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Aliasing in prestack wavefield continuation migration

Brad Artman, Jeff Shragge, and Biondo Biondi'

ABSTRACT

With the widespread adoption of wavefield continuation methods for prestack migration,
the concept of operator aliasing warrants revisiting. While zero-offset migration is unaf-
fected by spatial aliasing due to the migration operator, this is not the case for prestack
migration. This problem arises in any situation where sources and receivers are not col-
located at every sampling point. Once anti-aliasing criteria have been calculated, aliased
energy may be prevented from entering the image space by using a source function of ap-
propriate band-width, or band-limiting the energy of the contributing data. As shot-profile
migration is the most accurate and expensive imaging algorithm, data axes are commonly
subsampled to save cost. We analyse the costs and benefits of implementing anti-aliasing
measures to remediate unequal sampling intervals. While some bandwidth of the output
image is lost in this process, it will attend to aliasing problems that will be most apparent
in the shallow overburden and steeply dipping reflectors. Despite the loss in resolution,
any proposed method still enjoys better bandwidth than source-receiver migration with
the same data.

INTRODUCTION

The potential for aliasing phenomena to be introduced into Kirchhoff migration images from
unaliased data is well documented. However, common wisdom holds that wavefield continua-
tion migration does not introduce aliasing artifacts into the image. This is strictly true only for
zero-offset migration. Thus, with the increasing use of prestack wave equation migration, it is
important to establish when and how aliasing artifacts are introduced into the image through
the wavefield-continuation migration process.

Migration of seismic data may give rise to aliasing problems in four distinct situations.
Two of these aliasing situations we consider to be well understood and have effective solutions.
These are: 1) improper discretization of the wavefield recorded at the surface can lead to
aliasing of the features in the raw data (i.e. poorly sampled hyperbolas), and 2) not establishing
an image space with twice finer sampling to accomodate the sum of spatial frequencies due to
the multiplication of the wavefields in the imaging condition. Proper planning and layout of the
acquisition mitigate the first problem, while Zhang et al. (2003) points out that interpolation of
source and receiver wavefields by a factor of two eliminates the aliasing from multiplication.
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For the duration of this discussion we will assume both of these issues have been effectively
controlled.

This paper presents an evaluation of two additional aliasing situations that have yet to be
examined by the geophysical community. First, and the focus of this presentation, aliasing
phenomenon can arise during the adoption of a wavefield coordinate system on which both
source and receiver wavefields can be propagated and combined to create the image. Zero-
offset migration, by definition, has common source and receiver locations. However, prestack
migration requires choosing from two probably unequal source and receiver sampling intervals
(doubly compounded for 3D surveys). This paper explores the ramifications of this problem
and defines appropriate bandlimits. Finally, the extrapolation operator can introduce aliasing
by moving energy to too high wavenumbers as it convolves the wavefields with the earth
velocity model. During later propagation steps, that same energy could move back within
appropriate limits again. We have not identified how to capitalize on this effect.

The discretized representation of seismic wavefields and wavefield continuation operators
requires a strategy to eliminate contamination from aliasing. Fourier sampling theory allows
for the development of the rigorous Nyquist limits for arbitrary sampling of data and image
axes. Using these requirements to restrict the discretized wavefield continuation process, we
present criteria for determining appropriate image space Nyquist limits for arbitrary sampling
choices.

As an example, we show a simple numerical case where aliased energy is introduced
into the image space during migration after subsampling the shot axis. We then present three
ways in which operator aliasing problems may be resolved in shot-profile migration strategies,
and discuss the implications of operator aliasing on source-receiver migration formulations.
Finally, an Appendix is included to provide, a rigorous development of the appropriate energy
wavenumber limits as a function of data axes sampling, the extension of that development
to explain the equivalence of shot-profile migration and source-receiver migration, and the
introduction of imaging condition aliasing in the source-receiver migration algorithm.

This analysis has several important ramifications. Shot axis subsampling is a common
practice before migration of large data sets to save time or cost. Narrow azimuth acquisi-
tion strategies, common to marine surveys, have inherent trade-offs between strike and dip
resolution that are sometimes difficult to quantify. Wide azimuth land surveys are also often
constrained by unequal in-line and cross-line sampling. Migrations of ocean bottom cable data
also suffer from this problem due to their acquisition idiosyncrasies (though the reciprocal of
our example presented later). Thus for any situation, be it acquisition design or processing
choices, where one is forced to migrate data without equal numbers of shots and receivers at
the same locations in both surface directions, the aliasing criteria explained herein can easily
be implemented in standard wavefield continuation migration programs to enhance the quality
of the image.
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AXES AND ALLIES

The standard seismic acquisition grid is presented in panel (a) of Figure 1. Ease of drafting
and understanding conventionally has lead geophysicists to draw these axes 90° to each other.
However, there is no reason to do so. Further, imposing the intuition that these axes are
mathematically orthogonal leads to difficulties in interpreting Fourier sampling criteria that
we aim to investigate here. These axes inhabit the same physical space along a 2D seismic
acquisition line. Plotting them orthogonally casts an inappropriate feeling of a second physical
dimension. At the limit of this argument, we contend that it is much easier to de-couple
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completely the origins of these axis and plot them parallel to each other. Having performed a
Fourier transform across space of both the source and receiver axes, we present them in Figure
2. Viewing these three distinct axes separately aids in the interpretation of this entire argument.
Unfortunately, there is an historic tendency when analyzing the acquisition grid coordinates
to include midpoint-offset, mh, axes as diagonal axes to those shown in Figure 1. We will
avoid the use of midpoint while casting this presentation largely in the terms of shot-profile
migration, as well as explain later the development of our x-axis during the imaging condition.
Further, when they are superposed, an incorrect stretching is implied. We will briefly consider
the mid-point axis, in order to highlight the danger of this practice.

The mapping transformation of energy from one coordinate frame to the other has been
historically defined as:
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Figure 2: Lengths of the source, receiver and image axes in the Fourier domain. The circle
with an x indicates the multiplication of the data axes to produce the image surface location
axis during the imaging condition. Aliased replications from the source axis are represented
by the bold lines pointing toward the origin. (a) If the image spaced is sampled as finely as the
receiver axis, alias contamination will enter into the image. (b) Aliased contamination from
the subsampled source axes is avoided when the two fields are compared during the imaging
condition. | bradI-waveline | [NR]

which makes the determinant 1/+/2. Drawing a midpoint axis along the 45° line of the sr-axis
is confusing when someone attempts to find value of a particular midpoint location on the
plane. Some measurement of distance must be employed as a zero-offset location does not
lie on one of the original axes. The next problem we then face is which of the multitude of
distance measures we should select: /,. The historic choice has been the square-root of the
sum of the squares: /,. If we make that choice, we then apply the determinant presented above
to cancel the 4/(2) factor associated with the norm that so naturally lends itself to pieces of
paper. We could have chosen any norm. Each of them would return a different number, and
none of them have any more or less value for locating a seismic image on the surface of the
earth.

The cross-correlation imaging condition with subsurface offset (Rickett and Sava, 2001)

I(x,h,2)=) ") R(x=r—h,z,0)S*(x =s+h,z,0), 4)

combines the two independently propagated wavefields, Source and Receiver ,and generates
the surface location axis x with the relationship within the arguments of the two wavefields.
Note that these relations are equations for a line where both the source coordinate, s, and
receiver coordinate, r, coexist. Here we see the distinction between the surface location coor-
dinate x and midpoint. The x-axis fallows directly from the mathematics of migration. With
the multiplication (across space) associated with the correlation (along time) of equation (4),
the cartoons in Figure 2 should be recalled.

The Appendix develops in rigorous detail the wavenumber limits acceptable in the image
to eliminate completely alias contamination. The analysis of the problem centers around the
effects of the migration process on the data grid, without needing to consider the values of
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the data on each grid node. We thus draw an analogy to the body of work available from
crystallography, where structure can be analyzed mathematically without need to know what
atom resides at any particular location. Thankfully, the regular Cartesian grid on which we
normally acquire and process seismic data is a simple rectilinear crystal, though of several
more dimensions than seen under a microscope.

The reference crystal we will consider will be the archetypal seismic grid where sources
and receivers occupy all locations and share the same spacing increment. The suspicious or
simply inquisitive reader can now turn to the appendix to work through the details of the fol-
lowing result. The maximum allowable wavenumbers, Bxé, to avoid artifacts due to migration
operator aliasing is

1 Ny, Nj
Bxé = - ICf( s 5 : ) = min(BVS, BY&) (5)
lcf(2a1 Arg,zazASg) ay ap

where N, and Nj, are the Nyquist frequencies defined by fundamental sampling intervals
Arg = Asg, a’s are subsampling factors, and lcf stands for least common factor (which will
change to min if the subsampling factors are integers. The subscript £ denotes the sampling
associated with the model space and is included to maintain parallelism with the appendix.

We consider three approaches to remove the aliasing problems associated with the ac-
quisition and subsampling situations mentioned above during shot-profile migration. First,
wavenumbers from the source and receiver wavefields at each depth level are band-limited to
prevent the entry of aliased duplications into the image during the imaging condition. This
does not require eliminating these components from the propagating wavefields, as we can
save appropriate portions of the wavefields in temporary buffers for imaging condition eval-
uation. Second, a band-limited source function, with a wavenumber spectrum limited to the
cutoff frequencies imposed by the resampled shot axis, is propagated throughout the migra-
tion process. This effectively zeros energy in the aliased band during the convolution in the
imaging condition. No additional computational overhead is required for the latter alterna-
tive, though anti-aliasing by band-limited imaging requires two additional Fourier transforms
for a split-step Fourier migration strategy. It should be noted, however, that both of these
approaches will remove energy across both &, and kj axes.

A third alternative is to restrict the wavenumbers of the subsurface offset axis kj; during
imaging. Casting the imaging condition in terms of it Fourier dual can allow similar mitiga-
tion options. Because k; — k, = kj, we can select (kg,k,) combinations during the imaging
condition that do not exceed our prescribed bandwidth. The multiplication of the source and
receiver wavefields shown above takes the form of a convolution in the Fourier domain, which
can be utilized to insert our anti-aliasing criteria. Lastly, decimating the receiver wavefield to
match the shot increment, will be discussed in more detail with reference to shot-geophone
style migration.
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FLAT EARTH SYNTHETIC

A synthetic data set was generated to test the first two methods of preventing aliasing. Shot-
gathers were modeled over a 2000m /s earth model with one flat reflector at 1000m. Nominal
shot, As, and receiver, Ar, spacing is 10m. Dominant frequency of the wavelet is 30H z.
Migration experiments were performed using both shot-profile and source-receiver algorithms.
The analysis and conclusions are valid for both shot-geophone and shot-profile migrations due
to their mathematical equivalence (Biondi, 2003; Shan and Zhang, 2003). However, in practice
there are subtle differences between the two that will be discussed later.

The data so generated has been imaged with a split-step Fourier wave equation continu-
ation migration kernel. The same continuation operator has been implemented in both shot-
profile and source-receiver formulations. The complex valued image at the depth of the reflec-
tor was extracted without the normal summation of the frequency axis to aid in interpretation.
Fourier transforms of the surface location and subsurface offset axes were then applied. Both
migration strategies were used to examine several cases of data completeness. For the shot-
profile migration example, four cases were considered: 1) shots at every receiver location, 2)
shots at every tenth receiver location, 3) shots at every tenth receiver location imaged with
a band-limited source function, and 4) shots at every tenth receiver location imaged with the
selective energy imaging condition. For the source-receiver example, three cases were con-
sidered: 1) migration of all CMP’s, 2) migration of CMP’s from shot placements every tenth
receiver location, and 3) migration of subsampled data appropriately filled with zero-traces to
regain the size of the original data set. Despite the large decimation of the data for these exper-
iments, care was taken to assure that the data were still appropriately sampled after decimation
to assure that the conclusions drawn from these results are not due to acquisition aliasing.

Shot-Profile Migration

The introduction of aliasing artifacts is demonstrated by comparing panels a and b in Figure
3. Both images were constructed with the shot-profile migration algorithm using a single
trace source function. Each panel shows the Fourier transformed image surface location and
subsurface offset axes, (ky,kp,w). In this manner the spatial energy components of the image
from a particular depth in the model can be viewed. These figures capture the model space at
the depth of a perfectly imaged flat reflector. Migrating shot-profiles at every receiver location
as in panel a, shows marked difference to the wavenumber components that make up the image
produced by migrating shots at every tenth shot in panel b. As the k, = 0 aliased energy moves
into the image from the replicated Fourier spectra, bands of aliased energy appear at multiples
of 10m~"! on the k, axis.

Panel c, also produced using every tenth shot, illustrates the effectiveness of the first two
methods in eliminating the aliased energy introduced by subsampling the shot axis. The image
does not suffer from aliased energy due to the use of a spatially band-limited source function
with some width in space rather than a single trace. Notice also the diminished kj; bandwidth
as a result of restricting energy content of the migration.
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Figure 3: Panels showing image wavenumbers from migrations of different selections of avail-
able shots from the data set. Left panel was created by migrating all available shots, while the
center and right panels include only every tenth shot. Note the replication of the flat reflector
every 10m~! in the center panel. The right panel is the result of restricting the migrated en-
ergy with a fat source function. Notice that the length of the reflector energy along the k, =0
axis has been limited from 10m ™! to 5m~! indicating an imposed restriction on the number of
offsets contributing to the image at any given dip. Selective energy imaging yields an identical

result to the band-limited wavelet result. |brad1-sp | [CR]

Selective energy imaging, our second proposed method, uses band-limited versions of the
source and receiver wavefields for the imaging condition. The resultant image is identical to
the right panel and is accordingly not shown.

Source-Receiver Migration

Figure 4 shows analogous plots to those presented in the previous discussion. The same earth
model and analysis strategy is employed for these experiments, though a source-receiver ge-
ometry for the data is employed requiring sorting the data to midpoint-offset coordinates. The
same migration split-step Fourier migration kernel is used. While the panel a result employs a
fully populated, regular data set, the others only used shots every 10 receiver locations. Panel
b was simply sorted and migrated. Panel c used the same amount of live data traces as panel b,
with zero traces replacing nine out of ten traces from the full data volume. Thus, the first and
last experiments migrated the same size data cube, while second and last experiments contain
the same amount of non-trivial data though they are an order of magnitude different in size.

Importantly, the second panel does not show the aliasing problems present in the second
panel of Figure 3 despite the same level of shot decimation. In this experiment, the subsam-
pling of the shot-axis is partially mapped into both of the two new coordinate axes before
migration. The coordinate transform of equation (1) thus distributes the axis’ lower Nyquist
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limit equally to the new coordinates prior to migration. Since the output image coordinates
inherit this same sampling, the resampled data naturally adhere to the band-limiting criterion
of equation (5).

The image location and subsurface offset variables of these migrations have the same
meaning as those discussed in the shot-profile section previously (Biondi, 2003). There have
been two important modifications however due to the initial coordinate transform. First, notice
the range of wavenumbers included in the second image space is drastically limited from the
panel to the left showing the migration of all available shots. The resorting has effectively
band-limited the image space honoring the Nyquist requirement appropriate for the image
given the shot axis subsampling. Thus, the algebraic combination of source and receiver coor-
dinates in the numerator makes this an inherently band-limited propagation method. Second,
the division by two of both new axes stretches their Fourier dual domains. Notice that the
alias replications in the right panel of Figure 4 appear at a wavenumber of 20 rather than the
10 seen in the shot-profile migration example. Despite the fact that the same number and
sampling interval for the shot axis was used in both experiments, the division associated with
the coordinate mapping has decreased the sampling interval in the space domain and stretched
energy along the Fourier domain. This has happened independently of the three modes of
aliasing described above and needs undoing separately as well.
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Figure 4: Source-receiver migration results. Left panel imaged with all data. Center panel
imaged with every tenth shot and sorted to midpoint-offset coordinates. Right panel has zero
traces inserted to fill out the decimated data set migrated in the center panel to the data set’s

original size. |bradl-sg|[NR]

Discussion

The analytical band-limit of equation (5) is the necessary criteria to appropriately delimit
non-aliased wavenumbers for either wavefield continuation migration method. The amount of
compression of a data axis in the Fourier domain by removing samples from the space domain
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dictates the areal extent of the source function or the wavenumber limit for the limited en-
ergy imaging strategy. This problem will manifest itself primarily with shot-profile migration
strategies. This is due to the fact that two conflicting sampling schemes are simultaneously
available. Choosing the finer sampling for migration, results in an aliased image. Choosing
the coarser sampling for the migration throws away valuable information. We have shown two
methods thus far to eliminate aliased contributions to the image based on equation (A-20).
We feel that it is more appropriate to use selective energy imaging conditions rather than a fat
source function or band-limited continuation steps while propagating on the finest available
data grid.

In practice, lateral velocity variation will cause individual wavenumber energy constituents
to move about the fk-plane. At some continuation step, energy could move back and forth
across the prescribed image space band-limit, and yet still be appropriate for that individual
profile propagation. To allow for any beneficence from this movement, it would be unwise
to either: a) propagate a band-limited source function, or b) to eliminate energy from the
source and receiver wavefields during propagation steps (by either coarse resampling, or band-
limiting the propagation wavefields). Therefore we recommend migrating individual shots on
the fine grid, and accounting for operator aliasing in the imaging step at a modest cost increase.
The output resolution will still be at least as good as a source-geophone migration.

COMPLEX EARTH EXPERIMENTS

Despite the success in removing alias artifacts with the above two methodologies, use of the
bandlimited source function or the bandlimited imaging condition in areas of complex ge-
ology has one substantial limitation. Both strategies bandpass the wavefields at some point
during the migration which effectively introduces focusing of the source illumination beam
that propagates through the model. This is due to elimination of k, energy in the process.
Figure 5 illustrates this effect using a shot modeled over the Marmousi data set. The left panel
shows an image generated from the single shot with no restrictions imposed during migration.
The right panel however used the spatially bandpassed source function. The introduction of
low spatial frequencies into the initial condition of the source wavefield effectively changes
the impulse into a short planewave. While this is appropriate to limit aliasing when all the
shots are summed, the focusing of the beam directly down is inappropriate. To limit the dip-
spectrum of the geology appropriate to our sampling thereof, we have limited the directionality
of the source wavefield to near vertical as well.

Instead, our last methodology attempts to include all propagation directions by choosing
portions of the wavenumber spectrum of the receiver wavefield that are appropriately limited
for each component of the source wavefield (or vice-versa). While the goal of the imaging
condition is a cross-correlation of the two wavefields followed by extraction of the zero time-
lag as shown in equation (4), the process in effect multiplies across the space axis. Further,
to calculate offset, a spatial cross-correlation without summation is employed. The Fourier
dual of these two implicit operations are convolution and multiplication respectively. Thus,
by transforming our wavefields into the wavenumber domain, the imaging condition takes the
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Figure 5: Left: Image from a single shot of the Marmousi data conventionally migrated and
with anti-aliasing limits. The limited propagation angles are inappropriate. Center: Full
bandwidth shot image. Right: Dip-limited image via partial convolution imaging condition.
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form of the convolution

106120 = R(x = )S™ (e + ) (ks )z 0 =
DO Rk =ky — jo2,0)8* (ks = j,z,0)e ™", (6)
I

Inspecting the above, we notice that the counting subscript j is actually the wavenumber offset
axis with with the exponential inverse Fourier transforming the axis during summation to give
a single offset panel. Thus, by not summing this dimension, we build the Fourier transform of
the offset axis.

Using this formulation, and the fact that k, — ks = kj,, we can bandlimit the image space
by only allowing offset wavenumber combinations where k, — k; is less than the prescribed
bandlimit. Thus, while calculating k, wavenumbers for the image space, only a limited and
varying band from the offset axis is considered. In this manner, we can limit reflectors to
different offset spectra depending on their structural dip. Figure (6) shows the result of this
implementation. Several features are prominent. First, the thick, fast layer at (3000m,2500m)
contains dipping energy that is not in the impulse response. This is a dip ringing due to imple-
menting a hard cutoff in the Fourier domain when selecting wavenumbers for imaging. This
noise should cancel during summation of many shots. Unfortunately, the convolutional imag-
ing condition has Fourier domain periodicity problems that are well avoided by operating in
the space domain. Further, there did not seem to be significant improvement over illumination
angle as compared to the two previous methods proposed. Finally, given that our effective
range of sub-surface offset is actually quite limited, the huge cost differential, O(nyny) vs.
O(ni), makes the decision for us.
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Figure 6: Single shot image from the band-limited convolutional imaging condition. The
wave-number bandwidth was limited to 1/8 of the receiver Nyquist limit. |brad1-off-cube |
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CONCLUSIONS

We conclude that operator aliasing artifacts are indeed introduced during prestack wavefield
continuation migration when s- or r-axes are allowed to deviate from a regular grid. This
problem is thus manifest both when we choose to subsample the number of shots available
from the data or design a survey without shots at every receiver location (or in reciprocal cases
like OBC surveys).

Source-receiver migration strategies conveniently side-step the bulk of the operator alias-
ing problem by effectively performing all propagation and imaging on the coarsest available
grid. Thus during every wavefield continuation step, we are only propagating energy that lies
below the Nyquist wavenumber for the final image space. However, this constraint can be
much too stringent when compared to the sampling criteria set out, and presumably met, dur-
ing the acquisition effort. This migration style will propagate energy along fewer traces than
shot-profile methodologies, although it lacks some ability to control the quality of the image.
The fact that the model output of source-receiver migration is on a twice finer grid than ac-
quisition or the model produced with shot-profile migration does not exclude this migration
strategy from the imaging condition aliasing described by Zhang et al. (2003). The division
in the mapping of equation (1) is responsible for this, but does not perform the necessary
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interpolation to avoid imaging condition aliasing. Performing the imaging condition in the
Fourier domain does not entail additional cost for this split-step Fourier migration kernel, and
conveniently eliminates the need to interpolate the wavefields by a factor of two to address the
aliasing due to multiplication as the output of the convolution is inherently twice the size of
the two inputs.

Given some knowledge of the dip content of the data, it is possible to extend the bound-
aries of the rigorous anti-aliasing criteria presented. Using both positive and negative one-
sided band-limits can include high wavenumber energy that can improve the image in areas
of steep dips and the shallow section of the model. Therefore, when challenged with imag-
ing important steeply dipping targets, decisions concerning acquisition design or the level of
decimation along different directions for migration can be made with a better understanding
of the consequences to the final product. Finally, it has been noticed that the rigorous Nyquist
limits are substantially too restrictive in practice with real data. In reality, the benefits of some
level of anti-aliasing are realized when inspecting the dipping canyon features of the Marmousi
data, though the limitation imposed during the imaging condition was much more relaxed than
indicated by the theory and needed to be found through experimentation.

Further, if a subsample of a data set is imaged with a shot profile migration strategy,
full bandwidth source and receiver wavefields, W (x,z,w) and W,(X,z,w), could be saved
for future migration efforts. An imaging condition with the appropriate band-limitation across
the spatial axes can be applied with partial or complete sets of these migrated volumes. Thus
incremental increases in image quality can be achieved while avoiding re-migration of data by
augmenting a library of wavefields (if adequate storage capacity is available).
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APPENDIX A

Surface seismic acquisition involves the acquisition of a set of discrete wavefield measure-
ments using sources and receivers that populate a 2D recording surface. In wave equation
migration, the wavefield continuation component of the experiment involves a downward ex-
trapolation of the recorded wavefield from the acquisition surface to subsurface layers within
an earth model. Finally, the imaging component requires the extraction of energy from the
wavefield by the evaluation of an imaging condition (Claerbout, 1971). Central to these three
procedures is the geometry on which the experiment and accompanying processing are based.
From a practical processing viewpoint, the ideal data set would be defined on a uniformly-
sampled 3D (for 2D surveys) or 5D (for 3D surveys) acquisition grid. This Appendix seeks to
analyze the data grid through all of the afore-mentioned steps as if studying the structure of a
crystal.

To address the issue of aliasing, Fourier sampling theory will be applied. This theory
provides the necessary and sufficient conditions for preserving the information content of a
continuous physical wavefield represented in a discrete manner. One important tenet of sam-
pling theory is that the highest frequency recoverable from a regularly-sampled data set is
independent of values at sample locations, but dependent on the interval between neighboring
samples. Aliasing considerations for seismic wavefields are likewise dependent on the spacing
between individual points in the lattice. In light of the above, we will dissociate the acquisi-
tion geometry of a seismic experiment from the values recorded at the acquisition points, and
represent the former with a multi-dimensional Shah function. Using this representation, the ef-
fects on the lattice structure of the processes of downward continuation and imaging condition
evaluation are readily examined.

Throughout this presentation, we will maintain the formulation of the seismic experiment
in the shot-geophone coordinate system. Shan and Zhang (2003) points out that a correlation
of the source and receiver wavefields is implied in this migration formulation. This observa-
tion introduces a convolution of source and receiver lattices. A lattice convolution, whether
in a shot-geophone or shot-profile migration setting, gives rise to the phenomenon of image
condition aliasing (Zhang et al., 2003). This phenomenon arises when two wavefields mul-
tiplicatively interfere to yield an aliased Moiré pattern with frequencies up to twice those of
the original wavefields. To account for this phenomenon we will assume that the wavefield is
already interpolated by a factor of two, and that the lattice upon which this discussion begins
is not the acquisition grid, but is of twice finer spacing. Finally, although the theory as devel-
oped below is strictly for 2D seismic experiments, the extension to 3D is a trivial matter and
is omitted for clarity.

Lattice basis of seismic wavefields

We choose to represent a seismic wavefield, W, by dissociating the underlying interpolated
acquisition lattice (IAL), &£, from the discretely sampled values of the continuous wavefield,
fW. Lattice £ is defined over experimental source and receiver coordinates, r; and sg, and
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time and depth coordinates, : and z¢. Importantly, the underlying grid function is only a con-
struct of the experimental process and is associated, accordingly, with model space coordinates
L(re,s¢,1e,2¢). This stands in contrast to the continuous wavefield function defined by cor-
responding continuous variables, f W(r,s,t,7). Written in this manner, it becomes natural to
associate the act of observation with the mapping from physical (continuous) to experimental
(discrete) variables,

W(re,se,te,2¢6) = oC(rg,Sg,tg,Zg)fW(I’,S,l,Z)(S(Vg —r)8(se —5)8(ze —2)0(te —1t). (A-1)

Note, that we define W as the entire experimental wavefield including traces from all source
and receiver pairs. This volume is separable into many different subsets, but we will keep it in
tact. One way to represent lattice £ is with a 4D infinite sum over delta functions (i.e. a 4D
Shah function),

o0

L(re,se,1e,2¢) = Z O(re —aru, Arg)d(se — asus Asg)d(te — asu; Ate)d(ze — au, Aze).

Up,Us,Ut,Uz=—00

(A-2)

In equation (A-2), variables (a,,as,a;,a;) are subsampling factors over the fundamental dis-
cretization intervals (Arg, Asg, Atg, Azg), and (u,,uz,u;,u;) are the associated summation in-
dicies of the delta functions. Itis assumed that for our ideal grid Arg = Ase and any departures
from this equality may be represented through the subsampling factors. Throughout the de-
velopment, unless specified otherwise, the summation from —oo to oo in equation (A-2) is
assumed. Due to the fact that no experiment is ever carried out with infinite extent, padding
the wavefields to infinity with zero traces maintains the rigor of this evaluation.

Band-limited lattices

In a seismic experiment, measurements are necessarily acquired at discrete sampling intervals.
This fact requires placing a restriction on the frequency content representable on the 4-D
lattice. One convenient manner to do this is to apply a 4-D Rect function in the frequency
domain to cut off frequencies greater than predefined values [e.g. (B, B, By, B;,)]. To
accomplish this, equation (A-2) is first Fourier transformed over all variables to yield,

ui uz us Ug
Lk, ke, e, k) = 8(ky, — ——)o(ks, — S(w— 8k, ———).
(krg ks g, k)= Y 8(kn arar ke = o @ = ke — )

Uy,uz,u3,uq4

(A-3)
A 4D Rect function, [T, with arguments (in 1D)

1 for |re| < 75,
1 s

2Br$

M(B,,) =

0 for |rg| >

is then applied to the infinite Fourier domain lattice £ to yield a band-limited version £ ry ,

°CFL(kr§ ’kS§ ’ w’kzg) = °C(kr§ ’kSE’a)’ kzg)H(Brgkrg s BSEkSE ’ Bl‘ga)’ BZEkZE)' (A_4)
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Applying an inverse Fourier transform over all 4 dimensions to lattice £ ry, yields,

Lrr(re,se,te,26) = L(e, S, 1e, 26 ) %y *sp *g %o FL(rg, sg, 16, 2¢), (A-5)
where
. I’S SS t ZS
sinc(#—, =, -—, =
(B’s Bsg* Brg st)

FL(VE,Sf,ff,Zg): s (A_6)

B, By, B, B,
and the subscripts on the convolution symbol, %, delimit the coordinate over which the convo-
lution is applied. Thus the seismic wavefield may be represented by,

Wre,se.te.26) = LrL(re,se.16,26) 8(ze) f V¥ (e se. 1z, 26). (A-7)

It is important to emphasize that the lattice &£ ry in equation (A-7) represents only the lattice
structure on which the data wavefield is overlaid. For individual seismic experiments, the
values at each location will vary, while the lattice structure remains invariant. Utilizing the
crystal structure analogy again, any atom may inhabit a node in the lattice, but there must be
one and only one atom present.

Downward continuation with the DSR

In this section we apply the double square root (DSR) operator to extrapolate the recorded
wavefield of equation (A-7) through the depth coordinate of the lattice. After initially Fourier
transforming the wavefield into krs , kSS’ and wg, the first application of the DSR yields a new
wavefield at depth step ze = a4 Azg. Mathematically, this is represented by:

Wk, kspnw,26) = 8(ze —azAzg) %z, [DSR(kry ko 0,26 )W (kry ko0, 26 = 0)]  (A-8)
= 8(Z8 _aZAZS)*Zg [DSR(krg’ks§aU)aZS)fW‘fFL(krE’ksgawazé)g(zé‘)]
=[PSRy koo 026) V] L1 Ky g2 4+ A20)8(ze — a: Aze).

The periodicity of the lattice over depth coordinate z¢ enables the Shah function index u; to
be shifted by a; Azg such that equation (A-8) reads,

W (kyy ks 0,26) = [DS Rlkyy Ky 0,26) V] L 1 Gk sy 0, 26)0(26 —aaDze) . (A9)

By extension, any continuation step operating on a wavefield will take the same form. Apply-
ing an inverse Fourier transform over coordinates k. and k;, yields,

W(re,se, 0,26 = asAzg) = H(rz,85,0,2¢) %p, %5, [LFL(re,55,0,2¢)8(z¢ —asAzg)]  (A-10)
where , for convenience, H is defined by,
H(re.se.0.28) = 5y [DSRU k0,200 ] (A-11)

where ¥ is the Fourier transform operator. It is important to note here that the convolution of
lattice &£ gy, with filter H does not change the location of the sample points. Rather, it operates
only on the amplitudes at the predefined locations.
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Evaluation of imaging condition

While we have maintained our coordinate system thus far in parallel with a shot-receiver mi-
gration strategy, we will now detail the evaluation of the imaging condition with the order
of operations normally associated with shot-profile migration. In fact, the convolution of the
source and receiver grids associated with the imaging condition (and gives rise to imaging con-
dition aliasing) can be performed/implied before the migration which is common to resorted
mh-coordinate migrations or at each depth step within the migration. As we have maintained
the distinctiveness of the source and receiver grids to this point, the convolution of their axes
must now be evaluated.

Calculating Common Image Gather (CIG) offsets involves the evaluation of an imaging
condition at all acceptable values of r¢ and sg. This gives rise to two new image space vari-
ables: the horizontal image coordinate for the earth model, x¢, and the subsurface horizontal
offset coordinate, hg. These variables have much similarity to the data space variables mid-
point and offset. In a strictly v(z) medium, these axes overlay. However, in more complicated
media, the midpoint variable is somewhat misleading. This is because the wavefield con-
tinuation extrapolates energy from a midpoint on the surface to a different midpoint as the
wavefields are successively downward-continued. Thus, mixing these two ideas is inappro-
priate. Source and receiver coordinates and horizontal and sub-surface offset coordinates are
related through transforms rg = x¢ +hg and s¢ = x¢ — he. The new coordinate, hg, a derived
parameter with a magnitude equal to an integer multiple of Axg, is naturally represented as the
product of an integer multiplication factor 4 and horizontal image space discretization interval
Axg (i.e. hg = hAxg) that will most commonly be unity.

Using these definitions, the image cube may be constructed by applying the general corre-
lation imaging condition to wavefield W,

I(xg,26,he) = Z [8(;’5 _hf)*rs W(re,sg,,2¢) *s, 5(sg —I—hg)] 8(re —xg)d(se —xg) (A-12)

@

Note that this expression reduces to the familiar zero subsurface offset form when 4z =0,

I(xg,2) = Y W(re,se,0,26)8(rs — x£)8(sz — x¢). (A-13)

w

The convolution arguments applied to wavefield W, in equation (A-12), yield

I(xg,ze he)= ), [8(}’5 —hAxg)*r, W(re = Xg,5: = Xg,0,2¢) %5, 8(S¢ —I—hAx;)]
= Zw W(re —hAxe = xg,5¢ +hAxg = xg,0,2¢). (A-14)

Before continuing with this development, it is useful here to stop and interpret the meaning of
equations (A-12) and (A-14). The imaging condition itself builds the image-space coordinate
axes x and & during the convolution expressed above. The arguments within the wavefield
W of equation (A-14) are the equations of a line. This line, x¢, defines the axis for surface
location of the image, and is independent of any assumptions about surface midpoints during
the experiment. This is one reason >we have avoided using the midpoint variable, m. These

ZRecall that the other is the in measuring along it.
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two coordinates indeed share many traits, though the midpoint concept is an arbitrary, while
intuitive and convenient, coordinate transform. Surface location, xg, is a rigorous development
required by the imaging process.

Continuing our derivation, we now reintroduce the lattice in equation (A-10) to the imag-
ing condition which yields,

I(xg,zg,he) = X:H(rg,ss,w,za;)ﬂvé ke LFL(Xg =T —hAXg,Xg = 5¢ + hAxg, 0,2¢)
w

(A-15)

However, h Ax¢ is an integer shift by Ax; and is defined only at known points on the lattice
allowing the index of the Shah function to be shifted to yield,

I(xg,ze,he) = Lpr(re = Xg, 56 = Xg, 2e) %, ks, ZoCFL(w)H(ré,SE,w,ZE) (A-16)
w

Expanding lattice /£ ry, into its components £ and F L,

I(xg, 26, he) =
OC(I’S = Xg,S¢ :xé"zé‘)*rg *55 *ZE FL(I’S = Xg, S8t :xg,zg)*,é *sé ZOCFL(Q))H(VS,SS,O))FL(Q))

w

and applying a Fourier transform over coordinates r¢, s, and z¢ yields,
I(kxg ’kzg skhg) = [°C(kr5 = kxg ’ksg = kxg skzg)H(Brg krg = Brg kxg s Bsg ksg = BSEkxg’ Bzgkzg )] G,

G(krg = kxsakss = ka,CE)) = ﬁ’g,sg [Z oCFL(Q))H(rE,SE,(I))FL(C())} . (A'17)

The Rect functions of coordinates k,, and ks, are collapsed back to a single Rect function in
kxs’ where the frequency limit is given by min(B,,, By, ). The min function arises because the
maximum grid-spacing along either shot or receiver axis alone dictates the aliasing criteria
for the k,-axis. This also allows for simplified calculations in the particular case. Generally,
however, the bracketed expression in equation (A-17) is

0C(krs = kxg ,ksg = kxgakzs) =
min(B,S,BSS)

ui u Uug
> D 8lky, = — )bk, = —=)8(ks, — — ). (A-18)
ulu2=—min(Br, By, ) U4 a18rg a2 BSg a402Z¢

The summations of the delta functions over u; and u, collapse to a single summation over the
variable with the lowest common factor (Icf),

min(BrsaBss) dy Azg

u Uy
Lk ko)=Y D bk — (ks ————).  (A-19)
ity B us= s Az Icf(ai Arg,ar Ase) asAzg
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The horizontal image coordinate is being sampled at a spacing lcf(a; Arg,ay Asg). Thus, for
aliasing to be absent the following condition must hold,
1 Ny,

= lcf(
lcf(2a1 Arg,ZazASg) aj

. Ny
B, =min(B,,, By,) = o) (A-20)
where N,, and N, are the Nyquist frequencies defined by fundamental sampling interval Arg
and Asg. Thus, the alias-free wavefield is given by the following geometry

N Nsg
min(—Z=, ) diAze

Likgp k)= Y > ke — . WZE‘JT‘LZQ' (A-21)

max(ai Arg,ar Asg)

Notice that for the simplified case of zero-offset migration, the pre-supposed notion that there
are no operator aliasing artifacts introduced can be shown conclusively within the presentation
above. Without two different sampling intervals, be they source/receiver or orthogonal surface
coordinates, there are no choices for the min operator in equation (??) nor the max operator of
equation (A-21). Instead, the sole variable available, surface location x, dictates the sampling

of the model space.

Notice that for the simplified case of zero-offset migration, the pre-supposed notion that
there are no operator aliasing artifacts introduced can be shown conclusively within the pre-
sentation of the above results. Without two possibly different sampling intervals, for source
and receiver grids, there are no choices for the min operator in equation (A-20) nor the max
operator of equation (A-21). Instead, the sole variable available, surface location, dictates the
sampling of the model space. This does not however release zero-offset migrations from the
ramifications of image condition aliasing, as the implied correlation of the source wavefield
associated with source-receiver migrations is still present.
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