
Nicolson) and fast tridiagonal solvers. After wavefield solution, U(τ ,γ ,ω), has been com-
puted at all rayfield locations, the result is mapped to Cartesian coordinates using sinc-based
interpolation operators in a neighborhood about each mapped point.

The chicken and the egg

The 2-D phase-ray extrapolation approach detailed above is analogous to the fabled ’chicken
and egg’ conundrum: which to compute first? Stated explicitly, phase-rays must be calculated
from a known wavefield solution; however, the wavefield is itself the quantity being computed.
Because the wavefield is not known a priori, clearly a new strategy is required to resolve these
disparate observations.

There are (at least) two possible ways to circumvent this issue. The first procedure in-
volves using precomputed wavefields to train the phase-ray coordinate system by: i) estab-
lishing the longer wavelength rayfield structure by raytracing in a background velocity model
using a broadband solver; ii) calculating an initial monochromatic wavefield solution using
the background rayfield as the coordinate system; iii) computing an updated ray-coordinate
system from the previous wavefield solution; and iv) calculating an updated wavefield on
the improved phase-ray coordinate system. This procedure is addressed in companion paper
Shragge and Biondi (2004) in this report.

A second approach is to use wavefields parameterized in phase-ray coordinates, rather
than Cartesian, to dictate the direction of the next rayfront step. For judiciously chosen 1τ

steps, both the rayfield direction and resulting wavefield evolves slowly, and ray directions
differ by only small, incremental amounts in a neighborhood of τ . Hence, the orientation of
previous few ray steps provide a good estimate of the required ray direction at the present τ

step. Thus, a phase-ray coordinate system may be computed on the fly using the magnitude of
the wavefield phase gradient of the previous few steps and the local velocity function.



SEP–115 Adaptive phase-ray wavefield extrapolation 19

Using a wavefield parameterized in ray-coordinates to generate the underlying coordinate
system requires that the governing phase-ray equations are transformed accordingly. Fortu-
nately, the magnitude of a scalar field gradient remains invariant to coordinate transformation,
and is related through a change of variables,

∂φ

∂xl
=

∂φ

∂ym

∂ym

∂xl
, (11)

where xl = [x , z] and ym = [τ ,γ ] are the Cartesian and ray coordinate basis, respectively, and
l and m are dummy indices. This reparameterization leads to the ray-coordinate phase-ray
equations,

dri

ds
=

∂φ

∂yj

∂yj

∂xi

[(

∂φ

∂ym

∂ym

∂xl

)(

∂φ

∂ym

∂ym

∂xl

)]−
1
2

. (12)

Equations (11) can be written explictly in Cartesian and ray variables,
[

∂φ

∂x
∂φ

∂z

]

=

[

∂φ

∂τ
∂τ
∂x +

∂φ

∂γ

∂γ

∂x
∂φ

∂τ
∂τ
∂z +

∂φ

∂γ

∂γ

∂z

]

. (13)

The partial derivatives between the two coordinate systems in equations (11) are directly re-
lated to traditional ray parameters. Cartesian derivatives of τ are the horizontal and vertical
plane-wave slownesses, while those with respect to γ are the local rotation angle to the Carte-
sian coordinate system (illustrated in Figure 1). Explicitly, these functions are,

∂τ

∂x
=

sinθ

v(x)
,

∂τ

∂z
=

cosθ

v(x)
, (14)

∂γ

∂x
= cosθ ,

∂γ

∂z
= sinθ ,

where parameter θ is the angle formed between a ray and the z-axis (assumed to be positive
downward).

Computing a weighted average direction from the previous M steps requires saving M +1
previous wavefield steps. The discrete version of equation (12) for ray step at index t , 1r t

i , is,

1r t
i ≈ v(ri (x))1τ

M
∑

m=1

βm
1r t−m

i

1s t−m , (15)

where 1s t is the scalar step magnitude at step t , and βm are a set of weights subject to,

M
∑

m=1

βm = 1. (16)

Weights βm may be chosen to yield a spline fit of at least second-order accuracy.

The use of previous wavefield solutions to compute solutions to equations (12) naturally
gives rise to a broadened finite difference stencil. Figure 2 presents the finite difference stencil
for the M=2 case that has second-order accuracy in γ and τ .
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Figure 2: Finite difference stencil
for calculating wavefield solution at
present step using the previous two
steps (M=2). The solid square repre-
sents the location of the desired ray-
field solution, and the in-filled cir-
cles connected by lines are the points
contributing to the solution point.
jeff1-stencil [NR]
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Bootstrapping the chicken to get the egg

Having parameterized the phase-ray equations in ray-coordinates, and specified a method for
updating rayfront directions, it is possible to detail the bootstrap method that forms the core
of adaptive phase-ray extrapolation procedure. Figure 3 presents a flowchart representation
of the bootstrap procedure. Rayfields must be computed prior to wavefield extrapolation.

Figure 3: Flow chart of the bootstrap
procedure jeff1-flow [NR]

Create M+1 step Cartesian mesh

Perform M steps of wavefield continuation

wavefield and rays (steps itau−M to itau−1)
Calculate new ray tau step from existing

Calculate rayfield Jacobian spreading

Calculate wavefield at current step

to Cartesian coordinates
Interpolate wavefield from ray 

end do

Wavefield

Do itau=M+1, ntau

Accordingly, the coordinate system is first initialized by assuming the first M +1 steps using
an educated guess of where wavefront energy will propagate. Two examples are an expanding
circular mesh for a point source (illustrated in Figure 1) or a tilted coordinate system for a
dipping plane-wave source (illustrated in Figure 4). After coordinate system initialization, M
wavefield extrapolation steps are carried out to generate the required M + 1 step wavefield.
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Figure 4: The first 4 steps of an
initial coordinate mesh appropriate
for initializing a dipping plane-wave
source. At coordinate locations above
the ground surface the velocity model
is assumed to be constant so that ex-
trapolated energy enters the model as
a monochromatic plane-wave (i.e. in
both ω and kx). jeff1-dipstart [NR] τ
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The bootstrap process is a loop around three separate calculations: i) ray step 1ri from the
previous M wavefield steps; ii) rayfield Jacobian spreading, J , and associated functions; and
iii) wavefield U at the current step. The final step involves interpolating the wavefield from
the ray to the Cartesian coordinate basis, and is done independently after extrapolation.

PHASE-RAY EXTRAPOLATION EXAMPLES

In this section we illustrate the utility of adaptive phase-ray wavefield extrapolation using
2-D synthetic examples involving progressively more complex velocity models. Underlying
ray-coordinate systems were calculated according to equation (12), and wavefields were ex-
trapolated on the computed rayfields using the ray-coordinate 15◦ equation (equation (9)). All
images were computed using uniform time steps with individual 1τ dependent on velocity
model complexity. Orthogonal coordinate γ was parameterized as either a punctual or a plane
wave source. Point source images required a parameterization of γ over shooting angle start-
ing at radius, R. The initial 4-step coordinate mesh was created from a circularly expanding
rayfront with an angular range bounded by γmin and γmax . Initial wavefields consisted of con-
stant amplitude lines separated in τ and distributed uniformly over coordinate γ . Plane-wave
images required a parameterization of γ over surface coordinate xo. The initial 4-step coordi-
nate system was a Cartesian mesh tilted at the dip angle of the plane-wave being extrapolated.
Initial wavefields again consisted of constant amplitude lines separated in τ and distributed
uniformly over surface position, xo.

We designed the first extrapolation example to test the method on a smooth velocity func-
tion of sufficient contrast to enable overturning waves. The velocity model, shown in the left
panel of Figure 5, consists of a broad Gaussian velocity anomaly that is 86% slower than the
background velocity of 3000m/s. Superposed on the Gaussian anomaly are vertical and hori-
zontal gradients of 0.1 and -0.05 s−1, respectively. The first test involved using a point source
located at 3000m. Rays were computed between −60◦ and 60◦ assuming an initial radius of
200m. Phase-ray wavefield extrapolation was then carried out with a constant 1τ spacing of
0.0005s at a 5Hz frequency. The resulting ray-coordinate system, superposed on the left panel
of Figure 5, is smooth and triplication-free. The middle panel presents the corresponding 5Hz
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Figure 5: Point source wavefield extrapolation example. Left: Velocity model with Gaussian-
shaped anomaly 86% slower than the background velocity of 3000m/s. Superposed over top
are vertical and horizontal gradients of 0.1 and -0.05km/s per km, respectively, and the 5
Hz ray-coordinate system. Middle: The 5Hz monochromatic wavefield. Right: Broadband
wavefield calculated using a 0.2-25Hz frequency band. jeff1-Circle.ps [CR]

monochromatic wavefield interpolated from the ray-coordinate system to a Cartesian mesh of
spacing 1x = 1z = 10m. These two panels illustrate that both the rayfield and wavefield
successfully overturn. Wavefield wavelengths are observed to compress in the region of slow
velocity about the Gaussian anomaly, and to expand at greater depths. The right panel presents
the broadband image constructed for frequencies between 2-35Hz. All wavefield frequencies
were extrapolated on a stationary 5Hz ray coordinate system.

The second example, shown in Figure 6, is the plane-wave equivalent to Figure 5. The
panels in Figure 6 are similar to those presented in the previous figure. The initial coordinate

Figure 6: Extrapolation example for plane-wave with -10◦ dip. Left: Velocity model consisting
of a Gaussian-shaped anomaly 86% slower than the background velocity of 3000m/s. Super-
posed are vertical and horizontal gradients of 0.1 and -0.05km/s per km, and the calculated
5Hz ray-coordinate system. Middle: The 5Hz monochromatic wavefield. Right: Broadband
image calculated using a 0.2-25Hz frequency band. jeff1-Circle.pw [CR]

system and wavefield tilt angle was -10◦, and the spacing between individual rays was set at
20m. The left and middle panels show the 5Hz rayfield and the corresponding 5Hz wave-
field, respectively. Again, the rayfield is observed to compress along coordinate γ as it nears
the center of the Gaussian anomaly leading to increased amplitudes and shorter wavelengths.
The right panel presents the broadband wavefield calculated in the 0.2-25Hz frequency band.
Again, all wavefield frequencies were extrapolated on a stationary 5Hz ray-coordinate system.
As in the previous figure, the broadband result overturns and is triplication-free.

The next example demonstrates adaptive phase-ray wavefield extrapolation in a Gulf of
Mexico salt model. The background velocity of the model, shown in the left panel of Figure 7,
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is a typical Gulf of Mexico v(z) velocity gradient. The superposed salt body is characterized

Figure 7: Point source extrapolated in a typical Gulf of Mexico velocity model. Left: Salt
velocity model consisting of a typical Gulf of Mexico v(z) velocity gradient, with a salt body
of 4700m/s wavespeed superposed at depth, and the calculated 5Hz monochromatic rayfield.
Middle: The 5Hz monochromatic wavefield derived. Right: Broadband image computed for
the 2-35Hz frequency band. jeff1-Salt.ps [CR]

by a higher wavespeed (4700m/s) and a somewhat rugose bottom of salt interface. A point
source was modeled at surface position 12000m with a starting radius of 200m. The initial
angular coverage was bounded by γmin = −22◦ and γmax = 20◦ because shooting beyond this
angular range lead to ray-coordinate triplication. The superposed rayfield in the left panel
demonstrates the effect of strong velocity contrasts and a rugose interface between the bottom
of salt body and the enveloping sediments. At angles tending away from vertical (i.e. θ=0),
rays increasingly refract in accordance with Snell’s law, become horizontal, impinge on the
salt-sediment interface, and eventually refract upward at fairly steep angles. The middle and
right panels present the 5Hz monochromatic and 2-35Hz broadband wavefields, respectively.
Again, the ray-coordinate system in the right panel was assumed to be stationary, and all
frequencies were extrapolation on 5Hz rayfield.

RAY-COORDINATE TRIPLICATION

The phase-ray extrapolation examples discussed so far have intentionally avoided triplicating
wavefields. However, wavefield triplications are commonly observed in seismic data, espe-
cially in areas of complex geology where the phase-ray extrapolation technique shows most
potential. In this formulation, the ray coordinate system is computed from previous wave-
field steps; hence, the underlying basis will begin to triplicate immediately after the wavefield
does. Thus, a contingency plan must exist to prevent numerical instabilities associated with
coordinate triplication.

Wavefield triplication naturally occurs when a propagating wavefield is focused by lateral
velocity variation acting as an optic lens. One canonical example is a Gaussian-shaped slow
velocity anomaly, where continued wavefields exhibit a characteristic bow-tie signature be-
neath the anomaly. Numerical instabilities occur when calculating the ray coordinate system
in the vicinity of the bow-tie because neighboring rays overlap while following their respec-
tive branches of the bow-tie. At the crossing point, the Jacobian in equation (8) is identically
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zero leading to infinite values of wavenumber kτ in equation (6). Infinite wavenumbers, of
course, are not realizable in practice and are only a theoretical artifice of the wavefield be-
ing multivalued at that point. Accordingly, instabilities with ray coordinate triplication may
be rectified through an appropriate accounting for the wavefield’s multivalued nature during
numerical calculations.

One way to deal with multivalued functions is to treat the individual branches of the tripli-
cation bow-tie as independent wavefield components that should be held incommunicado. This
idea, borrowed from ideas in the mathematical field of complex analysis (Cohn, 1967), is illus-
trated in Figure 8. Isolating triplication branches requires computing the locations of wavefield

Figure 8: Cartoon of our method-
ology of splitting different branches
of a triplication. Left: Triplication
where the 3 branches lie on the same
plane; Right: Same triplication as in
left panel, but with each branch resid-
ing on a separate plane. Our method
is to effectively restrict communica-
tion between branches when calculat-
ing derivatives and other associated
quantities. jeff1-branch [NR]

triplications from crossing ray segments in the rayfield. In 2-D, crossing ray segments may be
identified by modeling the segments as infinite lines, computing their intersection point, and
testing whether this location falls within the area bounded by the ray segments. Where this test
reveals a crossing point (or branch point), the rayfield has triplicated and should be cut into
individual branches. Jacobian coordinate and other related functions that require the compu-
tation of derivatives, can be then be calculated on their respective branches (i.e. on one of the
three planes in Figure 8). For locations not on branch cuts, centered finite-difference stencils
may be used; however, at branch-cut locations appropriate left- and right-sided derivatives are
required. Importantly, the locations of branch cuts are kept for all subsequent computations.
Finally, we acknowledge that this treatment of rayfield triplication is cursory and remains a
topic of ongoing research. However, similarities between our proposed method for handling
coordinate triplications and the standard branch cut technique of complex analysis should pro-
vide us with a powerful set of tools for further development.

The canonical example of a slow Gaussian-shaped velocity anomaly is presented in Fig-
ure 9. The velocity model used in this example is presented in the left panel, and consists of a
slow Gaussian anomaly of maximum -50% perturbation of the 2000m/s background velocity.
The 10Hz phase-ray coordinate system is also overlain. The middle panel shows the 10Hz
wavefield. The hatched pattern in the lower center of the figure is created by the superposition
of the phases of the two competing triplication branches (as discussed in Shragge and Biondi
(2003)). The right panel presents the broadband result (0.1-30Hz) computed on a stationary
10Hz phase-ray coordinate system. In the lower part of the figure, the signature bow-ties of the
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Figure 9: Canonical example of a slow Gaussian velocity perturbation. Left: model with back-
ground velocity 2000m/s on which is superposed a slow Gaussian of -50% of the background
velocity, and the 10Hz coordinate system. Middle: 10Hz monochromatic image. Right:
broadband (0.1-30Hz) wavefield calculated using a stationary 10Hz ray coordinate system.
jeff1-Gauss.ps [CR]

triplicating wavefield are evident. The slight undulations on the centered part of the bow-tie,
though, should not be present. Our conjecture is that these are an artifact of coordinate system
interpolation.

CONCLUSIONS

We demonstrate the utility of a ray-based Riemannian wavefield extrapolation method using
an adaptive bootstrap approach to calculate the ray-coordinate system directly from the wave-
field. This bootstrap procedure allows for frequency-dependent ray-coordinate systems to be
computed on-the-fly from the wavefield phase gradient and the velocity model. Coupling this
procedure with RWE leads to a general frequency-dependent extrapolation procedure capable
of following a wavefront as it propagates, overturns, and even triplicates. We propose that
in locations where the ray-coordinate system triplicates, the Jacobian spreading and other re-
quired functions may be calculated by cutting the triplication into its constituent branches and
using appropriate one-sided finite difference stencils. The full proof of this conjecture, though,
remains a topic of future research.
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