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Wave-equation MVA: Born, Rytov and beyond

Paul Sava and Biondo Biondi1

ABSTRACT

The linearized wave-equation MVA operator can be used for velocity analysis using both
Born and Rytov approximations. The distinction arises from the method used to com-
pute the image perturbations. Both approximations suffer from limitations that limit their
practicality: the Born approximation is usable only for small anomalies, while the Rytov
approximation requires phase unwrapping. Differential image perturbations can be used
for arbitrarily large slowness anomalies and do not require phase unwrapping, but their ac-
curacy decreases with increasing deviation from the background image. For simple cases,
the differential image perturbation method is equivalent with phase-unwrapped Rytov.

INTRODUCTION

Migration velocity analysis based on downward continuation methods, also known as wave-
equation migration velocity analysis (WEMVA), is a technique designed as a companion to
wave-equation migration (Biondi and Sava, 1999; Sava and Fomel, 2002). The main idea of
WEMVA is to use downward continuation operators for migration velocity analysis (MVA),
as well as for migration. This is in contrast with other techniques which use downward contin-
uation for migration, but traveltime-based techniques for migration velocity updating (Clapp,
2001; Liu et al., 2001; Mosher et al., 2001).

WEMVA is an optimization problem where the objective function is defined in the image
space. As for other MVA methods, it tries to maximize the quality of the migrated image
instead of trying to match the recorded data (Sava and Symes, 2002). In this respect, our
method is related to Differential Semblance Optimization (Symes and Carazzone, 1991) and
Multiple Migration Fitting (Chavent and Jacewitz, 1995). However, with respect to these two
methods, our method has the advantage of exploiting the power of residual prestack migration
to speed up the convergence, and it also gives us the ability to guide the inversion by geologic
interpretation.

WEMVA benefits from the same advantages over traveltime estimation methods as wave-
equation migration benefits over Kirchhoff migration. The most important among them are
the accurate handling of complex wavefields which are characterized by multipathing, and
the band-limited nature of the imaging process, which can handle sharp velocity variations
much better than traveltime-based methods. Complex geology, therefore, is where WEMVA
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Figure 1: Fat rays in a salt velocity model. From top to bottom, the wavefield from a point
source on the surface, the velocity model, and a fat ray from a point in the subsurface to the
source. paul1-FRzig.sds [CR,M]

is expected to provide the largest benefits.

Figures 1 and 2 illustrate the complications encountered under salt. From top to bottom,
we show the wavefield corresponding to a point-source at the surface, the background slow-
ness model, and a “fat ray” (Woodward, 1992) from the source to a point in the subsurfaces.
Both examples show multipathing between source and receiver which is naturally taken into
account by WEMVA, but which cannot be handled by simple traveltime tomography. Also,
the slowness model is not smooth as required by methods using ray tracing.

WEMVA is based on a linearization of the downward-continuation operator using the Born
approximation. This approximation leads to severe limitations on the magnitude and size of
the anomalies that can be handled. Therefore, it cannot operate successfully in the regions of
highest complexity. Other methods of linearization are possible (Sava and Fomel, 2002), but
none allow for arbitrarily large anomalies.

In our early tests (Biondi and Sava, 1999), we construct the image perturbation using
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Figure 2: Fat rays in a salt velocity model. From top to bottom, the wavefield from a point
source on the surface, the velocity model, and a fat ray from a point in the subsurface to the
source. paul1-FRgom.sds [CR,M]

Prestack Stolt Residual Migration (PSRM) (Sava, 2003). In summary, this residual migration
method provides updated images for new velocity maps that correspond to a fixed ratio (ρ)
of the new velocity with respect to the original velocity map. Residual migration is run for
various ratio parameters, and finally we pick the best image by selecting the flattest gathers at
every point.

The main disadvantage of building the image perturbation using PSRM is that, for large
velocity ratio parameters (ρ), the background and improved images can get more than π/4 out
of phase. Therefore, the image perturbation computed by the Born forward operator and the
one computed by residual migration are fundamentally different, and can have contradictory
behaviors when using the linearized WEMVA operator for inversion.

Alternative methods can be used to create image perturbations for WEMVA, directly in
compliance with the Born approximation (Sava and Biondi, 2003). Those methods are not
limited by the same restrictions as the Born methods, although their accuracy decreases with
increasing deviation from the reference images. We refer to image perturbations created with
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this method as differential image perturbations.

In this paper we investigate various methods that can be used to compute image perturba-
tions. Our goal is two fold: firstly, we show that we can do Rytov WEMVA basically using
the same backprojection operator as the one involved in the Born approximation, but with
a different definition of the image perturbation; secondly, we further investigate the differ-
ential approach to computing image perturbations and show that this method is similar to a
phase-unwrapped Rytov, although it does not require any explicit phase unwrapping. Thus,
the differential method is more practical and robust than a Rytov method, although it is less
accurate and may require more non-linear iterations for convergence.

We begin with a review of wave-equation MVA with emphasis on the methods used to
compute image perturbations. We then describe the Rytov approach to WEMVA and explore
the relationship between the three different methodologies. Finally, we present a couple of
synthetic examples for each of the image perturbation methods mentioned earlier and discuss
the relationships between them.

WEMVA THEORY

The wavefield constructed by downward continuation from the surface to depth z, U (ω) is

U = Dei
∑

z 8z , (1)

where D is the data at the surface and 8z is the complex phase shift at one depth level. We
can write the phase 8z at every depth level as a Taylor expansion around a reference medium
of slowness so

8z = 8zo +
d8z

ds

∣

∣

∣

∣

s=so

1s (2)

= 8zo +18z . (3)

If we plug equation (2) in equation (1) we can write the following expression for the
wavefield U:

U = Uoei
∑

z 18z , (4)

where Uo corresponds to the background slowness so, and U corresponds to an arbitrary
spatially varying slowness s = so +1s.

We can define a wavefield perturbation at depth z by the expression

1U = U−Uo (5)

= Uo

[

ei
∑

z 18z −1
]

(6)

or, if we use the notation 18 =
∑

z 18z

1U = Uo
[

ei18
−1

]

. (7)
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In general, we can compute a wavefield perturbation 1U (ω, z) by applying a non-linear
operator L which depends on the background wavefield Uo (ω, z) to a slowness perturbation
1s (z), according to equation (7):

1U = L (Uo) [1s] . (8)

Linearization

The simplest linearization of equation (7) is done by the Born approximation, which involves
an approximation of the exponential function by a linear function eiφ

= 1 + iφ. With this
approximation, we obtain

1U ≈ Uo i18 . (9)

We can, therefore, compute a linear wavefield perturbation 1U (ω, z) using a Born WEMVA
operator:

1U = B (Uo) [1s] , (10)

from which we can compute an image perturbation by summation over frequency:

1R =

∑

ω

1U . (11)

For wave-equation MVA, we are interested in applying an inverse WEMVA operator to
a given image perturbation. Therefore, the main challenge of the linearized WEMVA is to
estimate correctly 1R, i.e. an image perturbation corresponding to the accumulated phase
differences given by all slowness anomalies above each image point.

Given an image perturbation 1R, we can compute a wavefield perturbation 1U by the
adjoint of the imaging operator, from which we can compute a slowness perturbation based on
the background wavefield Uo:

1s = B∗ (Uo) [1U] . (12)

Born image perturbation

The simplest way of computing image/wavefield perturbations is by simple subtraction of the
wavefields for the background image Uo from the wavefield of a better image U:

1Ub = U−Uo . (13)

Equation (13) is only valid for small perturbations of the wavefields (1Ub << 1). In prac-
tice, this requirement means that the cumulative phase difference between the two different
wavefields is small at all frequencies.

If this condition is satisfied, we can compute a slowness perturbation which corresponds
to the Born approximation:

1sb = B∗ (Uo) [1Ub] . (14)
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In practice, the small perturbation requirement is hard to meet, since small slowness differ-
ences ammount to large cumulative phase differences. Thus, with the wavefield perturbation
definition in equation (13), we can only handle small slowness perturbations.

Rytov image perturbation

An alternative to the wavefield perturbation definition in equation (13) is given by the Ry-
tov approximation. If we can estimate the accumulated phase differences between the two
wavefields at every depth level

18r = 8−8o , (15)

we can compute another wavefield perturbation using the relation:

1Ur = Uo i18r (16)

which is directly derived from equation (9). With this definition of the wavefield perturbation,
we can compute another slowness perturbation which corresponds to the Rytov approximation

1sr = B∗ (Uo) [1Ur ] (17)

using the same backprojection operator.

Differential image perturbation

Various methods can be used to improve images created with inaccurate, reference velocity
models. Residual migration (Stolt, 1996; Al-Yahya, 1989; Etgen, 1990) is one such option,
although we could use other methods like residual moveout or image continuation.

If image enhancement is done with a Stolt-type residual migration operator S (Stolt, 1996;
Sava, 2000, 2003), we can write a relation for an improved image R derived from a reference
image Ro

R = S (ρ) [Ro] , (18)

where ρ is a spatially varying scalar parameter indicating the magnitude of residual migration
at every image point. We can compute a linearized image perturbation by a simple first-order
expansion relative to the parameter ρ

1Ra =
dS
dρ

∣

∣

∣

∣

ρ=ρo

[Ro] 1ρ , (19)

from which we can compute a wavefield perturbation 1Ua using the adjoint of the imaging
operator.

The operator dS
dρ

∣

∣

∣

ρ=ρo
can be computed analytically, since it only depends on the back-

ground image, while 1ρ can be picked at every location from a suite of images computed
using different values of ρ (Sava and Biondi, 2003). Similar formulations are possible for
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Figure 3: Fat rays for an image
perturbation defined using the Born
equation (21). The slowness anomaly
is gradually increasing from (a) to
(c). Only the smallest anomaly is cor-
rectly handled by the Born image per-
turbation. paul1-RYTOV3b.xbsbor
[CR]

other kinds of operators (e.g., normal residual moveout), and are not restricted to residual
migration, in general, or to Stolt residual migration, in particular.

With this definition of the wavefield perturbation, we can compute another slowness per-
turbation:

1sa = B∗ (Uo) [1Ua] . (20)

DISCUSSION

We have shown in the preceding section several methods that can be used to create image
perturbations to be inverted for slowness perturbations:

1Rb =

∑

ω

(U−Uo) (21)

1Rr = i
∑

ω

(Uo (8−8o)) (22)

1Ra =
dS
dρ

∣

∣

∣

∣

ρ=ρo

[Ro] 1ρ . (23)

Figure 3 shows the slowness backprojection for image perturbations computed using the
definition in equation (21). From top to bottom, the panels correspond to increasing magni-
tudes of the slowness anomalies. In panel (a), the accumulated differences between the back-
ground and correct images is small, such that the Born approximation holds and the back-
projection creates simple “fat rays” (Woodward, 1992). However, as the slowness anomaly
increases, the fat rays are distorted by sign changes (b), and/or by the characteristic ellipsoidal
side-lobes (c).

Figure 4 shows the slowness backprojection for image perturbations computed using the
definition in equation (22). From top to bottom, the panels correspond to increasing mag-
nitudes of the slowness anomalies. In panels (a) and (b), the accumulated phase differences
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between the background and correct images are small and do not wrap. Backprojection by
WEMVA also creates simple undistorted fat rays. At large magnitudes, however, the phases
become large enough to wrap, and backprojection from image perturbations defined by equa-
tion (22) fails (c).

Both equation (21) and equation (22) employ the same operator for backprojection. The
difference is in the method we use to define the wavefield perturbation. For equation (21) we
use the difference between the complete wavefields, with the constraint of small total wavefield
difference. For equation (22) we use the difference between the cumulative phases, which
does not impose a constraint on the actual size of the wavefields. Thus, using equation (22),
we could in principle handle arbitrarily large slowness perturbations.

However, the phases in equation (22) need to be unwrapped to obtain a meaningful wave-
field differences. In complex environments, wavefields are can be quite complicated, and it is
not at all trivial to estimate and unwrap their phases. Therefore, even if we could in theory use
equation (22) for arbitrarily large perturbations, in practice we are constrained by our ability
to unwrap the phases of complicated wavefields. Figure 5 shows the fat rays corresponding to
the different magnitudes of slowness anomalies when the phases have been unwrapped.

The more practical alternative we can use to create image perturbations using equation (23)
is illustrated in Figure 6. In this case, the fat rays are not distorted at any magnitude of slowness
anomaly, behavior which is similar to that of the unwrapped Rytov.

The explanation for this behavior lies in the definition in equation (23). The image pertur-
bation is created by estimating the gradient of the residual migration change on the background
image, followed by scaling with the appropriate 1ρ picked from a suite of images obtained
with different values of the parameter ρ.

In essence, we are using the information provided by the background image to infer the
direction and magnitude of the image change. There is no limitation to how far we can go
from the background image similar to the limitations of the Born and Rytov definitions. How-
ever, since we are employing a first order linearization, the accuracy of the differential image

Figure 4: Fat rays for an image
perturbation defined using the Rytov
equation (22).The slowness anomaly
is gradually increasing from (a) to (c).
The phases are not unwrapped, thus
the largest anomaly is not described
correctly. paul1-RYTOV3b.xbsryt
[CR]
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Figure 5: Fat rays for an image
perturbation defined using the Rytov
equation (22).The slowness anomaly
is gradually increasing from (a) to
(c). The phases are unwrapped, thus
all anomalies are described correctly.
paul1-RYTOV3b.xbsunw [CR]

perturbation decreases with increasing 1ρ.

Figure 7 is a schematic illustration of the transformation implied by equation (23). We can
create enhanced images either by nonlinear residual migration, or by a first-order lineariza-
tion around the background image. In principle, the accuracy of this approximation decreases
with increasing 1ρ. Therefore, in practice we cannot go arbitrarily far from any given back-
ground image and we need to run several non-linear iterations involving slowness inversion,
re-migration and re-linearization.

Figure 8 is a summary of fat rays computed using the methods described in the preceding
section. The magnitude of the slowness anomaly increases from left to right. From bottom to
top we show the fat rays for the Born definition, the Rytov definition without phase unwrap-
ping, the Rytov definition with phase unwrapping, and the differential definition.

The four panels on the left are identical, since all methods work as well for small anoma-
lies. In the middle four panels, the fat ray obtained with the Born definition starts to break,

Figure 6: Fat rays for an image
perturbation defined using the dif-
ferential equation (23).The slowness
anomaly is gradually increasing from
(a) to (c). All anomalies are described
correctly. paul1-RYTOV3b.xbsana
[CR]
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Figure 7: A sketch of the approx-
imations done when computing im-
age perturbations with equation (23).
In this plot, each multi-dimensional
image is schematically depicted by
a point. We compute a linear ap-
proximation of an image correspond-
ing to a spatially varying ρ from the
gradient information computed on the
background image and the 1ρ picked
from a suite of images. The accuracy
of the linear approximation decreases
with increasing 1ρ. paul1-dif [NR]

R

ρ
0

0R

ρ

first−order linearization

residual migration

while the Rytov (with and without phase unwrapping) and differential approaches work well.
Finally, the panels on the right correspond to the highest anomaly, when only the Rytov with
phase unwrapping and differential methods work.

CONCLUSIONS

We analyze various options for computing image perturbations for wave-equation migration
velocity analysis. Our three choices are Born (amplitude difference), Rytov (phase difference)
and differential image perturbations derived analytically from residual migration operators.

We show that we can use the linearized WEMVA operator to invert all three types of image
perturbations. We find that Rytov WEMVA is possible if we unwrap phases, but fails without.

The differential image perturbation can be used for arbitrarily large slowness anomalies,
but its accuracy decreases with deviation from the background image. For simple cases, the
differential image perturbation method is equivalent with a phase-unwrapped Rytov method.
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Figure 8: Summary plot for WEMVA using image perturbations constructed with different
methods and with anomalies of increasing magnitude. From bottom to top we show the fat
rays for the Born definition, the Rytov definition without phase unwrapping, the Rytov defi-
nition with phase unwrapping, and the differential definition. The magnitude of the slowness
anomaly increases from left to right. paul1-RYTOV3b.dsall [CR]
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