
Stanford Exploration Project, Report 115, May 22, 2004, pages 479–??

Short Note

Parallel datasets in SEPlib

Robert G. Clapp1

Cluster computing, with relatively inexpensive computational units, looks to be the most cost
effective high performance computing option for at least the next five years. Unfortunately,
cluster computing is not the most convenient processing environment for the type of problems
routinely performed in seismic exploration.

Many of the tasks we want to perform require both large memory and massive disk space.
These requirements make grid based computing (Foster and Kesselman, 1998) generally im-
practical. Storing and accessing these large datasets is also problematic. The Parallel Virtual
File System (PVFS) (Ross et al., 2004) is an attempt to create a virtual file system across sev-
eral machines. It is still relatively new, and doesn’t allow good user control of data locality
(e.g. you often know you want to store frequency ‘x’ on node one because that is where you
plan to process it).

When writing an application for a cluster you often face difficult additional challenges.
Problems specific to coding in SEPlib, but which are indicative of more wide-spread problems
include: each process may not be able to read a shared a history file; each process needs a
unique tag descriptor when writing out a temporary file; all shared binary files need to be
read locally and then distributed (through some mechanism such as MPI (Snir et al., 1995));
and writing effective check-pointing in a parallel code can be extremely cumbersome. These
problems significantly increase the complexity or writing and debugging applications.

In this paper I discuss an extension of the basic SEP data description to help solve the
above problems. It extends the definition of a SEPlib dataset to include one that is stored
on multiple machines. It allows the same code base to be used for both serial and parallel
applications. All that changes is which libraries you link with. Parallel datasets can be easily
created and accessed, greatly simplifying coding and debugging in a cluster environment. In
this paper I describe how the library works, and provide several examples of its use.

DESIGN

The extension of SEPlib to handle parallel datasets has many unintended similarities to the
parallel data capability of HDF (NCSA, 2004). A parallel dataset is a composition of several
datasets with a master file describing the relationship between the various parts. All program-
ming with the parallel dataset library is done through the superset library (Clapp, 2003). To

1email: bob@sep.stanford.edu

479



480 R. Clapp SEP–115

handle parallel datasets with minimal changes to coding style requires a more abstract def-
inition for IO than simple SEPlib or SEP3d allows. The library has both C and Fortran90
interfaces which allows almost any SEPlib code to be changed quickly. In this section I will
describe how to interact how the library interacts with the various sub-datasets.

Files

Similar to SEP3D (Biondi et al., 1996), the master file is still the standard SEP history file.
The difference is that the history file will not have a pointer to the dataset (in=) and it will have
an additional pointer to a text file (Distribution Format File (DFF)) describing the distribution
pattern (dff=).

The distribution format file is made up of several parameters:

nsect The number of sections the dataset is broken up into.

axis The axis along which the data is distributed.

naxis_convert The length of the axis that the data is distributed along.

pattern The distribution pattern along the distributed axis. Right now two distribution pat-
terns are defined, BLOCK and SPREAD. In the first option sequential elements along the
first axis will belong to the same section. In the second option a given section will con-
tain elements i sect + k ∗nsect where i sect is the section number, nsect is the number
of sections, and k is the number of axis elements the section owns. One obvious future
extension to the library is to handle more arbitrary distribution patterns.

tag_secti The tag associated with section number i.

mach_secti The machine in which section i was written.

The final set of files are the various tag_sect. Each tag_sect is a valid SEP3D dataset.

Initialization

There are three mechanisms to initialize a new distributed dataset. A distributed dataset can be
created by a call to the library. The call defines which axis to distribute, how many sections to
create, and what distribution pattern to use. The library then determines the number of threads
it is running on and then distributes the sections to the various threads in a round-robin fashion.
Normally you would think of having a single section for each thread, but this is not required,
and in certain situations might not be desirable.

A distributed dataset can be read from a file. When initializing a distributed dataset from
a tag, data locality tries to be preserved. The various sections are assigned to threads on the
same machine as much as possible without sacrificing load balance. For example, if a dataset



SEP–115 Parallel datasets 481

has been broken up into six sections, three on machine A and three on machine B, and you
then start a job on machine A, B, and C, A and B will each be assigned two sections that
were written locally, while C be assigned one section from both the original A and B group.
Whenever a dataset is initialized from a tag, the tag is only read by the master node. Its contents
are then sent to all slave processes. This keeps every process from having to have access, and
to simultaneously read, a single file. When scaling to a large number of processors, this ability
can be useful.

The final method to create a distributed dataset is from another distributed dataset. If you
are running on multiple threads and you initialize a new dataset from an already distributed
dataset, the new dataset will inherit the original dataset’s distribution pattern.

I/O

The library operates in three different modes when reading and writing a dataset. When read-
ing a non-distributed dataset in a parallel environment, the dataset will be by default read by
the master thread and sent to all slave threads. You can also define the read as being exclu-
sively local (imagine a local temporary file). When reading a distributed dataset, the read will
just return the portion of the given read request that it locally owns. This requires you always
to check the amount of data that is returned. In the next section I will provide an example.

When writing a distributed dataset, the library will by default assume that you are writing
only the portion of the given window that it actually owns. When writing a non-distributed
dataset you can again specify that a write is exclusively local, but otherwise only the master
thread will write data, and it is the programmer’s job to make sure they have collected the
dataset.

Distributing and collecting

Distributing a dataset is rather trivial. You simply have the master thread read the dataset
locally and then use the distribute dataset routine to partition the dataset to the various threads.
Collecting operates in a similar manner. The various threads read the data locally and then
use a collect routine to combine the various subsections. The library also offers the ability to
compress dataset along an axis. An example of this would be migration, where each thread
will have its own image and the master thread wants the sum of the various portions.

Parameter handling

One of the biggest problems with running on cheap hardware is the failure rate is high. Writing
migration code that is able to figure out where it died and continue is challenging. When the
migration is part of a larger inversion problem the tasking becomes even more difficult. One
of the goals of the library is to make check-pointing easier. Any thread can write a status
parameter to a distributed tag. This status parameter is written to its local sections rather than



482 R. Clapp SEP–115

the global tag, so clobbering of the text file isn’t an issue. Restarting becomes a much simpler
matter. You can request the status parameter from each section with a single call. Figuring out
what portion of job has finished, and what portion is remaining becomes a trivial matter.

Global parameters

The library offers two options that are available to any distributed dataset. The first option,
master_data, allows you to switch back and forth between a master-slave and master among
equals programming paradigm. If out.master_data=1, the default, the master thread will own
section(s) of the distributed tag out, otherwise it will not. Running in a true master-slave mode
can be useful when your data is for a file server which you do not want to do computations on.

The second option is to guarantee that each section of dataset will have a unique name.
By default all sections are given a name based on the output tag name (when accessible2),
otherwise a random, unique name is given. A unique name can be guaranteed by specifying
out.unique=1, where out is the tag, on the command line. A related option is function call,
sep3d_make_local_name which will create a tag on a local machine with an unique name.

Extendability

The library was written with the assumption that current parallel programming paradigms are
likely to change. All of the MPI specific code is limited to two files. Adding support for
Parallel Virtual Machine (PVM) or the next ‘latest and greatest’ parallel programming library
simply involves defining how to transfer data between processes and how to synchronize their
flow.

WRITING APPLICATIONS

The best way to learn how to write code is to look at examples. Rather than just make list of
function calls, I will take portions from several different codes.

Serial

The first example is from the SEPlib program Nmo3d. In SEPlib there is a module that helps
initialize the parallel environment. Our only ifdef will be in whether to include the MPI
version of the parallel environment or a dummy serial version. We also need to initialize our
parallel environment. The optional arguments signify the input and output to the program. If
provided to the sep_par_start routine, intag will be set to "in" for a serial run and "intag"
for a parallel run. The variable outtag will be set to "out" or "outtag" and will be initialized
with a copy of the intag history file.

2There is no standard way in unix to find the name of a file when it isn’t written the local directory



SEP–115 Parallel datasets 483

#ifdef SEP_MPI

use sep_par_mpi

#else

use sep_par

#endif

call sep_par_start(intag=intag,outtag=outtag)

Initializing the output dataset is unaffected. If we are running in a parallel environment and
the input is sectioned, the output tag will be sectioned. Otherwise a standard SEPlib file will
be created.

call init_sep3d(in,out,"OUTPUT",ctag=outtag) !Initialize SEP

It is often useful to know the thread number for the current process. The below code section
bases its decision on how often to print progress on whether it is the master or slave process.

if(sep_thread_num()==0) then

call from_param("pct_master",pct_print,2.)

else

call from_param("pct_slave",pct_print,10.)

end if

For NMO our data can be gridded in an arbitrary style. We simply need to loop through
all of the data. The init_loop_calc function figures out looping parameters based on the
dimensionality of the data in%ndims, the dimensions of the data in%n, and the maximum
amount of data we want to read ntr*in%n(1)*in%n(2). The identifier "MAIN" just gives a
name for the current loop. The do_sep_loop will increment windowing parameters fwind and
nwind until we have looped through entire dataset, at which point the return value will change.

if(0/=init_loop_calc(in%ndims,in%n,"MAIN",ntr*in%n(1)*in%n(2))) &

call seperr("trouble initing loop")

do while(0==do_sep_loop("MAIN",nwind,fwind))

To read the data (whether it is a regular or irregular cube) we first request the number of traces
that fall in our current window. In this case, the library will return nh, the number of traces
that the current thread locally owns in the given window.

call sep3d_grab_headers(intag,in,nh,fwind=fwind(2:),nwind=nwind(2:))

If the thread owns any of data in the window, read it.

if (nh.ne.0) then

if (.not. sep3d_read_data(intag,in,input(:,:nh))) then

call erexit("trouble reading data")

end if



484 R. Clapp SEP–115

For a regular dataset, which elements of the current window are owned by the current thread
is important. We can request to know the coordinates of the traces. The returned 2-D array
is of dimensions (ndim − 1 by nh), where ndim is the dimensions of the data and nh is the
number of traces in the current block.

if(.not. sep3d_grab_coords(in,coords)) &

call seperr("trouble grabbing coords")

Writing is again automatic. We will automatically write just the local portion of our data.

if(.not. sep3d_write_data(outtag,out,output,nwind=nwind,fwind=fwind)) then

call seperr("trouble writing out ")

end if

The only remaining step we need to do is to make sure that the total number of traces is cor-
rectly calculated and make any calls needed to end the current parallel environment. The li-
brary keeps track of how many traces it has written to a given file. The sep3d_update_ntraces
call tells the master thread how many traces each slave thread has written. The total number is
then written to the output history (and possibly header format file).

if(.not. sep3d_update_ntraces(out)) call seperr("trouble updating ntraces")

call sep3d_rite_num_traces(outtag,out)

call sep_par_stop()

Distributing a dataset

The second example is taken from the SEPlib program Transf. It does a Fourier transform
of a dataset and then distributes the data along the frequency axis. Again, only the portions
relevant (and different from the previous example) will be shown.

In this case we want to know how many threads we are running on.

nmpi=sep_num_thread()

By default, when converting to frequency inv=.false., we are going to create a dataset with
nmpi sections, but we will allow the user to override this option. We are going to section the
dataset along the last axis (ndimc) which in this case is the frequency axis.

nsect=1; if(.not. inv) nsect=nmpi

call from_param("nsect",nsect,nsect)

if(nsect>1) then

if(.not. inv) then

if(.not. sep3d_section_tag(output,ndimc,"BLOCK",nsect)) &

call seperr("trouble sectioning tag")



SEP–115 Parallel datasets 485

Our input and our output could involve a sectioned dataset. Given our current window param-
eters (nc,fc,jc for output and nr,fr,and jr for our input), we need to know the size of the data
with which we will be working. The sep_local_buffer_size gives the dimensions (number
of samples by number of traces) of the local buffer size given the current window for a given
dataset.

if(.not. sep3d_local_buffer_size(output,n_c,nc,fc,jc) .or. &

.not. sep3d_local_buffer_size(input,n_r,nr,fr,jr)) then

call seperr("trouble getting local buffer sizes")

end if

Once we have transformed the data, we need to pass it to the appropriate thread. We first
describe the window that we want to pass sep3d_set_window and then distribute the data.

call sep3d_set_window(space,nwind=nc,fwind=fc)

if(.not. sep3d_transfer_data(input,space,blockc_in,blockc_out))&

call seperr("trouble transfering data")

Everything else that is different from how you would conventionally program is the same as
the first example.

Restarting and combining

The following examples are taken from the SEPlib WEI library(Sava and Clapp, 2002). They
demonstrate how to read a dataset, recognize which elements of the dataset are locally owned,
and write status parameter and how to combine a dataset.

This first code portion is executed every time a frequency has been fully migrated. The fre-
quency number currently being processed iw are looped through. A variable named ifreq_doneX,
where ‘X’ is the frequency number is created. Then that frequency is set to to 1 by the
sep3d_set_sect_param. In this case the image sep file (the sep3d structure rsep) is poten-
tially a distributed dataset along an aritificial axis corresponding to the number of processes
that are computing the image. The sep3d_set_sect_param call will automatically write this
parameter to its local portion of the image.

do i=1,size(i_w)

par="ifreq_done"

call parcat(par,i_w(i))

if(adj) then

if(.not. sep3d_set_sect_param(rsep,par,1)) then

write(0,*) "trouble writing sect_params"

return

end if



486 R. Clapp SEP–115

The second example is from the portion of the code that checks for a restart request. Here, all
of the threads are looped over. For each frequency, we check all of the sections of the image
tag to see if any of the threads have processed this frequency.

do ifreq=1,wsep%n(6) !loop over frequencies

par="ifreq_done"

call parcat(par,ifreq)

iw=-1;

if(.not. sep3d_grab_sect_param(sep,par,iw)) then

write(0,*) "trouble grabbing section parameters"

return

end if

if(any(iw==1)) then

Oftentimes we need to make a decision whether to proceed based on whether we own a specific
element of the axis we spread along. This code fragment is marking whether or not it owns a
given frequency.

do i=1,wsep%n(6)

iw_own(i)=sep3d_own(dsep,i)

end do

In the case of migration, we need to combine all the local images into a global image. This
code fragment adds all of the local data (bigc) from the distributed image (big_sep), into the
standard SEP dataset (small_sep) buffer bigc2.

if(.not. sep3d_compress_data(big_sep,small_sep,bigc,bigc2)) then

write(0,*) "trouble combining data ", fwind

return

end if

FUTURE WORK

There several additional features that could be added to the current libraries’ capabilities. As
mentioned earlier an arbitrary description about how the data is distributed along an axis would
be useful. This would allow for better load balancing, redistributing of tasks on a restart, and
for operations that perform some type of windowing.

The most obvious place for work is to add recognition of distributed datasets to more
SEPlib programs. Currently only the generic SEPlib utilities Window3d and In3d are aware of
distributed datasets. Adding awareness to program like Headermath would be helpful. More
application programs could/should be converted. Currently Transf, Nmo3d, Phase, CAM, Rtm2D,
and Fdmod are distributed dataset aware. Almost all of SEP’s current application programs
could benefit from conversion.



SEP–115 Parallel datasets 487

CONCLUSIONS

Developing code for a parallel environment requires significant, sometimes non-obvious ad-
ditional coding overhead. By expanding the concept of a SEPlib dataset to include a dataset
that is spread over several machines, much of the difficulty associated with cluster computing
can be avoided by the programmer. The included examples show how with relatively minor
changes in coding style a parallel code can be created virtually free.

REFERENCES

Biondi, B., Clapp, R., and Crawley, S., 1996, Seplib90: Seplib for 3-D prestack data: SEP–92,
343–364.

Clapp, R. G., 2003, SEPlib programming and irregular data: SEP–113, 479–490.

Foster, I., and Kesselman, C., 1998, The grid : Blueprint for a new computing infrastructure:
Morgan Kaufmann.

NCSA, 2004, The ncsa hdf home page: http://hdf.ncsa.uiuc.edu/.

Ross, R., Ligon, W., Carns, P., Miller, N., and Latham, R., 2004, Parallel virtual file system:
http://www.pvfs.org/pvfs2/.

Sava, P., and Clapp, R. G., 2002, Wei: a Wave-Equation Imaging library: SEP–111, 383–395.

Snir, M., Otto, S. W., Huss-Lederman, S., Walker, D. W., and Dongarra, J., 1995, Mpi: The
complete reference: MPI Press.



488


