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Seismic imaging using Riemannian wavefield extrapolation

Paul Sava and Sergey Fomel'

ABSTRACT

Riemannian spaces are described by non-orthogonal curvilinear coordinates. We gen-
eralize one-way wavefield extrapolation to semi-orthogonal Riemannian coordinate sys-
tems, which include, but are not limited to, ray coordinate systems. We obtain one-way
wavefield extrapolation methods which are not dip-limited, and which can even be used
to image overturning waves. Ray coordinate systems can be initiated either from point
sources, or from plane waves incident at various angles. Since wavefield propagation
happens mostly along the extrapolation direction, we can use cheap finite-difference or
mixed-domain extrapolators to achieve high angle accuracy. The main applications of our
method include imaging of steeply dipping or overturning reflections.

INTRODUCTION

Imaging complex geology is one of the main challenges of today’s seismic processing. Of
the many seismic imaging methods available, downward continuation (Claerbout, 1985) has
proven to be accurate, robust, and capable of handling models with large and sharp velocity
variations. In addition, such methods naturally handle the multipathing which occurs in com-
plex geology and provide a band-limited solution to the seismic imaging problem. Further-
more, as computational power increases, such methods are gradually moving into the main-
stream of seismic processing.

However, migration by downward continuation imposes strong limitations on the dip of
reflectors that can be imaged since, by design, it favors energy which is propagating mainly in
the downward direction. Upward propagating energy, e.g., overturning waves, can be imaged
in principle using downward continuation methods (Hale et al., 1992), although the procedure
is difficult, particularly for prestack data. In contrast, Kirchhoff-type methods based on ray-
traced traveltimes can image steep dips and handle overturning waves, although those methods
are far less reliable in complex environments given their high-frequency asymptotic nature.

The steep-dip limitation of downward continuation techniques has been addressed in sev-

eral ways:

e A first option is to increase the angular accuracy of the extrapolation operator, for ex-
ample by employing methods from the Fourier finite-difference (FFD) family (Ristow
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and Ruhl, 1994; Biondi, 2002), or the Generalized Screen Propagator (GSP) family (de
Hoop, 1996; Huang and Wu, 1996). The enhancements brought about by these meth-
ods come at a price, since they increase the cost of extrapolation without guaranteeing
unconditional stability.

e A second option is to perform the wavefield extrapolation in tilted coordinate systems
(Etgen, 2002), or by designing sources which favor illumination of particular regions
of the image (Rietveld and Berkhout, 1994; Chen et al., 2002). We can thus increase
angular accuracy, although those methods favor a subset of the model (a salt flank,
for example), while potentially decreasing the accuracy in other regions. In complex
models it is also not obvious what is an optimal tilt angle for the extrapolation grid.

e A third possibility is hybridization of wavefield and ray-based techniques, either in the
form of Gaussian beams (Hill, 1990, 2001; Gray et al., 2002), coherent states (Albertin
et al., 2001, 2002), or beam-waves (Brandsberg-Dahl and Etgen, 2003). Such tech-
niques are quite powerful, since they couple wavefield methods with multipathing and
band-limited properties, with ray methods, which deliver arbitrary directions of prop-
agation, even overturning. The main strength of those techniques, is also their main
weakness, i.e. they are formulated in terms of decoupled beams. Beams may leave
shadow zones in various parts of the model, which hamper their imaging abilities. Fur-
thermore, beams have limited size, which in turn limits the extent of the diffractions
created by sharp features in the model to that of any particular beam, no matter how
accurate the extrapolator within each beam is. In addition, the narrow extrapolation
domain poses serious beam superposition problems, such as beam boundary effects.

The main idea of our paper is to couple the beams together and extrapolate within all
of them at once. We, therefore, cannot talk about beams anymore, but instead we need to
talk about continuously changing coordinate systems. We extend downward continuation in
a regular Cartesian space to wavefield extrapolation in distorted coordinates, known as Rie-
mannian spaces, thus the name of our method. We formulate the theory in arbitrary 3-D semi-
orthogonal Riemannian spaces, e.g., ray coordinates, although those coordinate systems do
not necessarily need to have a physical meaning as long as they fulfill the semi-orthogonality
condition. Examples of such coordinate systems include, but are not limited to, fans of rays
emerging from a source point, or bundles of rays initiated by plane waves of arbitrary ini-
tial dips at the source. A special case of our method is represented by the polar/spherical
coordinate system (Nichols and Palacharla, 1994; Nichols, 1994, 1996).

Our method can be seen as a finite-difference solution to the acoustic wave-equation in ray
coordinates. In this respect, it is closely related to Huygens wavefront tracing (Sava and Fomel,
2001), which represents a finite-difference solution to the eikonal equation in ray coordinates.

Another idea related to our method is that of wave-equation in ray-centered coordinates
(Yedlin, 1981; Cerveny, 2001). However, our method is different since the ray-centered co-
ordinate system is orthogonal in 3-D and defined around an individual ray. In contrast, our
method is formulated in ray coordinates which are parameterizations of the wavefields at the
source, and which are non-orthogonal in 3-D and defined globally for an entire family of rays.



SEP-114 Riemannian wavefield extrapolation 3

The upside of our method is that the coordinate system may follow the waves, and can
even overturn, such that we can use one-way extrapolators to image diving waves (Figure 1).
We can also use extrapolators with small angle accuracy (e.g. 15°), since, in principle, we are

Figure 1: Ray coordinate systems
are superior to tilted coordinate sys-
tems for imaging overturning waves
using one-way wavefield extrapola-
tors. Overturning reflected energy
may become evanescent in tilted co-
ordinate systems (a), but stays non-
evanescent in ray coordinate systems
(b). ‘ paul2-overturned ‘ [NR]

—

—

never too far from the actual direction in which waves propagate. We are also not confined to
the extent of any individual beam, therefore we can track diffractions for their entire spatial
extent.

ACOUSTIC WAVE-EQUATION IN 3-D RIEMANNIAN SPACES

The Laplacian operator of a scalar function U in an arbitrary Riemannian space with coordi-
nates {&1,&;, &3} has the form

au=y [y g %) o
= Vgl 9&i \ o 9&;

where g%/ is a component of the associated metric tensor, and |g| is its determinant (Synge and
Schild, 1978).

The expression simplifies if one of the coordinates (e.g. the coordinate of one-way wave
extrapolation) is orthogonal to the other coordinates. Let §; =&, & =n, and & = ¢, with ¢
orthogonal to both & and 5. Then the metric tensor has the matrix

E F 0
[gi]=| F G 0 [, 2)
0 0 o?

where E, F, G, and « are differential forms that can be found from mapping Cartesian coor-
dinates x to the general coordinates {&,n, ¢}, as follows:

E = x¢-x¢,
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F = x¢-xp,
G = x,°%Xp,
012 = X¢-X¢. (3)

The associated metric tensor has the matrix

+G/J* —F/J* 0
[¢/]=| —F/J* +E/J* O , 4)
0 0 1/a?

where J2 = E G — F2. The metric determinant takes the form

gl =aJ?. (5)

Substituting equations (4) and (5) into (1), we can modify the Helmholtz wave equation

wZ

for propagating waves in a 3-D Riemannian space:

1 [o /JoU d adlU adlU d adU adU w?
— ==+ F-——7|+—|E=—-F-—F—")|=—=U. (6)
aJ | 9¢ \a 3¢ & J 0& J an an J on J 0& v?
In equation (6), w is temporal frequency, v [x(&€,7,¢)] is the wave propagation velocity, and U

represents a propagating wave.

For the special case of two dimensional spaces (F = 0 and G = 1), the Helmholtz wave
equation reduces to the simpler form:

L[L (L) 2 (ai)]_ ey -
aJ | 9¢ \a ¢ AV

which corresponds to a curvilinear orthogonal coordinate system.

Particular examples of coordinate systems for one-way wave propagation are:

Cartesian (propagation in depth): x| =&, x, =n, x3 = ¢,

E:G:O{ = J - 1,
F = 0.
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Spherical (propagation in radius): x; = ¢ sin& cosn, xp = ¢ siné sinn, x3 = ¢ cosé&,

E = (2,
G = {’sin’e,
a = 1,

— 2
J = (°sin&,
F = 0.

Ray family (propagation along rays): & and n represent parameters defining a particular ray
in the family (i.e. the ray take-off angles), J is the geometrical spreading factor, related
to the cross-sectional area of the ray tube (Cerven}’/, 2001). The coefficients E, F,
G, and J are easily computed by finite-difference approximations with the Huygens
wavefront tracing technique (Sava and Fomel, 2001). If the propagation parameter ¢ is
taken to be time along the ray, then o equals the propagation velocity v.

ONE-WAY WAVE-EQUATION IN 3-D RIEMANNIAN SPACES

Equation (6) can be used to describe two-way propagation of acoustic waves in a semi-
orthogonal Riemannian space. For one-way wavefield extrapolation, we need to modify the
acoustic wave equation (6) by selecting a single direction of propagation.

In order to simplify the computations, we introduce the following notation:
Ceo =

Cee =

Cen =

C(Z

i (2)
3 (95) -5 (75)]
o= lRe-ren)

All quantities in equations (8) can be computed by finite-differences for any choice of a Rie-
mannian coordinate system which fulfills the orthogonality condition indicated earlier. In
particular, we can use ray coordinates to compute those coefficients. With these notations, the
acoustic wave-equation can be written as:

1
o2
G
J?
E
Cm = T30
F
J2
1
alJ
1
e = —
£l

92U 92U 92U U U U 92U w?

— — — —=——U. 9
Cee T +cze 082 +cyy o +c¢ T +ce T +cy on +CE"8§8;7 2 )
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For the particular case of Cartesian coordinates (cs =c¢,; =c; =0,cee =y =ccr = 1,¢6yp=0),
the Helmholtz equation (9) takes the familiar form
32U U U w?

=——U. 10
0c2 + 02 + on? v? (10)

From equation (9), we can directly deduce the modified form of the dispersion relation for
the wave-equation in a semi-orthogonal 3-D Riemannian space:

—cecki —csghi — ks +iccky +icskg +icoky — cenkeky = —0s> . (11)

For one-way wavefield extrapolation, we need to solve the second order equation (11) for the
wavenumber of the extrapolation direction k;, and select the solution with the appropriate sign
to extrapolate waves in the desired direction:

2 2
ke =i i\/(")s) . < ° ) . [Cf—fkg—ic—fkg} - [@kg—ic—"k,]} — S kky
2¢e¢ Cee 2¢¢¢ Cee Cee Cee Cee Cee
(12)
The solution with the positive sign in equation (12) corresponds to propagation in the positive

direction of the extrapolation axis ¢.

For the particular case of Cartesian coordinates (cg = ¢; = ¢; = 0,c¢6 = cpy = C¢¢ =
1,ce, = 0), the one-way wavefield extrapolation equation takes the familiar form

ke =%, /(ws)’ —ki —kZ . (13)

MIXED-DOMAIN SOLUTIONS TO THE ONE-WAY WAVE-EQUATION

We can use equation (12) to construct a numerical solution to the one-way wave equation in
the mixed w — k, ® — x domain. The extrapolation wavenumber described in equation (12) is,
in general, a function which depends on several quantities

kg :kg (S,Cj) , (14)

where 5 (¢,§,) is the space-variable slowness, and ¢; (£,§,1) = {cz,cp, ¢, cee.Cnya oo Cen}
are coefficients which are computed numerically from the definition of the coordinate system,
as indicated by equations (8). For any given coordinate system, c¢; can be regarded as known.

Next, we write the extrapolation wavenumber &, as a first-order Taylor expansion relative
to a reference medium:

ok,

ke =k —
¢ §0+ ds

(¢ =¢jo) - (15)

ok
(S —SO)+ Z a—g
¢j

Cj

50-Cjo 50-Cjo

where 5 (¢,§,n) and ¢; (£,&,n) represent the spatially variable slowness and coordinate system
parameters, and sy and c;,, are the constant reference values in every extrapolation “slab”
(Sava, 2000).



SEP-114 Riemannian wavefield extrapolation 7

As usual, the first part of equation (15), corresponding to the extrapolation wavenumber in
the reference medium k¢, is implemented in the Fourier domain, while the second part, cor-
responding to the spatially variable medium coefficients, is implemented in the space domain.

If we make the further simplifying assumptions that kz ~ 0 and k,, ~ 0, we can write

ok, ok,

ok,
ke =k - — - | (cr—cep) 16
¢ =kgo+ Dore O(S s0) + Bors O(Czc ceeg) + 9 O(Cc cto) (16)
where
oke | 20 (ws0)
ds |o \/4c§;0(a)s0)2—C;(2)
ok | iceo cc2—2crz o (w50)
- 2
ok ]
a—‘“ - 2’ — o . 17)
“lo “tt0 26;50\/4%0(6050)2—053

Equation (16) is motivated by a wavefront normal propagation approximation. By “0”, we
denote the reference medium (s, cjo). We could also use many reference media, followed by
interpolation, similarly to the technique of Gazdag and Sguazzero (1984).

For the particular case of Cartesian coordinates (c; = 0,c;; = 1), equation (16) reduces to
ky =kgy+w(s —so) , (18)

which corresponds to the popular Split-Step Fourier (SSF) extrapolation method (Stoffa et al.,
1990).

FINITE-DIFFERENCE SOLUTIONS TO THE ONE-WAY WAVE EQUATION

Alternative solutions to the one-way wave-equation are represented by pure finite-difference
methods in the @ — x domain, which can be implemented either as implicit (Claerbout, 1985),
or as explicit methods (Hale, 1991). For the same stencil size, the implicit methods are more
accurate and robust than explicit methods, although harder to implement, particularly in 3-D.
However, explicit methods of comparable accuracy can be designed using larger stencils.

For the implicit methods, various approximations to the square root in equation (12) lead
to approximate equations of various orders of accuracy. In the Cartesian space, those methods
are known by their respective angular accuracy as the 15° equation, 45° equation and so on.
Although the meanings of 15°, 45° are undefined in ray coordinates where the extrapolation
axis is time, we can still write approximations for the numerical finite-difference solutions
using analogous approximations.
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If we introduce the notation

2 2
kg — (ws)” (C_f) (19)
Cet 2¢¢
we can simplify the one-way wave equation (12) as
ke = z——l—\/kﬁ—[cé—ékg—ic—skg}—[ T i g } ek, . (20)
2cp¢ Cet Cet Cet C;c Cet

15° wave-equation in a 3-D Riemannian space

A simple way of deriving the 15° equation is by a second order Taylor series expansion of the
extrapolation wavenumber k; relative to kg and k-

ok ok
ke (ke en) & kg (ke = 0,k —0)+a—k§ ke +a—k§ ey +
1 %k |, 0%k 192 k; s

o | ki | kekyt s | ki 1)
2 9k2 |, F T dkedky 2 0Kz |

If we plug equation (20) into equation (21), we obtain an equivalent form for the 15° equation
in a semi-orthogonal 3-D Riemannian space:

c ic 1 c 2 ¢ ]
kgm2—f+k(,+ £ ke + ( : )—ﬁ K2

Cre 2C§§ k(, 2](0 i 2C§§ k(, Cre
n I ky + L[ Sy ? Cnn_ K2
2C§-§ k(, 2](0 2C§§ k(, Cre 1
1 CeCy Gy
+ — | keky . 22
2](0 |:2C ;kg Cg; % ( )

For the particular case of Cartesian coordinates (cg = ¢, = ¢; = 0,ce6 = ¢y = ;¢ =
L,cey =0, kp = ws),

1
ke ~ ws — — (K2 +k2) , 23
¢ ws 26()5(5_{_ 7]) ( )

which is the usual form of the 15° equation.

EXAMPLES

We illustrate our method with several synthetic examples of various degrees of complexity.
In all examples, we use extrapolation in 2-D orthogonal Riemannian spaces (ray coordinates),
and compare the results with extrapolation in Cartesian coordinates. We present images ob-
tained by migration of synthetic datasets represented by events equally spaced in time. When
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we use point sources, those images are representations of Green’s functions. In all exam-
ples, (x,z) are the Cartesian space coordinates, (7, xp) are the ray coordinates for plane wave
sources, and (t,y) are ray coordinates for point sources. x¢ stands for surface coordinate, y
for shooting angle, and t for one-way traveltime.

Our first example is designed to illustrate our method in a fairly simple model. We use
a 2-D model with horizontal and vertical gradients v(x,z) =250+ 0.2 x +0.15 z m/s which
gives waves propagating from a point source a pronounced tendency to overturn (Figure 2).
The model also contains a diffractor located around x = 3800 m and z = 3000 m.

We use ray tracing to create an orthogonal ray coordinate system corresponding to a point
source on the surface at x = 6000 m. Figure 2(a) shows the velocity model and the rays in
the original Cartesian coordinate system (x, z). Figure 2(c) shows the velocity model mapped
into the ray coordinate system (t,y). The diffractor is mapped to t =2.4 s and y = —18°
measured from the vertical. The synthetic data we use is represented by impulses at the source
location at every 0.25 s. In ray coordinates, this source is represented by a plane-wave evenly
distributed over all shooting angles y. Ideally, an image obtained by migrating such a dataset
is a representation of the acoustic wavefield produced by a source which pulsates periodically.

Figure 2(b) shows the image obtained by downward continuation in Cartesian coordinates
using the standard 15° equation. Figure 2(d) shows the image obtained by wavefield extrapo-
lation in ray coordinates using the equivalent 15° equation. The overlays in panels (b) and (d)
are wavefronts at every 0.25 s and rays shot at every 20° to facilitate one-to-one comparisons
between the images in ray and Cartesian coordinates.

Figure 3 is a direct comparison of the results obtained by extrapolation in the two coordi-
nate systems. The image created by extrapolation in Cartesian coordinates (a) is mapped to
ray coordinates (b). The image created by extrapolation in ray coordinates (c) is mapped to
Cartesian coordinates (d). Since we use the same velocity for ray tracing and for wavefield
extrapolation, we expect the wavefields and the overlain wavefronts to be in agreement. The
most obvious mismatch occurs in regions where the 15° equation fails to extrapolate correctly
at steep dips (around y = (—20,—50)°. This is not surprising since, as its name indicates, this
equation is only accurate up to 15°. However, this limitation is eliminated in ray coordinates,
because the coordinate system brings the extrapolator in a reasonable position and at a good
angle, although the extrapolator uses an equation of a similar order of accuracy.

Another interesting observation in Figures 3 (a) and (d) concerns the diffractor we intro-
duced in the velocity model. When we extrapolate in Cartesian coordinates, the diffraction is
only accurate to a small angle relative to the extrapolation direction (vertical). In contrast, the
diffraction develops relative to the propagation direction when computed in ray coordinates,
thus being more accurate after mapping to Cartesian coordinates.

We can also observe that the diffractions created by the anomaly in the velocity model are
not at all limited in the ray coordinates domain. In a beam-type approach, such diffraction
would not develop beyond the extent of any particular beam which interacts with it. Neigh-
boring beams would be completely insensitive to the presence of the velocity anomaly.

The second example concerns a smooth velocity with a negative Gaussian anomaly which
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Figure 2: Simple linear gradient model: Cartesian coordinates (a,b) and ray coordinates
(c,d). velocity model with an overlay of the ray coordinate system initiated by a point
source at the surface (a); image obtained by downward continuation in Cartesian coordi-
nates with the 15° equation (b); velocity model with an overlay of the ray coordinate system
(c); image obtained by wavefield extrapolation in ray coordinates with the 15° equation (d).
‘ paul2-RCsim.com.ps ‘ [CR]
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Figure 3: Simple linear gradient model: the image obtained by downward continuation in
Cartesian coordinates with the 15° equation (a); the image in panel (a) interpolated to ray
coordinates (b); image obtained by extrapolation in ray coordinates with the 15° equation (c);
the image in panel (c¢) interpolated to Cartesian coordinates (d). ‘paulZ—RCsim.f 15.ps ‘ [CR]
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creates a triplication of the ray coordinate system (Figure 4). Everything other than the velocity
model is identical to its counterpart in the preceding example. Similarly to Figure 2, panels
(a) and (b) correspond to Cartesian coordinates, and panels (c) and (d) correspond to ray
coordinates. Using regularization of the ray coordinates parameters, we are able to extrapolate
through the triplication. The small discrepancy between the wavefields and the corresponding
wavefronts indicate that our method of ray tracing is not perfectly accurate in the triplicating
region, and the wavefield extrapolation is correcting for the kinematic differences. Figure 5
is similar to Figure 3. The “butterfly” in panel (b) is another indication that the ray coordinate
system is triplicating, and different shooting directions pick up the same energy from the
wavefield extrapolated in Cartesian coordinates (a). None of this happens when we extrapolate
in ray coordinates (c) and interpolate to Cartesian coordinates (d).

Our next example concerns the more complicated Marmousi model. Figure 6 shows the
velocity models mapped into the two different domains, and the wavefields obtained by extrap-
olation in each one of them. We create the ray coordinate system by ray tracing in a smooth
version of the model, and extrapolate in the rough version. The source is located on the surface
at x = 5000 m.

In this example, the wavefields triplicate in both domains (Figure 7). Since we are using
a 15° equation, extrapolation in Cartesian coordinates is only accurate for the small incidence
angles, as can be seen in panels (a) and (b). In contrast, extrapolating in ray coordinates
(c) does not have the same angle limitation, which can also be seen after mapping back to
Cartesian coordinates (d).

Figure 8 is a close-up comparison of the wavefields obtained by extrapolation with differ-
ent methods in different domains. Panel (a) is a window of the velocity model for reference.
Panels (b) and (c) are obtained by extrapolation in ray coordinates using the 15° and split-
step equations, respectively. Panels (d), (e) and (f) are obtained by downward continuation in
Cartesian coordinates using the 45°, 15° and split-step equations, respectively. The ray co-
ordinates extrapolation results are similar to the Cartesian coordinates results in the regions
where the wavefields propagate mostly vertically, but are much better in the regions where the
wavefields propagate almost horizontally.

Next, we present another example in the Sigsbee 2A model. We consider two types of
ray coordinates: one initiated by a plane wave at the surface (Figure 9), and one initiated by a
point source at the surface at x = 16000 m. (Figure 10). Similarly to the preceding examples,
we observe complicated wavefield propagation, with many triplications, of the extrapolated
wavefields.

Figure 11 is a close-up comparison of the wavefields obtained by extrapolation with differ-
ent methods in different domains. Panel (a) is a window of the velocity model for reference.
Panel (b) is the wavefield obtained by finite-difference modeling using the two-way acoustic
wave equation. This panel contains not only waves propagating forward, but also reflections
which are not going to be modeled in the one-way extrapolation results. Panel (c) is obtained
by downward continuation in Cartesian coordinates using the 45° equation, and panel (d) is
obtained by extrapolation in ray coordinates using the 15° equation. We can observe good
match of the forward propagating wavefields in (b) and (d), in contrast to the poor match with
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Figure 4: Gaussian anomaly model: Cartesian coordinates (a,b) and ray coordinates (c,d).
velocity model with an overlay of the ray coordinate system initiated by a point source at
the surface (a); image obtained by downward continuation in Cartesian coordinates with
the 15° equation (b); velocity model with an overlay of the ray coordinate system (c);
image obtained by wavefield extrapolation in ray coordinates with the 15° equation (d).
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Figure 5: Gaussian anomaly model: the image obtained by downward continuation in Carte-
sian coordinates with the 15° equation (a); the image in panel (a) interpolated to ray coordi-
nates (b); image obtained by extrapolation in ray coordinates with the 15° equation (c); the
image in panel (c) interpolated to Cartesian coordinates (d). ‘paulZ-RCgal.f 15.ps ‘ [CR]
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Figure 7: Marmousi model: the image obtained by downward continuation in Cartesian
coordinates with the 15° equation (a); the image in panel (a) interpolated to ray coordinates
(b); image obtained by extrapolation in ray coordinates with the 15° equation (c); the image
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ray coordinates using the 15° equation (b) and the split-step equation (c); image obtained using
downward continuation in Cartesian coordinates with the 45° equation (d), the 15° equation
(e) and the split-step equation (f). ‘paulZ—RCmal.zom.ps ‘ [CR,M]
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Figure 9: Sigsbee 2A model: Cartesian coordinates (a,b) and ray coordinates (c,d). velocity
model with an overlay of the ray coordinate system initiated by a plane source at the surface
(a); image obtained by downward continuation in Cartesian coordinates with the 15° equa-
tion (b); velocity model with an overlay of the ray coordinate system (c); image obtained by
wavefield extrapolation in ray coordinates with the 15° equation (d). ‘paulZ-RngZ.com.pw ‘
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Figure 10: Sigsbee 2A model: Cartesian coordinates (a,b) and ray coordinates (c,d). velocity
model with an overlay of the ray coordinate system initiated by a point source at the surface (a);
image obtained by downward continuation in Cartesian coordinates with the 15° equation (b);
velocity model with an overlay of the ray coordinate system (c); image obtained by wavefield
extrapolation in ray coordinates with the 15° equation (d). ‘paulZ-RngZ.com.ps ‘ [CR]
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Figure 11: Sigsbee 2A model: Velocity (a); finite-difference solution to the two-way acoustic
wave equation for a point source at x = 16000 m (b); image obtained by downward con-
tinuation in Cartesian coordinates with the 45° equation (c); image obtained by wavefield
extrapolation in ray coordinates with the 15° equation (d). ‘paulZ—RngZ.zom.ps ‘ [CR,M]




SEP-114 Riemannian wavefield extrapolation 21

panel (c) in the regions of nearly horizontal propagation.

Finally, we present an example of zero-offset migration of overturning reflections using
Riemannian wavefield extrapolation. Figure 12 depicts the velocity model (a), the recorded
data (b), and the migrated image (c). The overlay is a sketch of the ray coordinate system
used for migration. The first event in the data corresponds to the overturning reflection from
the ball and is imaged correctly, and the later events are multiple reverberations inside the ball
which are not imaged with our method.
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Figure 12: Imaging of overturning reflections using Riemannian wavefield extrapolation. Ve-
locity model (a), zero-offset data (b), and migrated image (c). ‘paulZ—RCbal.ovt [CR,M]

KINEMATIC EXTRAPOLATION IN RIEMANNIAN COORDINATES

We can simplify our Riemannian wavefield extrapolation method by dropping the first order
terms in equation (12). According to the theory of second-order hyperbolic equations, these
terms affect only the amplitude of the propagating waves. To preserve the kinematics, it is
sufficient to keep only the second order terms of equation (12):

2
ke = :I:\/ s _ g2 g g (24)
Cte  Cgg Cre Cee

Figure 13 illustrates the difference between wavefield extrapolation using equation (12) (panel
b) and wavefield extrapolation using equation (24) (panel c¢). Kinematically, the two images
are equivalent and the main changes are related to amplitudes.



22 Sava and Fomel SEP-114

x [m] 7 [°] v [°]
4000 5000 6000 7000 8000 9000 10000 11000 12000 —-50 -40 —30 —20 —10 0 10 20 30 40 50 —50 —40 —30 —20 -10 0 10 20 30 40 50
o

[o] =

0006 000%¥ 000E€ 0002 0007
=
g

(a)

(c)

Figure 13: The effect of neglecting the first order terms in Riemannian wavefield extrapola-
tion. From left to right the velocity model with an overlay of the ray coordinate system (a),
extrapolation with equation (12) including the first order terms (b), and extrapolation with the
simplified equation (24) (c). ‘paulZ-RCgaZ.kin.ps ‘ [CR]

DISCUSSION

We now present a few issues that we think are important for our Riemannian wavefield extrap-
olation method. In some cases, we discuss ideas which we have not treated yet, while in other
cases we speculate on directions of future research.

3-D Riemannian extrapolation: All our examples of Riemannian extrapolation in 2-D using
finite-differences use implicit methods, since they are more stable and there is no reason
not to use them. In 3-D, however, implicit solutions to the one-way wave-equation be-
come much more difficult, even in Cartesian coordinates (Fomel and Claerbout, 1997,
Rickett et al., 1998). This problem seems even more complicated for Riemannian wave-
field extrapolation, since the extrapolation equation also contains mixed kgk, terms.
However, we speculate that for wavefield extrapolation in ray coordinates, this problem
is not as difficult as it seems at first sight. The reason is that energy propagates roughly
in the forward direction of the coordinate system and, therefore, we do not need extrapo-
lators accurate at high dips. Thus, we could either use explicit methods with reasonably
small stencils, or we could use low order mixed-domain methods from the split-step
family which are easy to implement even in 3-D.

Prestack data: Our examples of Riemannian wavefield extrapolation are based on equa-
tion (12) which corresponds to the single-square root (SSR) equation of standard Carte-
sian wavefield extrapolation. Riemannian wavefield extrapolation can be extended to
prestack data either for shot-profile, plane-wave or S-G migration by appropriate defi-
nitions of the underlying ray coordinate system. Figure 14 is a schematic representation
of shot-profile migration in ray coordinates, where both source and receivers are extrap-
olated in the same ray coordinate system appropriate for overturning waves. However,
the sources and receivers do not necessarily have to be migrated in the same coordinate
system. We could extrapolate both sides differently and apply the imaging condition
after interpolation to the Cartesian grid.

Time wave-equation migration: Our Riemannian wavefield extrapolation allows the output
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Figure 14: Shot-profile migration
sketch. Sources (a) and receivers
(b) are extrapolated in the same
ray coordinate system which is
appropriate for overturning waves.
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image to be presented either in one-way traveltime, which is the extrapolation coordi-
nate, or in depth, after interpolation to Cartesian coordinates. A ray coordinate system
initiated by a plane wave propagating vertically is related to what has been known in
the literature as a “tr coordinate system” (Biondi et al., 1997; Alkhalifah et al., 2001).
However, our 7 ray coordinate system is different, because it allows energy to move
laterally, in contrast to the vertical traveltime coordinate system which does not allow
such movement. Thus, another application of Riemannian wavefield extrapolation is
time wave-equation migration (Figure 9), which has interesting properties, e.g., for mi-
gration velocity analysis (Clapp, 2001). Furthermore, wave-equation MVA (Biondi and
Sava, 1999; Sava and Fomel, 2002) could also be reformulated as a function of one-way
propagation time.

Regularization at caustics: The coordinate system coefficients for Riemannian wavefield
extrapolation given by equations (8) have singularities at caustics, e.g., when the ge-
ometrical spreading term J, defining a cross-sectional area of a ray tube, goes to zero.
In our current examples, we have used simple numerical regularization, by adding a
small non-zero quantity to the denominators to avoid division by zero. This strategy
worked reasonably well for our current examples.

Adaptive grid: A potential difficulty of our method is represented by the uneven sampling
of the wavefronts caused by focusing and defocussing of the rays defining the coordi-
nate system. One solution to this problem is to use adaptive gridding, by increasing or
decreasing sampling along the wavefronts, similarly to the techniques employed by the
wavefront construction method (Vinje et al., 1993; Qian and Symes, 2002). Further-
more, each frequency in the data can be extrapolated on its own grid, sparser at lower
frequencies and denser at higher frequency, thus reducing cost and increasing accuracy.

Interpolation: The images created with wavefield extrapolation in ray coordinates require
interpolation to a Cartesian coordinate system. This is a shared difficulty of all methods
that do not operate on a Cartesian grid. In our examples, we have successfully used a
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simple sinc-type interpolation method. In principle, we could use better interpolation
methods using prediction-error filters at higher cost, although we have not seen the need
for this in our current examples.

Coordinate system construction: The ray coordinate systems do not need to be created us-
ing the same velocity model as the one used for extrapolation. We can use a smooth ve-
locity model to create the coordinate system by ray tracing, and then interpolate the un-
smoothed velocity, similarly to the method used by Brandsberg-Dahl and Etgen (2003).
Such a strategy opens up the possibility of defining coordinate systems using arbitrary
velocity models which favor selected parts of the image. For example, we could use
for ray tracing a velocity model optimized to reduce, in a least-squares sense, the an-
gle between the extrapolation grid and the dips in the image. An alternative method of
creating ray coordinate systems is discussed by Shragge and Biondi (2003).

Amplitude preservation: Amplitude-preserving imaging using one-way wavefield extrapo-
lation operators is difficult. Recent research has advanced our knowledge on this subject
(Zhang et al., 2001; Sava et al., 2001; Shan and Biondi, 2003), but the goal of true-
amplitude wave-equation migration is still unachieved. The biggest practical difficulty
is associated with amplitude preservation at high scattering angles relative to the extrap-
olation direction. Since we are normally using low angle operators relative to the wave
propagation direction, we speculate that Riemannian extrapolation can also improve the
amplitude characteristics of wave-equation migration.

CONCLUSIONS

We extend one-way wavefield extrapolation to Riemannian spaces which are, by definition,
described by non-orthogonal curvilinear coordinate systems. We choose semi-orthogonal Rie-
mannian coordinates which include, but are not limited to, ray coordinate systems.

We define an acoustic wave-equation for semi-orthogonal Riemannian coordinates, from
which we derive a one-way wavefield extrapolation equation. We use ray coordinates initiated
either from a point source, or from an incident plane wave at the surface. Many other types of
coordinates are acceptable, as long as they fulfill the semi-orthogonal condition of our acoustic
wave equation.

Since wavefield propagation happens mostly along the extrapolation direction, we can use
cheap 15° finite-difference or mixed-domain extrapolators to achieve high angle accuracy. If
the ray coordinate system overturns, our method can be used to image overturning waves with
one-way wavefield extrapolation.

A special case of extrapolation corresponds to coordinates initiated by a plane wave at
the surface propagating initially in the vertical direction. Since our extrapolation is done as a
function of one-way traveltime, this case resembles imaging in vertical traveltime, although it
is more physically correct, since it allows lateral movement of energy, which is not the case
for vertical T imaging.
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Two main applications of our method are imaging of steeply dipping or overturning reflec-
tions.
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APPENDIX A

WKBJ ASYMPTOTIC SOLUTIONS TO THE ACOUSTIC WAVE-EQUATION IN 3-D
RIEMANNIAN SPACES

Neglecting wave propagation in the directions orthogonal to ¢, one can reduce the wave equa-
tion (6) to the form of the ordinary differential equation

2
1 d <Jd‘u) @ o 1L dU/mdU U0, (A-1)

1 d?U  w?
aJde \a d¢ v2 " aJ d¢ d¢  o?d

7
The high-frequency (WKBJ) asymptotics for the solution of equation (A-1) can be obtained by

using a trial solution U = Ae'®?, substituting it in equation (A-1) and evaluating terms with
the same order of w. The highest asymptotic order yields an equation for the phase function

¢:
1 /do¢ 2 a)z_

The next asymptotic order produces an equation for the amplitude function A:
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Rearranging equation (A-2) to the form

a0 _ (A-4)
d¢ v
and equation (A-3) to the form
d(ogA) _ 1 [d (log(J/a) _ d (log <a/v>)} | s
d¢ 2 d¢ d¢

we can solve them explicitly to obtain the WKBJ approximation for the wave traveling pref-
erentially in the ¢ direction:

&

V1 J() 172 o

U~ Uy ( ) exp | tiw f —dt (A-6)
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In the case of the ray coordinate system, equation (A-6) corresponds to the Green’s function
approximation commonly employed in Kirchhoff imaging.

Accounting for the wave propagation in the directions different from ¢ and constructing
the solution numerically by finite differences allows us to account for the finite-bandwidth
wave propagation effects.



SEP-114 Riemannian wavefield extrapolation 29

APPENDIX B
2-D POINT-SOURCE RAY COORDINATES

For the case of 2-D point-source ray coordinates the acoustic wave equation (6) takes the form

1 Ta [/JoU 9 [adU w?
| (I s (2 ) =, (B-1)
alJ |t \a It dy \J dy v2(1,y)

where, by definition,
3z 2+ ax\ >
o = — — | =v,
ot ot
;o= J(EY (Y (B-2)
N oy oy )

The extrapolation axis is T (one-way traveltime from the source) and y is the shooting angle
at the source.

We can expand the parentheses in equation (B-1)
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and make the notations
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from which the acoustic wave equation for 2-D point-source ray coordinates becomes:
U U U IuU  o?

The 2-D dispersion relation is
—cockI ticiks +icyky — oy ks = —w’s? (B-6)

from which we can obtain the one-way wave equation for 2-D point-source ray coordinates:
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APPENDIX C
FINITE-DIFFERENCE SOLUTION TO THE 15° EQUATION

This appendix details the computations associated with the finite-difference solution to the
15° equation in a 2-D orthogonal Riemannian space. The 3-D wave equation (22) takes in two
dimensions the simpler form:

. 2
. Cr ice 1 Ce Csg |2
b~ K k _ G g2 C-1

¢ lng-{ + ot 2C§§ k() é:—i_zk() |:(2C§§ k0> C§§i| : ( )

If we substitute the Fourier-domain wavenumbers by their equivalent space-domain partial
derivatives, we obtain
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A finite-difference implementation of equation (C-2) involving the Crank-Nicolson method is
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If we make the notations
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we can write equation (C-3) as
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or, if we isolate the terms corresponding to the two extrapolation levels as:
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After grouping the terms, we obtain
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which is a finite-difference representation of the 15° solvable using fast tridiagonal solvers.
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