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Kinematics of 3-D angle-domain common-image gathers for
migration velocity analysis

Thomas Tisserant and Biondo Biondi1

ABSTRACT

We extend the study of the kinematic properties of 2-D offset- and angle-domain common-
image gathers to the general 3-D problem. We examine how the use of an incorrect mi-
gration velocity affects the behavior of the image in the offset and angle domains.
We show that the general 3-D case with and without the correct migration velocity can
be cast into a 2-D formulation, making it possible to apply existing theory from 2-D.
We illustrate both ray-tracing and plane-wave approaches to the problem and verify our
theoretical results with a synthetic model.

INTRODUCTION

Migration Velocity Analysis (MVA) and Amplitude Versus Angle (AVA) analysis are the two
main applications of Angle-Domain Common-Image Gathers (ADCIGs). ADCIGs can be
computed in the Fourier domain from offset-domain images generated by wavefield-continuation
methods (Sava and Fomel, 2000). In previous work (Tisserant and Biondi, 2003), we presented
an extension of the method to make it valid for 3-D geometries. Biondi and Symes (2003) an-
alyze the kinematics of ADCIGs when an incorrect migration velocity has been used during
the wavefield-continuation step. This paper aims to extend their analysis to 3-D.

We consider two approaches: one based on rays, the other based on plane-waves. In the
ray approach, we split our analysis between the use of an correct and an incorrect migration
velocity. When the migration velocity is correct, the source and receiver rays focus at the
same correct image point where they are coplanar. This property of the rays makes it simple
to transform the 3-D geometry into 2-D for which the theory is available (Biondi and Symes,
2003). We then analyze the problem when an incorrect migration velocity is used. Incorrect
migration velocity yields non focused ray resulting in an apparent image point, and generally
not coplanar rays. We introduce an apparent propagation plane in which the 2-D theory can
be applied. We will then discuss a plane-wave approach of the problem. Finally a synthetic
example is used to verify our theoretical results.
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GEOMETRY

Extension from 2-D to 3-D requires the introduction of new angles in the geometric definition
of the problem. However, we will see that a 3-D problem can be formulated as a 2-D problem
whose analysis is done by Biondi and Symes (2003).

In 2-D, two angles define the geometry of the problem: the dip of the interface, α, and
the aperture of the reflection, γ . In 3-D, the reflector is not only defined by its dip α, but
also by its azimuth φ. Further, in the full 3-D geometry, the rays are not necessarily coplanar
during downward-continuation. As a consequence, the reflection may have a different azimuth
than the azimuth of the survey. We call β the reflection azimuth. When the correct migration
velocity is used, the two rays focus correctly in one point. Near this image point the two rays
define defines one plane. The most general configuration considers an incorrect migration
velocity. Because the velocity is incorrect, the rays do not focus in one point. Instead, they
stop as two different points with the same depth when using downward continuation. The
distance between the two points is the offset at constant z. The middle of the segment is
the image point in the offset domain domain at constant z (zODCIG). In such configuration,
the rays are not necessarily coplanar. We introduce a new angle, ξ , accounting for the non-
coplanarity of the rays. To make the link with the 2-D case, we seek an apparent propagation
plane containing all the information about the actual geometry. In all cases, the image point in
the angle domain moves along the normal to the apparent interface by an amount dependent
on the migration velocity used, and on the aperture angle. The image point in the angle
domain is obtained by transforming of the image point in the offset-domain. We use the post-
migration transformation in the Fourier domain introduced in Sava and Fomel (2000) for the
2-D geometry, and its 3-D extensions by Tisserant and Biondi (2003) for the 3-D full prestack
migration. Our approach in the next two sections is based on a ray construction. Later, we will
present in the third section another approach based on plane-waves.

CORRECT MIGRATION VELOCITY

Discussion

The 3-D geometry implies that the rays can now have different azimuth and can propagate out
of the vertical plane. If the migration velocity is correct, the two rays focus at the same point
at zero subsurface offset (Figure 1). By assuming the velocity is constant around the image
point, all the elements (rays, normal, image points) are contained in one plane: the plane
of the propagation. By an appropriate change of coordinates, this 3-D problem with correct
migration velocity can be locally transformed in a 2-D problem, and the 2-D theory analyzed
by Biondi and Symes (2003) be applied. The offset-to-angle transformation must be adapted
though.
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Figure 1: The velocity function
is V (z) = 1.5 + .5z km/s. The
target has a fixed position, az-
imuth (φ = 45) and dip (α = 60).
thomas1-multi_correct_v_2 [CR]
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Offset-to-angle transformation

In 2-D, the offset-to-angle transformation is done with the relation

tanγ = −
kh

kz
, (1)

where γ is the aperture angle of the reflection, kh is the offset wavenumber associated with the
subsurface horizontal offset, and kz is the vertical wavenumber. Tisserant and Biondi (2003)
presented a 3-D generalization of Equation 1:
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where km and k_h are the midpoint and offset vector wavenumber, respectively, and where the
reflection azimuth, β, is introduced through

k ′

mx
= cosβkmx − sinβkm y (4)

k ′

m y
= cosβkmx + sinβkm y (5)

k ′

hx
= cosβkhx − sinβkh y (6)

k ′

h y
= cosβkhx + sinβkh y . (7)

The offset-to-angle transforms a (kz ,kmx ,km y ,khx ,kh y ) five dimensions cube into another 5-D
one (kz,kmx ,km y ,γ ,δ). Figure 2 is the measured aperture-azimuth distribution for the configu-
ration displayed in Figure 1 obtained with ray-tracing. We set the lower boundary in γ because
of an increased incertitude in the estimation of β as γ gets close to 0. The upper boundary in
γ is reached when one of the two rays begins to overturn.

We now present a more complex 3-D extension: the one addressing the 3-D full prestack
migration with a wrong migration velocity.
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Figure 2: γ − β distribu-
tion corresponding to Figure 1
thomas1-beta_f_gamma_v_correct
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INCORRECT MIGRATION VELOCITY

Discussion

Figure 3 presents the geometry of the problem throughout an example. It has been built con-

Figure 3: Ray-tracing with
the incorrect velocity function
V (z) = 1.41 + .47z km/s. Because
the velocity is too slow, the rays
end at too shallow of a depth.
thomas1-multi_incorrect_v_2 [CR]
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sidering the same events as in Figure 1 but by using an incorrect velocity. Because the velocity
is too low, the rays stop at too shallow of a depth, where they are not coplanar. The gap be-
tween the source and the receiver endpoints is the horizontal offset (zODCIG, z for constant
z). The middle of the horizontal offset is the image point in the zODCIG domain. One can
measure on Figure 3 the azimuth of the source-receiver end points segment. We call it β ′. β ′

can be decomposed into two components: one, β, is the azimuth due to ray-bending, the other,
ξ , accounts for the non-coplanarity due to the use of an incorrect migration velocity. If the
migration velocity is too slow, the rays stop too early, yielding to an underestimated reflection
azimuth. Conversely, if the migration velocity is too high, the rays stop too late, yielding to
a overestimated reflection azimuth. When the velocity is exact, the rays are coplanar and the
rotation of the reflection azimuth is only due to ray-bending and dips.
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ODCIGs and ADCIGs properties

The velocity is assumed to be constant in a small volume around the image points. That is
why the rays are straight lines in the next few pictures.

Biondi and Symes (2003) noted that, in 2-D, image points in the offset domains (at con-
stant x, xODCIG, and constant z, zODCIG) lie on an apparent interface. In 2-D the apparent
interface is a line, whereas it is a plane in 3-D. Not only the image points belong to the inter-
face, but they are also all collinear (Figure 4). From this property we can define a new plane
that includes the normal and the common line of the image points in the offset domains. This
plane has special properties since it contains all the image points: it is the link to the 2-D case.
Let us further study this plane.

Figure 4: The endpoints and im-
age points of all the offset-domain
gathers are displayed (dotted lines).
All the image points are defined
in the interface and are collinear.
thomas1-OCIGs_alignment [CR]
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If the velocity is incorrect, the rays do not focus at the actual image point but at an apparent
image point located in the middle of the end points of the two rays. The apparent image point
is the image point in the offset domain. Further, in the case of full prestack migration, the rays
are not coplanar, so there is no propagation plane. Physics requires one though. In the absence
of a propagation plane, we define an apparent propagation plane. To find it, we start from the
actual rays and find a rotation that makes their image coplanar. The rotation is done around
the normal at the interface (Figure 5). Note that the new rays are parallel to the original ones
but have different end points. The plane in which the rays are coplanar after rotation is the
apparent propagation plane. The geometric location of the image points in the offset-domain
is at the intersection between the propagation plane and the interface. The rotated rays thus
define the same plane-wave as the original rays. The angle of the rotation, ξ , is equal to the
azimuth defined in the interface of both source and receiver rays. The reflection azimuth, β, is
equal to the azimuth of the apparent propagation plane.

We now analyze how the image in the angle domain is obtained from the image in the
offset domain.
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Figure 5: Transformation of the orig-
inal rays into coplanar rays. The
source an receiver endpoints (the 2
big dots) are rotated around the nor-
mal until the rays are coplanar. Note
that the new rays and azimuth of the
rays measured in the apparent inter-
face. the normal cross at the same
point. The two new rays and the nor-
mal define the apparent propagation
plane. thomas1-rot_copl [CR]
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Offset-to-angle transformation.

The apparent propagation plane plays another interesting role during the offset-to-angle trans-
formation: despite the non-coplanarity of the rays, the energy moves only in the apparent
propagation plane. Figure 6 illustrates this property. Two offset-domain image points are dis-
played. points in the offset domain to the image point in the angle domain along a direction
orthogonal to the direction of the offset. All the possible directions define a plane. The two or-
thogonal planes are displayed on Figure 6. The intersection of the two planes with the normal
gives the position of the image point in the angle domain. More specifically, the energy moves
at the intersection between the orthogonal plane and the apparent propagation plane. To sum
up, when an incorrect migration velocity is used, the rays are not coplanar. There is however a
preferential plane, the apparent propagation plane, which allows one to cast the 3-D problem
into a 2-D one.

PLANE-WAVE APPROACH

In the previous sections, we have talked about rays or ray-tracing. This approach has the
advantage of being intuitive. The physics, however is governed by plane-waves. In this section
we present a plane-wave approach of the same problem.

Why plane-waves

One reason to use plane-waves instead of rays is to avoid the asymptotic approximation intro-
duced when using rays. Unlike rays, each plane-wave can be treated independently at each
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Figure 6: Geometric construc-
tion of the image point in the
angle domain from the im-
age points in the offset domain.
thomas1-gamma_planes_2 [CR]
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Figure 7: Geometric construction of
the image point in the angle domain
from the source and receiver rays end
points. thomas1-gamma_planes
[CR]
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frequency. The use of plane-waves simply ignores the problem of non-coplanar rays. Indeed,
the original and the rotated rays described earlier share the same plane-wave. The reflection
azimuth is the azimuth of the apparent propagation plane which is directly deduced from the
angles of the two plane-waves.

Construction

Given one image point in the angle domain, and the four angles defining the two plane-waves
(two azimuths and two dips), the two plane-waves are positioned such that the image point is
contained in both. The directions of the two plane-waves provide the azimuth and the dip of
the reflector. The image point is contained in the intersection of the two plane waves. To find
the plane of the reflection we define the apparent propagation plane as being orthogonal to the
two plane-waves and passing through the image point. Once this plane defined, knowledge of
the rays location and coplanarity is inconsequential.

Figure 8: Plane-wave construction.
thomas1-plane_waves [NR]
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SYNTHETIC EXAMPLE

We verify our theoretical results on a model with five slanted planes (Vaillant and Biondi,
2000). The velocity function is v(z) = 1.5 + .5z km/s. The velocity gradient allows us to
highlight the rotation of the reflection azimuth due to ray-bending. The model consists of five
planes with 0◦, 15◦, 30◦, 45◦, 60◦ dip and a 45◦ azimuth. The dataset is migrated with full
prestack migration. We migrate first with the correct velocity and then with a velocity that
is 6% too slow. The migrated model is then transformed from offset to angle for different
reflection azimuths. Hence the image has five dimensions: in-line and cross-line midpoints,
depth, aperture and reflection azimuth. We select one midpoint and obtain a cube of a midpoint
gather sorted in aperture angle and reflection azimuth angle.
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Behavior of the reflection azimuth

Figure 9 shows one depth slice in the (z,γ ,β) cube at z = 1450 m. We observe that the re-
flection azimuth changes slowly with the aperture angle, except at small angles where the
uncertainty is high. This slow variation is consistent with Figure 2 since the reflection azimuth
changes by 2◦ while the aperture changes by 25◦. One can also notice that the maximum aper-
ture angle obtained with ray-tracing, 35◦, is consistent with the aperture angle interval where
the energy is high. The reason may be that rays begin to overturn when the aperture angle is
higher than 35◦. Indeed, the upper limit in ray-tracing is due to one of the ray beginning to
overturn.

Figure 9: Depth slice in the (z,γ ,β)
cube. thomas1-2d_v_1 [CR]

ADCIGs movement with wrong velocity

We use the ray-tracing to predict the localization of the energy in the synthetic dataset migrated
with the wrong velocity. The ray-tracing is illustrated by Figure 3. Starting from the true
position of the image point (the diamond on the Figure), we seek the position of the image
point (stars on the figure) when an incorrect migration velocity is used. The reflector has a
fixed azimuth and dip. We first model the events recorded at the surface at one particular
aperture and reflection azimuth. Once the true events are known, the source and the receiver
rays are shot in a media with an incorrect velocity this time. If the velocity is too slow, then
the rays stop at two distinct end points. Knowing the position of the end points and the ray
parameters, the position of the image point in the angle domain for an incorrect migration
velocity is determined through a geometric construction similar to the one in 6. It is also
possible to use the normal shift described in the 2-D case since we have shown that the 3-D
problem can be recast as 2-D one. We test this procedure on an image point on the 60◦ dip
reflector and whose location is (400,400,1300) in image. We choose a source-receiver pair
such as the aperture angle is 32◦. Again, our goal is to find where the true image point has
moved because of the use of an incorrect migration velocity. We observe on Figure 10 that
the coordinates of the apparent image point in the angle domain computed by ray-tracing do
match those of the image point in the model migrated with the wrong velocity.
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Figure 10: Dataset migrated with the incorrect velocity. thomas1-cube_0_I0 [CR]

CONCLUSIONS

We have presented a 3-D study of the kinematic of angle-domain common-image gather.
Knowing the theory in 2-D, we showed how a 3-D configuration can be casted in a 2-D for-
mulation. The transition is straightforward when a correct velocity is used since the plane of
the propagation is the plane in which the problem becomes 2-D. In the less obvious problem
where an incorrect migration velocity is used, we have defined an apparent propagation plane
that fulfills the same objective. We have presented both a ray-based and a plane-wave ap-
proach. The kinematic observations made with ray-tracing have been verified on a synthetic
dataset.
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