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Regularizing Madagascar: PEFs from the data space?

William Curry'

ABSTRACT

The Madagascar seasat dataset presents a problem where data are collected along crossing
tracks. These tracks are not straight, and appear to be irregular in the model space. Previ-
ous methods assumed that the data were regularly sampled in the model space coordinate
system. I warp the model space to look more like the data space, so that prediction-error
filters can be estimated in the more regularly-sampled data space. I try two different ap-
proaches to this problem on the warped space, one where the data is single-valued and
fixed, while the other is multivalued and allowed to vary. The former method works very
well, while the second one works well.

INTRODUCTION

The Madagascar seasat sea level dataset is a collection of two passes (ascending and descend-
ing) of the GEOS AT satellite over a region of the Southwest Indian Ridge in the Indian Ocean.
There is a densely-acquired region of the dataset in the south, which ranges from 40 to 70 de-
grees (E) longitude and 30 to 40 degrees (S) latitude, while the latitude of the sparsely-acquired
data ranges from 20 to 40 degrees (S) latitude.

The satellite tracks are much like feathered marine geophone cables, sail lines, or shot
lines in a 3D seismic survey. Any method that hopes to succeed on 3D seismic data should be
able to deal with this toy problem.

There are several issues to account for when dealing with this data. The crossing tracks
of the dataset result in single locations with multivalued data, which can be substantially dif-
ferent due to tidal variations, weather patterns, and currents. In addition, there is spiky noise
throughout the dataset, which is infamous for its effect on least-squares based methods (Claer-
bout and Muir, 1973; Guitton and Symes, 2003). Finally, the only tracks in the northern half
of the survey area have a very wide spacing, so an interpolation problem also arises.

Previous work on this dataset at SEP (Ecker and Berlioux, 1995; Lomask, 1998, 2002)
has mainly dealt with the systematic errors present in the dense dataset (Ecker and Berlioux,
1995), or with ways in which to use information in the dense portion of the data to regularize
the missing bins in the northern, sparse portion of the data (Lomask, 1998, 2002).

Some previous methods of dealing with sparse data rely on creating proxy data, either by
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an initial guess of a prediction-error filter (PEF) (Claerbout, 1999) or by using coarser scales
of the data (Curry, 2002). I propose a method where we solve the interpolation problem in
the data space coordinate system. The model space is warped to fit the data location and two
different approaches are applied. In the first approach te data are preprocessed so that they are
single valued. In the second, two sets of co-located tracks are used to create a map.

BACKGROUND

The Madagascar regularization problem has been approached using the following fitting goals
(Lomask, 2002):

Wi [Lm—-d] ~ 0
dt

eAm =~ 0. (H
In these fitting goals: W corresponds to a weight for ends of tracks and spikes in the data, %
is a derivative along each track used to eliminate low frequency variations along each track, LL
is a linear interpolation operator that moves from values on a regular grid to the data points,
m is the desired gridded model, d are the data points along the tracks, A is a regularization
operator, and € is a trade-off parameter between the two fitting goals.

The regularization operator (A) typically is a Laplacian, a prediction-error filter (PEF), or
a non-stationary PEF (Crawley, 2000). When using a PEF, it first must be estimated on some
training data, using a least-squares fitting goal,

W(DKf+d) ~ 0, 2)

in which W is a weight to exclude equations with missing data, D is convolution with the data,
K constrains the first filter coefficient to 1, f is the unknown filter, and d is a copy of the data.

In order to set a benchmark for how effective a prediction-error filter can be as a regular-
ization operator, a PEF is estimated on the densely-sampled portion of the Madagascar dataset
and is then used to interpolate the sparse tracks in the same area. The data are interpolated by
using the following fitting goals:

Kgatam =~ my
cAm ~ 0. 3)

Here Kgata is @ mask for known data, mg are the data, m is the model, and A is the regular-
ization operator. In this case, the input data is the output of the fitting goals in equation (1),
with € set to zero. Results for using a Laplacian, a PEF estimated on well-sampled data, and
a non-stationary PEF estimated on dense data as the regularization operator A are all shown
in Figure 1. As we can see, as the complexity of the regularization operator increases, the
interpolated result improves. This is because the Laplacian assumes isotropic behavior in the
data while the PEF and non-stationary PEF are based on statistical information in the data.
The PEF assumes statisical stationarity in the data while the non-stationary recognizies and
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accounts for the non-stationary nature of the data. These results set an upper benchmark for
what the best possible interpolation could be using these methods for this type of dataset. In
this example we are benefiting from the fully sampled nature of the input.

Now that the best-case scenarios are out of the way, we can see what we can accomplish
without cheating and using the dense data. By using only the sparse tracks, we are not able
to capture nearly as much information about the model as we have in the previous case. The
results for interpolating with a Laplacian as well as stationary and non-stationary PEFs esti-
mated solely on the sparse tracks with the multi-scale method (Curry and Brown, 2001; Curry,
2002, 2003) are shown in Figure 2.

In this case, there are regions of the data where the Laplacian gives the best result, and re-
gions where the non-stationary PEF gives the best result. One example of this is the spreading
ridge. The non-stationary PEF is able to interpolate some fine features of the ridge that Lapla-
cian interpolation is incapable of. However, in other regions, the non-stationary PEF performs
poorly, and the far simpler Laplacian interpolation gives a more reasonable result. This is be-
cause the PEFs estimated using the multi-scale approach do not always properly characterize
the data, as local information is destroyed in the multi-scale averaging process.

Some of the problems encountered by the non-stationary PEF are due to the spatial distri-
bution of the data. The multi-scale approach used in Figure 2 blindly rescales the data without
regard to their location. By simply making the grid cells larger, very coarse bins must be used
before the data become contiguous, and many data points along the tracks fall into these bins.
We are clearly in need of a method that will take into account that these data are collected
along curved tracks that are at an angle.

PEFS IN THE DATA SPACE

The known data points in the model space are distributed along curved crossing tracks, making
it very difficult to estimate a PEF in this space. However, in the data space of the fitting goals
in equation (1) of the previous section, the data are sampled in a regular space: a series of
regularly-sampled tracks. By transforming the coordinates of the data and model, we can keep
the data space regularly-sampled while warping the model space so that a PEF estimated in
the data space can be used in the model space.

The existing data are collected in a series of ascending and descending crossing tracks.
The goal is to transform the model space so that it more closely resembles the pattern in which
the data was collected, which is in two sets of crossing tracks. This can be done by first
stretching the longitudinal axis so that the tracks are orthogonal, subtracting the mean values
of the coordinates of the data, rotating the data so that the tracks are aligned North-South and
East-West, applying two parabolic shifts along a rotated axis, and then finally breaking the
data up into ascending and descending tracks and griding the data. This process is shown in
Figure 3.

The method used to warp the model space is not especially important. It would perhaps
be better to use specific coordinates of the data space, but this warping accomplishes the same
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Figure 1: When we know the answer, from top to bottom: (a) The sparse tracks on the lower
half of the data set; (b) Those tracks interpolated with Laplacian regularization; (c) The sparse
tracks interpolated with a PEF estimated on the co-located dense tracks; (d) the same as (c),
but using a non-stationary PEF; (e) the dense tracks from the same area. ‘billl-sparsedata‘
[ER]
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Figure 2: When we don’t know the answer, from top to bottom:(a) The sparse tracks on the
lower half of the data set; (b) Those tracks interpolated with Laplacian regularization; (c) The
sparse tracks interpolated with a PEF estimated on the same sparse tracks; (d) the same as (c),

but using a non-stationary PEF; (e) the dense tracks from the same area. |billl-unrotpef | [ER]
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Figure 3: The steps used in warping the coordinate system.(a): Original model; (b): Stretching

and centering; (c): Rotation; (d): Parabolic shifts. |billl-warping | [ER]
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end goal of having straightened orthogonal tracks. We can use the same warped grid for our
model space, allowing us to use a similar methodology that we used for the regularly-sampled
data problem. The two sets of orthogonal tracks with missing data is very similar to a problem
shown by Claerbout (1999), where a pair of 1D PEFs are used to fill in missing data. This can
be expressed as

Kgatam =~ my
cAam ~ 0
eAgm =~ 0, @

where K, m and my are the same as above, and A, and Aq are 1D PEFs that are estimated on
the ascending and descending tracks in the data space, respectively. This approach assumes
that the known data is single-valued, and fixes it so that it does not change. The two sets of
tracks are reduced to a single map with the fitting goals in equation (1), with € set to 0. This
becomes the data, and the obtained model is shown in Figure 4. The results of this approach
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Figure 4: Results in a warped space using the fitting goals in equation (4). Above: model
obtained after 500 iterations. Below: residual. | bill1-warpfilll ‘ [ER,M]

are good. The general trend of the data is interpolated, and the spreading ridge is clearly
present in the model, which is not the case with Laplacian interpolation. Since this method
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only deals with the merged tracks, another method which uses the two track sets separately is
tested next.

In this second method, the following fitting goals are solved:

Aa(m—dy) ~ 0
Ag(m—dg) =~ 0, (%)
where A, and Aq are again 1D PEFs that are estimated in the data space, which is now two
panels containing separately gridded ascending and descending tracks, represented by d, and

dg. The results for this method are shown in Figure 5.

The residual space is now twice the size as that for the fitting goals in equation (4), since
the ascending and descending tracks are now dealt with separately. This approach appears to
also be successful, although some effects of the PEF are present in the data, making the result
look like a roughened result. The spreading ridge can be easily delineated. The residual space
is interesting to look at, as the influence of the two sets of tracks can be seen in the different
portions of the residual. The imprint of the data has disappeared from one half of the residual
and has appeared in the other.

CONCLUSIONS AND FUTURE WORK

By estimating a pair of 1D PEFs in a warped data space, the sparse, curved tracks of the
Madagascar dataset were successfully interpolated. Other methods that require a starting guess
or rescaled proxy data were much less successful, as they were estimated in a domain where
the data are not optimally distributed.

The tracks in the Madagascar dataset have several similarities with the tracks seen in 3D
seismic data, such as sail lines, receiver cables, and cut lines for sources. When estimating
PEFs on this data, the choice of doing it in the model space and the data space needs to be
investigated.

To obtain a better result for this data, the next obvious step is to use non-stationary PEFs,
as the character of the Madagascar data changes greatly with position.
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Figure 5: Results in a warped space using the fitting goals in equation (5). (a): model obtained
after 150 iterations. (b),(c): two parts of the residual space. The data space contains the two
sets of tracks, and is twice the size of the model space. billl—warpﬁllZa‘ [ER.M]
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