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Seismic attenuation due to wave-induced flow

Steven R. Pride, James G. Berryman, and Jerry M. Harris1

ABSTRACT

Analytical expressions for three P-wave attenuation mechanisms in sedimentary rocks are
given a unified theoretical framework. Two of the models concern wave-induced flow due
to heterogeneity in the elastic moduli at “mesoscopic” scales (scales greater than grain
sizes but smaller than wavelengths). In the first model, the heterogeneity is due to litho-
logical variations (e.g., mixtures of sands and shales) with a single fluid saturating all
the pores. In the second model, a single uniform lithology is saturated in mesoscopic
“patches” by two immiscible fluids (e.g., air and water). In the third model, the hetero-
geneity is at “microscopic” grain scales (broken grain contacts and/or micro-cracks in the
grains) and the associated fluid response corresponds to “squirt flow.” The model of squirt
flow derived here reduces to proper limits as any of the fluid bulk modulus, crack porosity,
and/or frequency is reduced to zero. It is shown that squirt flow is incapable of explaining
the measured level of loss (10−2 < Q−1 < 10−1) within the seismic band of frequencies
(1 to 104 Hz); however, either of the two mesoscopic scale models easily produce enough
attenuation to explain the field data.

INTRODUCTION

Intrinsic seismic attenuation is often quantified by the inverse quality factor Q−1 of sedimen-
tary rock within the seismic band of frequencies, which we loosely define as 1 to 104 Hz. For
transmission experiments (earthquake recordings, VSP, cross-well tomography, sonic logs),
the total measured attenuation can be decomposed as Q−1

total = Q−1
scat + Q−1 where both con-

tributions to the total attenuation are necessarily positive. The inverse quality factor Q−1 for
the intrinsic attenuation represents the fraction of wave energy irreversibly lost to heat during
a wave period as normalized by the strain energy. For refletion seismic prospecting, there are
other wave energy losses due to reflection and transmission effects at interfaces. These effects
are neglected here for reflection seismic by exclusion. For the types of transmission experi-
ments that we do consider here, we justify neglecting them since we are basically studying the
losses within any single block of material, and not treating effects at interfaces between blocks
since these can be handled independently with well-known methods.

Crosswell experiments in horizontally-stratified sediments produce negligible amounts of
scattering loss so that essentially all loss is attributable to intrinsic attenuation. Quan and
Harris (1997) use tomography to invert for the amplitudes of crosswell P-wave first arrivals
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to obtain the Q−1 for the layers of a stratified sequence of shaly sandstones and limestones
(depths ranging from 500–900 m). The center frequency of their measurements is roughly
1750 Hz and they find that 10−2 < Q−1 < 10−1 for all the layers in the sequence. Sams et
al. (1997) also measure the intrinsic loss in a stratified sequence of water-saturated sand-
stones, siltstones and limestones (depths ranging from 50–250 m) using VSP (30–280 Hz),
crosswell (200–2300 Hz), sonic logs (8–24 kHz), and ultrasonic laboratory (500–900 kHz)
measurements. Sams et al. (1997) calculate (with some inevitable uncertainty) that in the
VSP experiments, Q−1/Q−1

scat ≈ 4, while in the sonic experiments, Q−1/Q−1
scat ≈ 19; i.e., for

this sequence of sediments, the intrinsic loss dominates the scattering loss at all frequencies.
Sams et al. (1997) also find 10−2 < Q−1 < 10−1 across the seismic band.

We demonstrate here that wave-induced fluid flow generates enough heat to explain these
measured levels of intrinsic attenuation. Other attenuation mechanisms need not be consid-
ered, although they may in fact be present but contribute much smaller fractions of the overall
observed attenuation. The induced flow occurs at many different spatial scales that can broadly
be categorized as “macroscopic”, “mesoscopic”, and “microscopic.”

The macroscopic flow is the wavelength-scale equilibration occuring between the peaks
and troughs of a P-wave. This mechanism was first treated by Biot (1956a) and is often
simply called “Biot loss.” However, the flow at such macro scales drastically underestimates
the measured loss in the seismic band (by as much as 5 orders of magnitude). Mavko and
Nur (1979) therefore proposed a microscopic mechanism due to microcracks in the grains
and/or broken grain contacts. When a seismic wave squeezes a rock having such grain-scale
damage, the cracks respond with a greater fluid pressure than the main porespace resulting
in a flow from crack to pore that Mavko and Nur (1979) named “squirt flow.” Dvorkin et
al. (1995) have given a squirt-flow model applicable to liquid-saturated rocks. Although
squirt flow seems entirely capable of explaining much of the measured attenuation in the
laboratory at ultrasonic frequencies and may also turn out to be important for propagation
in ocean sediments at ultrasonic frequencies (Williams et al., 2002) as well, we show here that
this mechanism cannot explain the attenuation in the seismic band.

Thus, a third mechanism based on mesoscopic-scale heterogeneity seems required to ex-
plain seismic attenuation. Mesoscopic length scales are those larger than grain sizes but
smaller than wavelengths. Heterogeneity across these scales may be due to lithological vari-
ations or to patches of different immiscible fluids. When a compressional wave squeezes a
material containing mesoscopic heterogeneity, the effect is similar to squirt with the more
compliant portions of the material responding with a greater fluid pressure than the stiffer por-
tions. There is a subsequent flow of fluid capable of generating significant amounts of loss in
the seismic band.

Prior models of such mesoscopic loss have focused on flow between the layers of a strati-
fied material due to P-waves propagating normal to the layering [e.g., White et al. (1975), Nor-
ris (1993), Gurevich and Lopatnikov (1995), and Gelinksy and Shapiro (1997)]. The present
study seeks to model the flow for arbitrary mesoscopic geometry, albeit under the restriction
that only two porous phases are mixed together in each averaging volume.

In the next section, we review a recent model of Pride and Berryman (2003a,b) treating
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the mesoscopic loss created by lithological patches having, for example, different degrees of
consolidation. This so-called “double-porosity” model provides the theoretical framework that
will be used throughout. Then, we derive a new patchy-saturation variant of the model and, in
following section, a new squirt-flow variant. The results are then discussed in the concluding
section. The main point of the paper is to derive models for patchy-saturation and squirt using
the same notation and approach as the double-porosity theory; in so doing, we aim to draw
conclusions about the nature of attenuation in the seismic band of frequencies.

REVIEW OF THE DOUBLE-POROSITY THEORY

In this theory, the mesoscopic heterogeneity is modeled as being a mixture of two porous
phases saturated by a single fluid. Porous phase 1 is defined as being the stiffer lower-
permeability phase and phase 2 the more compressible higher-permeability phase.

Local Governing Equations

Each porous phase is locally modeled as a porous continuum and obeys the laws of poroelas-
ticty [e.g., Biot (1962)]

∇ ·τ D
i −∇ pci = ρüi +ρ f Q̇i (1)

Qi = −
ki

η

(

∇ p f i +ρ f üi
)

(2)
[

∇ · u̇i

∇ ·Qi

]

= −
1

K d
i

[

1 −αi

−αi αi/Bi

][

ṗci

ṗ f i

]

(3)

τ
D
i = G i

(

∇ui +∇uT
i −

2
3
∇ ·ui I

)

(4)

where the index i represents the two phases (i = 1,2). The response fields in these equations
are themselves local volume averages taken over a scale larger than the grain sizes but smaller
than the mesoscopic extent of either phase. The local fields are: ui , the average displacement
of the framework of grains; Qi , the Darcy filtration velocity; p f i , the fluid pressure; pci , the
confining pressure (total average pressure); and τ

D
i , the deviatoric (or shear) stress tensor. In

the linear theory of interest here, the overdots on these fields denote a partial time derivative.
In the local Darcy law (2), η is the fluid viscosity and the permeability ki is a linear time-
convolution operator whose Fourier transform ki (ω) is called the “dynamic permeability” and
can be modeled using the theory of Johnson et al. (1987) (see the Appendix).

In the local compressibility law (3), K d
i is the drained bulk modulus of phase i (confining

pressure change divided by sample dilatation under conditions where the fluid pressure does
not change), Bi is Skempton’s (1954) coefficient of phase i (fluid pressure change divided by
confining pressure change for a sealed sample), and αi is the Biot and Willis (1957) coefficient
of phase i defined as

αi = (1− K d
i /K u

i )/Bi , (5)
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where K u
i is the undrained bulk modulus (confining pressure change divided by sample di-

latation for a sealed sample). In the present work, no restrictions to single-mineral isotropic
grains will be made. Finally, in the deviatoric constitutive law (4), G i is the shear modulus of
the framework of grains. At the local level, all these poroelastic constants are taken to be real
constants. In the appendix we give the Gassmann (1951) fluid-substitution relations that allow
Bi and αi to be expressed in terms of the porosity φi , the fluid and solid bulk moduli K f and
Ks , and the drained modulus K d

i .

Double-Porosity Governing Equations

In the double-porosity model, the goal is to determine the average fluid response in each of the
porous phases in addition to the average displacement of the solid grains (Berryman and Wang,
1995; 2000). The averages are taken over regions large enough to significantly represent both
porous phases, but smaller than wavelengths. Assuming an e−iωt time dependence, Pride and
Berryman (2003a) have found the volume averaged local laws (1)–(4) in order to obtain the
macroscopic “double-porosity” governing equations in the form

∇ ·τ D − ∇ Pc = −iω(ρv+ρ f q1 +ρ f q2), (6)
[
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q2

]

= −
1
η
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·
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−iωζint = γ (ω) (p f 1 − p f 2), (9)

−iωτ
D = [G(ω)− iωg(ω)]

[

∇v+ (∇v)T −
2
3
∇ ·vI

]

. (10)

The macroscopic fields are: v, the average particle velocity of the solid grains throughout
an averaging volume of the composite; qi , the average Darcy flux across phase i ; Pc, the
average total pressure in the averaging volume; τ

D , the average deviatoric stress tensor; p f i ,
the average fluid pressure within phase i ; and −iωζint, the average rate at which fluid volume is
being transferred from phase 1 into phase 2 as normalized by the total volume of the averaging
region. The dimensionless increment ζint represents the “mesoscopic flow.”

Equation (7) is the generalized Darcy law allowing for fluid cross-coupling between the
phases [c.f., Pride and Berryman (2003b)], equation (8) is the generalized compressibility law
where ∇ · qi corresponds to fluid that has been depleted from phase i due to transfer across
the external surface of an averaging volume, and equation (9) is the transport law for internal
mesoscopic flow (fluid transfer between the two porous phases).

The coefficients in these equations have been modeled by Pride and Berryman (2003a,b).
Before presenting these results, the nature of the waves implicitly contained in these laws
is briefly commented upon. If plane-wave solutions for v, q1 and q2 are introduced, there
is found to be a single transverse wave, and three longtitudinal responses: a fast wave and
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two slow waves (Berryman and Wang, 2000). The fast wave is the usual P-wave identified
on seismograms, while the two slow waves correspond to fluid-pressure diffusion in phases
1 and 2. The only problem with analyzing the fast compressional wave in this manner is
that the characteristic equation for the longtitudinal slowness s is cubic in s2 and, therefore,
analytically inconvenient.

Reduction to an Effective Biot Theory

The approach that we take instead is to first reduce these double-porosity laws (6)–(10) to an
effective single-porosity Biot theory having complex frequency-dependent coefficients. The
easiest way to do this is to assume that phase 2 is entirely embedded in phase 1 so that the
average flux q2 into and out of the averaging volume across the external surface of phase 2
is zero. By placing ∇ ·q2 = 0 into the compressibility laws (8), the fluid pressure p f 2 can be
entirely eliminated from the theory. In this case the double-porosity laws reduce to effective
single-porosity poroelasticity governed by laws of the form (3) but with effective poroelastic
moduli given by

1
K D

= a11 −
a2

13

a33 −γ / iω
, (11)

B =
−a12(a33 −γ / iω)+a13(a23 +γ / iω)

(a22 −γ / iω)(a33 −γ / iω)− (a23 +γ / iω)2 , (12)

1
KU

=
1

K D
+ B

(

a12 −
a13(a23 +γ / iω)

a33 −γ / iω

)

. (13)

Here, K D(ω) is the effective drained bulk modulus of the double-porosity composite, B(ω) is
the effective Skempton’s coefficient, and KU (ω) is the effective undrained bulk modulus. An
effective Biot-Willis constant can then be defined using α(ω) = [1− K D(ω)/KU (ω)]/B(ω).

The complex frequency dependent “drained” modulus K D again defines the total volumet-
ric response when the average fluid pressure throughout the entire composite is unchanged;
however, the local fluid pressure in each phase may be non-uniform even though the average
is zero resulting in mesoscopic flow and in K D being complex and frequency dependent. Sim-
ilar interpretations hold for the undrained moduli KU and B. An undrained response is when
no fluid can escape or enter through the external surface of an averaging volume; however,
there can be considerable internal exchange of fluid between the two phases resulting in the
complex frequency-dependent nature of both KU and B.

Double-Porosity ai j Coefficients

The constants ai j are all real and correspond to the high-frequency response for which no in-
ternal fluid-pressure relaxation can take place. They are given exactly as (Pride and Berryman,
2003a)

a11 = 1/K (14)
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where the Qi are auxiliary constants given by

v1 Q1 =
1− K d

2 /K
1− K d

2 /K d
1

and v2 Q2 =
1− K d

1 /K
1− K d

1 /K d
2

. (20)

Here, v1 and v2 are the volume fractions of each phase within an averaging volume of the
composite. The one constant that has not yet been defined is the overall drained modulus
K = 1/a11 of the two-phase composite (the modulus defined in the quasi-static limit where
the local fluid pressure throughout the composite is everywhere unchanged). It is through K
that the ai j potentially depend on the mesoscopic geometry of the two porous phases. How-
ever, a reasonable modeling choice when phase 2 is embedded within phase 1 is to simply take
the geometry-independent harmonic mean 1/K = v1/K d

1 +v2/K d
2 . Although this choice ac-

tually violates the Hashin-Shitrikman bounds (Hashin and Shtrikman, 1961) for truly isotropic
media, it is nevertheless a reasonable choice for earth systems where the assumed isotropy is
itself an approximation. This choice is also a particularly convenient one because it results
in Q1 = Q2 = 1 as well as a23 = 0. All dependence on the fluid’s bulk modulus is contained
within the two Skempton’s coefficients B1 and B2 and is thus restricted to a22 and a33. In the
quasi-static limit ω → 0 (fluid pressure everywhere uniform throughout the composite), equa-
tions (12) and (13) reduce to the known exact results of Berryman and Milton (1991) once
equations (14)–(19) are employed.

Double-Porosity Transport

Pride and Berryman (2003b) obtain the internal transport coefficient γ of equation (9) as

γ (ω) = γm

√

1− i
ω

ωm
(21)

where the parameter γm that holds in the final stages of internal fluid-pressure equilibration is
given by

γm =
v1k1

ηL2
1

[

1+ O(k1/k2)
]

. (22)

Since the more compressible embedded phase 2 typically has a permeability much greater
than the host phase 1, the O(k1/k2) correction can be neglected. The transition frequency
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ωm corresponds to the onset of a high-frequency regime in which the fluid-pressure-diffusion
penetration distance between the phases becomes small relative to the scale of the mesoscopic
heterogeneity. It is given by

ωm =
B1K d

1

ηα1

k1(v1V/S)2

L4
1

(

1+

√

k1 B2K d
2 α1

k2 B1K d
1 α2

)2

. (23)

The length L1 characterizes the average distance in phase 1 over which the fluid pressure
gradient still exists in the final approach to equilibration and has the formal mathematical
definition

L2
1 =

1
V1

∫

�1

81 dV =
1
V1

∫

�1

∇81 ·∇81 dV (24)

where �1 is the region of an averaging volume occupied by phase 1 and having a volume mea-
sure V1. The potential 81 has units of length squared and is a solution of an elliptic boundary-
value problem that under conditions where the harmonic mean is a good approximation for
the overall drained modulus and where the permeability ratio k1/k2 can be considered small,
reduces to

∇281 = −1 in �1, (25)
n ·∇81 = 0 on ∂ E1, (26)

81 = 0 on ∂�12, (27)

where ∂ E1 is the external surface of the averaging volume coincident with phase 1, and where
∂�12 is the internal interface separating phases 1 and 2. Multiplying equation (25) by 81 and
integrating over �1, establishes that second integral of equation (24).

For complicated geometry, L1 can only be determined numerically. For idealized geome-
tries it can be analytically estimated. For example, if phase 2 is taken to be small spheres of
radius a embedded within each sphere R of the composite, Pride and Berryman (2003b) obtain

L2
1 =

9
14

R2
[

1−
7
6

a
R

+ O(a3/R3)
]

. (28)

The volume fraction v2 of small spheres is then v2 = (a/R)1/3 which can be used to eliminate
R since R = av

−1/3
2 . The other length parameter is the volume-to-surface ratio V/S where S

is the area of ∂�12 in each volume V of composite. For the simple spherical-inclusion model,
it is given by V/S = R3/(3a2) = av2/3.

The coefficient G(ω)− iωg(ω) governing shear generally has a non-zero “viscosity” g(ω)
associated with the mesoscopic fluid transport between the compressional lobes surrounding
a sheared phase 2 inclusion. Both of the frequency functions G(ω) and −ωg(ω) are real and
are Hilbert transforms of each other. The frequency dependence of g(ω) was not modeled by
Pride and Berryman (2003b). However, if the inclusions of phase 2 are taken to be spheres,
then g(ω) = 0 exactly and G(ω) = G is a constant that can be approximately modeled using
a simple harmonic average 1/G = v1/G1 + v2/G2 of the underlying shear moduli of each
phase.
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Finally, the dynamic permeability k(ω) to be used in the effective Biot theory can be
modeled in several ways. Perhaps the simplest modeling choice when phase 2 is modeled
as small inclusions embedded in phase 1 is to again take a harmonic average 1/k(ω) =
v1/k1(ω)+v2/k2(ω) ≈ v1/k1(ω)[1+ O(v2k1/ks)].

Phase Velocity and Attenuation

With all of the double-porosity coefficients now defined, the compressional phase velocity and
attenuation may be determined by inserting a plane-wave solution into the effective single-
porosity Biot equations [in the form (1)–(4)]. This gives the standard complex longtitudinal
slowness s of Biot theory

s2 = b ∓

√

b2 −
ρρ̃ −ρ2

f

M H −C2 , (29)

where
b =

ρM + ρ̃H −2ρ f C
2(M H −C2)

(30)

is simply an auxiliary parameter, and where H , C and M are the Biot (1962) poroelastic
moduli defined in terms of the complex frequency-dependent parameters of equations (11)–
(13) as

H = KU +4G/3 (31)
C = B KU (32)

M =
B2

1− K D/KU
KU . (33)

The complex inertia ρ̃ corresponds to rewriting the relative flow resistance as an effective
inertial effect

ρ̃ = −η/[iωk(ω)]. (34)

Taking the minus sign in equation (29) gives an s having an imaginary part much smaller than
the real part and that thus corresponds to the normal P-wave. Taking the positive sign gives
an s with real and imaginary parts of roughly the same amplitude and that thus corresponds to
the slow P-wave (a pure fluid-pressure diffusion across the seismic band of frequencies). We
are only interested here in the properties of the normal P-wave.

The P-wave phase velocity vp and the attenuation measure Q−1
p are related to the complex

slowness s as

vp = 1/Re{s} (35)
Q−1

p = Im{s}/Re{s}. (36)

A Numerical Example

In Fig. 1, we give an example of Q−1
p and vp as determined using this double-porosity theory.

The example models a consolidated sandstone containing pockets (small regions) where the
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Figure 1: The attenuation and phase velocity of compressional waves in the double-porosity
model of Pride and Berryman (2003a). The 5 cm embedded spheres of phase 2 have frame
moduli (K d

2 and G2) modeled using the modified Walton theory given in the appendex in
which both K d

2 and G2 vary strongly with the background effective pressure Pe (or overburden
thickness). These spheres of porous continuum 2 were embedded into a phase 1 continuum
modeled as a consolidated sandstone. jim3-QandVdp [NR]
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grains are not cemented together. The embedded unconsolidated phase 2 is modeled as 5
cm radius spheres occupying 1.5% of the composite. The frame moduli of this relatively-
compressible embedded material are determined using the modified Walton theory given in
the Appendix. These moduli are functions of the background effective-stress level Pe. The
host phase 1 is modeled as a consolidated sandstone (using φ1 = 0.15 and c = 4 in the model
given in the appendix). The permeability of the two phases are taken as k1 = 10−14 m2 and
k2 = 10−12 m2. The invariant peak near 105 Hz is that due to the Biot loss (fluid equilibration
at the scale of the seismic wavelength) while the principal peak that changes with the effective
pressure Pe is that due to mesoscopic-scale equilibration. Figure 1 demonstrates that small
amounts of a relatively soft material embedded within a more consolidated rock is capable of
producing the level of attenuation measured in field experiments.

The overall magnitude of attenuation in the model is controlled principally by the contrast
of compressibilities between the two porous phases; the greater the contrast, the greater the
mesoscopic fluid-pressure gradient and the greater the mesoscopic-flow intensity and associ-
ated attenuation. The relaxation frequency at which the mesoscopic loss per cycle is maximum
is proportional to k1/L2

1. Below this relaxation frequency, Q−1 increases with frequency as
f η/k1. Thus, the permeability information in the double-porosity attenuation is principally in
the frequency dependence of Q−1 and not in the overall magnitude of Q−1 and involves prin-
cipally the permeability k1 of the host phase and not the overall permeability of the composite.
[See Berryman (1988) for a related discussion.] If phase 2 is well modeled as being small
inclusions embedded in phase 1, then k1 is controlling the overall permeability. If phase 2 cor-
responds to through going connected joints, then although Q−1(ω) contains information about
k1, it does not contain information about the overall permeability which is being dominated by
k2 in this case.

PATCHY-SATURATION MODEL

Another important source of mesoscopic-scale heterogeneity is patchy fluid saturation. All
natural hydrological processes by which one fluid non-miscibly invades a region initially oc-
cupied by another result in a patchy distribution of the two fluids. The patch sizes are dis-
tributed across the entire range of mesoscopic length scales and for many invasion scenarios
are expected to be fractal. As a compressional wave squeezes such a material, the patches
occupied by the less-compressible fluid will respond with a greater fluid-pressure change than
the patches occupied by the more-compressible fluid. The two fluids will then equilibrate by
the same type of mesoscopic flow already modeled in the double-porosity model.

An analysis almost identical to that of Pride and Berryman (2003a,b) can be carried out that
leads to the same effective poroelastic moduli given by equations (11)–(13) but with different
definitions of the ai j constants and internal transport coefficient γ (ω). In the model, a single
uniform porous frame is saturated by mesoscopic-scale patches of fluid 1 and fluid 2. We
define porous phase 1 to be those regions (patches) occupied by the less mobile fluid and
phase 2 the patches saturated by the more mobile fluid; i.e., by definition η1 > η2. This most
often (but not necessarily) corresponds to K f 1 > K f 2 and, therefore, to B1 > B2.
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Johnson (2001) approached this problem using a different coarse-graining argument while
starting from the same local physics (assuming, however, that the porous medium is a Gassmann
mono-mineral material). The final undrained bulk modulus obtained by Johnson (2001) is
identical to our model in the limits of high and low frequency and differs only negligibly in
the transition range of frequencies where the flow in either model is not explicitly treated.

Patchy-Saturation ai j Coefficients

To obtain the ai j for the patchy-saturation model, we note that each patch has the same α

and K . The poroelastic differences between patches is entirely due to B1 being different than
B2. Upon volume averaging equation (3) and using ∇ ·v = ∇ ·

(

v1u̇1
)

+∇ ·
(

v2u̇2
)

, where an
overline again denotes a volume average over the appropriate phase, and using the fact that the
ai j are defined in the extreme high-frequency limit where the fluids have no time to traverse
the internal interface ∂�12 (i.e., the ai j are defined under the condition that ζ̇int = 0), one has

∇ ·v = −
v1

K
ṗc1 −

v2

K
ṗc2 +

v1α

K
ṗ f 1 +

v2α

K
ṗ f 2, (37)

∇ ·q1 =
v1α

K
ṗc1 −

v1α

K B1
ṗ f 1, (38)

∇ ·q2 =
v2α

K
ṗc2 −

v2α

K B2
ṗ f 2. (39)

The average confining pressures pci in each phase are not a priori known; however, they
are necessarily linear functions of the three independent applied pressures of the theory Pc(=
v1 pc1 +v2 pc2), p f 1, and p f 2. It is straightforward to demonstrate that if and only if the average
confining pressures take the form

v1 ṗc1 = v1 Ṗc +β ṗ f 1 −β ṗ f 2 (40)
v2 ṗc2 = v2 Ṗc −β ṗ f 1 +β ṗ f 2, (41)

will equations (37)–(39) produce ai j that satisfy the thermodynamic symmetry requirement
of ai j = aj i [i.e., these ai j constants are all second derivatives of a strain-energy function as
demonstrated by Pride and Berryman (2003a). Upon placing equations (40) and (41) into
equations (37)–(39), we then have

a11 = 1/K (42)

a22 = (−β +v1/B1)α/K (43)
a33 = (−β +v2/B2)α/K (44)
a12 = −v1α/K (45)
a13 = −v2α/K (46)

a23 = βα/K (47)

where β is a constant to be determined.
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To obtain β, we note that in the high-frequency limit, each local patch of phase i is
undrained and thus characterized by an undrained bulk modulus K u

i = K/(1 − αBi ) and a
shear modulus G that is the same for all patches. In this limit, the usual laws of elasticity gov-
ern the response of this heterogeneous composite. Under these precise conditions (elasticity of
an isotropic composite having uniform G and all heterogeneity confined to the bulk modulus
which in the present case corresponds to K u

i ), the theorem of Hill (1963) applies, which states
that the overall undrained-unrelaxed modulus of the composite K H is given exactly by

1
K H +4G/3

=
v1

K u
1 +4G/3

+
v2

K u
2 +4G/3

. (48)

In terms of the ai j , this same undrained-unrelaxed Hill modulus is given by

1
K H

= a11 +a12

(

δp f 1

δPc

)

U
+a13

(

δp f 2

δPc

)

U
(49)

where, upon using ∇ · qi = 0 and ζ̇int = 0 in equation (8) and then using (42)–(47), the
undrained-unrelaxed pressure ratios are

(

δp f 1

δPc

)

U
=

β −v1v2/B2

β(v1/B1 +v2/B2)−v1v2/(B1 B2)
(50)

(

δp f 2

δPc

)

U
=

β −v1v2/B1

β(v1/B1 +v2/B2)−v1v2/(B1 B2)
. (51)

Thus, after some algebra, equation (49) yields the exact result

β = v1v2

(

v1

B2
+

v2

B1

)[

α − (1− K/K H )/(v1 B1 +v2 B2)
α − (1− K/K H )(v1/B1 +v2/B2)

]

(52)

with K H given by equation (48). All the ai j are now expressed in terms of known information.

Patchy-Saturation Transport

We next must address the internal fluid-pressure equilibration between the two phases with
the goal of obtaining the internal transfer coefficient γ of equation (9). The mathematical
definition of the rate of internal fluid transfer is

ζ̇int =
1
V

∫

∂�12

n ·Q1 dS (53)

where V is the volume occupied by the composite. A possible concern in the patchy-saturation
analysis is whether capillary effects at the local interface ∂�12 separating the two phases need
to be allowed for.
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Local continuity conditions on ∂�12

At the pore scale, the interface separating one fluid patch from the next is a series of meniscii.
Roughness on the grain surfaces keeps the contact lines of these meniscii pinned to the grain
surfaces. Pride and Flekkoy (1999) argue that the contact lines of an air-water meniscus will
remain pinned for fluid-pressure changes less than roughly 104 Pa which correspond to the
pressure range induced by linear seismic waves. So as a wave passes, the meniscii will bulge
and change shape but will not migrate away. This makes the problem vastly more simple to
analyze theoretically.

One porous-continuum boundary condition is that all fluid volume that locally enters the
interface ∂�12 from one side, must exit the other side so that n ·Q1 = n ·Q2 (= n ·Q). Another
boundary condition is that the difference in the rate at which energy is entering and leaving the
interface is entirely due to the work performed in changing the miniscii surface area. Before
the wave arrives, each miniscus has an initial mean curvature Ho fixed by the static fluid
pressures initially present; po

f 1 − po
f 2 = σ Ho where σ is the surface tension. During wave

passage, one can demonstrate (Pride and Flekkoy, 1999) that the mean curvature changes as
H = Ho + εH1 + O(ε2) where H1 is of the same order as Ho and where ε is a dimensionless
number called the capillary number. The capillary number is defined ε = η|Q|/σ where |Q|
is some estimate of the wave-induced Darcy flux and that is thus bounded as the wave strain
times phase velocity; i.e., |Q| < 10−3 m/s. For typical interfaces (like air and water), we have
σ > 10−2 Pa m and η ≈ 10−3 Pa s. Thus, for linear wave problems, ε � 10−4 and ε can be
considered a very small number.

Writing the fluid pressures as p f i = po
f i + δp f i and using the fact that n ·Q is continuous,

allows the conservation of energy at the interface to be expressed

[

n ·
{

τ i · u̇i − (po
f i + δp f i )Q

}]

= σn ·QHo[1+ O(ε)]. (54)

The brackets on the left-hand side deonte the jump in energy flux across the interface, while
the right-hand side represents the rate at which work is performed in stretching the meniscii.
Since conservation of momentum requires n · τ to be continuous at the interface and since
the assumption of the grains being welded together [or having an overburden effective pres-
sure (1−φ)(ρs −ρ f )gh acting on them that is greater than the wave stress] requires that u̇ is
continuous, we obtain that to leading order in ε

δp f 1 = δp f 2 (55)

along the interface ∂�12. This means that the fluid pressure equilibration can be modeled using
the standard displacement-stress continuity conditions along ∂�12 that were also employed in
the double-porosity analysis; i.e., capillary effects can be neglected. In what follows, the fluid
pressures correspond to the changes induced by the wave and so we cease to explicitly write
the “δ” in front of them.
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Mesoscopic flow equations

To obtain the transport law −iωζint = γ (ω)(p f 1 − p f 2), the mesoscopic flow is analyzed in the
limits of low and high frequencies. These limits are then connected using a frequency function
that respects causality constraints. The linear fluid response inside the patchy composite due
to a seismic wave can always be resolved into two portions: (1) a vectorial response due to
macroscopic fluid-pressure gradients across an averaging volume that generate a macroscopic
Darcy flux qi across each phase and that corresponds to the macroscopic conditions p f i =
0 and ∇ p f i 6= 0; and (2) a scalar response associated with internal fluid transfer and that
corresponds to the macroscopic conditions p f i 6= 0 and ∇ p f i = 0. The macroscopic isotropy
of the composite guarantees that there is no cross-coupling between the vectorial transport qi

and the scalar transport ζ̇int within each sample.

The mesoscopic flow problem that defines ζ̇int is the internal equilibration of fluid pressure
between the patches when a confining pressure 1P has been applied to a sealed sample of the
composite. Having the external surface sealed is equivalent to the required macroscopic con-
straint that ∇ p f i = 0. Upon taking the divergence of (2) and using equation (3), the diffusion
problem controling the mesoscopic flow becomes

k
ηi

∇2 p f i + iω
α

K Bi
p f i = iω

α

K
pci in �i , (56)

[

p f i
]

and
[

n ·∇ p f i
]

= 0 on ∂�12, (57)
n ·∇ p f i = 0 on ∂ Ei , (58)

where �i is the region that each phase occupies within the averaging volume, ∂ Ei is that
portion of the external surface of the averaging volume that is in contact with phase i , and the
brackets in equation (57) again denote jumps across the interface. One also needs to insert
equations (3) and (4) into (1) to obtain a second-order partial-differential equation for the
displacements ui . In general, the local confining pressures pci are determined using

pci = −K∇ ·ui +αp f i (59)

once the displacements ui are known.

Low-frequency limit of γ (ω)

As ω → 0, one can represent the local fields as asymptotic series in the small parameter −iω

p f i = p(0)
f i − iωp(1)

f i + O(ω2), (60)

pci = p(0)
ci − iωp(1)

ci + O(ω2), (61)

and equivalently for ui . The zeroth-order response corresponds to uniform fluid pressure in
the pores and is therfore given by p(0)

c1 = p(0)
c2 = 1P and

p(0)
f i

1P
= Bo = −

a12 +a13

a22 +2a23 +a33
=

1
v1/B1 +v2/B2

(62)
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where the patchy-saturation ai j have been employed. The fact that the quasi-static Skempton’s
coefficient in the patchy-saturation model is exactly the harmonic average of the constituents
Bi is equivalent to saying that at low frequencies, the fluid bulk modulus is given by 1/K f =
v1/K f 1 + v2/K f 2. The quasi-static response is thus completely independent of the spatial
geometry of the fluid patches; it depends only on the volume fractions occupied by the patches.

The leading order correction to uniform fluid pressure is then controlled by the boundary-
value problem

K k
αη1

∇2 p(1)
f 2 =

η2

η1

(

1−
Bo

B2

)

1P in �2, (63)

K k
αη1

∇2 p(1)
f 1 =

(

1−
Bo

B1

)

1P in �1, (64)

p(1)
f 1 = p(1)

f 2 on ∂�12 (65)

n ·∇ p(1)
f 2 =

η2

η1
n ·∇ p(1)

f 1 on ∂�12 (66)

n ·∇ p(1)
f i = 0 on ∂ Ei . (67)

It is now assumed that for patchy-saturation cases of interest (air/water or water/oil), the ratio
η2/η1 can be considered small. To leading order in η2/η1, equations (63), (66), and (67)
require that p(1)

f 2 (r) = p(1)
f 2 (a spatial constant). The fluid pressure in phase 1 is now rewritten

as

p(1)
f 1 (r) = p(1)

f 2 −
η1α

kK

(

1−
Bo

B1

)

1P81(r) (68)

where, from equations (64), (65) and (67) and to leading order in η2/η1, the potential 81 is
the solution of the same elliptic boundary-value problem (25)–(27) given earlier.

Upon averaging (68) over all of �1, the leading order in −iω difference in the average
fluid pressures can be written

p f 1 − p f 2

1P
= −iω

(

p(1)
f 1 − p(1)

f 2

1P

)

= iω
η1α

kK

(

1−
Bo

B1

)

L2
1 (69)

where L1 is again the length defined by equation (24).

To connect this fluid-pressure difference to the increment ζ̇int we use the divergence theo-
rem and the no-flow boundary condition on ∂ Ei to write equation (53) as

−iωζint =
iω
V

k
η

∫

∂�12

n ·∇ p(1)
f 1 dS = iωv1

α

K

(

1−
Bo

B1

)

1P . (70)

Replacing 1P with p f 1 − p f 2 using equation (69) then gives the desired law −iωζint =
γp(p f 1 − p f 2) with

γp =
v1k
η1L2

1

[

1+ O
(

η2

η1

)]

. (71)

being the low-frequency limit of interest.
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High-frequency limit of γ (ω)

It has already been commented that in the extreme high-frequency limit where each patch
behaves as if it were sealed to flow (ζ̇int = 0), the theory of Hill (1963) applies. Hill demon-
strated, among other things, that when each isotropic patch has the same shear modulus, the
volumetric deformation within each patch is a spatial constant. The fluid pressure response in
this limit p∞

f i is thus a uniform spatial constant throughout each phase except in a vanishingly
small neighborhood of the interface ∂�12 where equilibration is attempting to take place. The
small amount of fluid-pressure penetration that is occuring across ∂�12 can be locally modeled
as a one-dimensional process normal to the interface.

Using the coordinate x to measure linear distance normal to the interface (and into phase
1), one has that equation (56) is satisfied by

p f 1 = p∞
f 1 +C1ei

√
iω/D1 x (72)

p f 2 = p∞
f 2 +C2e−i

√
iω/D1 x (73)

where the diffusivities are defined Di = kK Bi/(ηiα). The constants Ci are found from the
continuity conditions (57) to be

C1 =
−1

1+
√

η2 B2/(η1 B1)
(p∞

f 1 − p∞
f 2) (74)

C2 =
√

η2 B2/(η1 B1)
1+

√
η2 B2/(η1 B1)

(p∞
f 1 − p∞

f 2). (75)

Although not actually needed here, we have that p∞
f i = Bi pci where the uniform confining

pressure of each patch is given by equations (40) and (41) so that the fluid pressure difference
between the phases goes as

p∞
f 1 − p∞

f 2

1P
=

B1 − B2

1−β(B1/v1 + B2/v2)
. (76)

This equation is exactly the difference between equations (50) and (51). Because the penetra-
tion distance

√
Di/ω vanishes at high-frequencies, we may state that to leading order in the

high-frequency limit, p f 1 − p f 2 = p∞
f 1 − p∞

f 2.

To obtain the high-frequency limit of the transport coefficient γ (ω), we use the definition
(53) of the internal transport (note that −n ·∇ p f 1 = ∂p f 1/∂x)

−iωζint =
1
V

k
η1

∫

∂�12

∂p f 1

∂x
dS (77)

along with equations (72) and (74). The result is

lim
ω→∞

γ (ω) = i3/2√ω
S
V

( √
kα/(η1 B1K )

1+
√

η2 B2/(η1 B1)

)

. (78)

Here, S is again the area of ∂�12 contained within a volume V of the patchy composite.
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Full-model for γ (ω)

The high- and low-frequency limits of γ are then connected by a simple frequency function to
obtain the final model

γ (ω) = γp
√

1− iω/ωp (79)

where the transition frequency ωp is defined

ωp =
B1K
η1α

k(v1V/S)2

L4
1

(

1+

√

η2 B2

η1 B1

)2

(80)

and where γp = v1k/(η1L2
1). Equation (79) has a single singularity (a branch point) at ω =

−iωp. Causality requires that with an e−iωt time dependence, all singularities and zeroes of a
transport coefficient like γ (ω) must reside in the lower-half complex ω plane. Equation (79)
satisfies this physically important constraint.

Patchy-Saturation Modeling Choices

To use the patchy-saturation model, appropriate values for the two geometric terms L1 and
V/S must be specified. Immiscible fluid distributions in the earth have very complicated ge-
ometries since they arise from slow flow that often produces fractal patch distributions. In
particular, analytical solutions of the boundary-value problem (25)–(27) that defines L1 for
such real-earth situations are impossible. Recall that L1 is a characteristic length of phase
1 (the phase having the smaller fluid mobility k/η) that defines the distance overwhich the
fluid-pressure gradient is defined during the final stages of equilibration. For complicated ge-
ometries it may either be numerically determined, guessed at, or treated as a target parameter
for a full-waveform inversion of seismic data. In the numerical examples that follow, we sim-
ply assume that the individual patches correspond to disconnected spheres for which simple
analytical results are available for L1 and V/S.

If we consider phase 2 (porous continuum saturated by the less viscous fluid) to be in the
form of spheres of radius a embedded within each radius R sphere of the two-phase com-
posite, then v2 = (a/R)3, V/S = av2/3, and L2

1 = 9v
−2/3
2 a2/14[1 − 7v

1/3
2 /6]. This model

is particularly appropriate when v2 � v1. Since the fluid 2 patches are disconnected, the
definitions (11)–(13) of the effective poroelastic moduli again hold. Further, fluid 2 may be
taken to be immobile relative to the framework of grains in the wavelength-scale Biot equi-
libration so that the inertial properties of equations (29) and (30) are identified as ρ f = ρ f 1,
ρ = (1−φ)ρs +φ(v1ρ f 1 +v2ρ f 2) and ρ̃ = −η1/(iωk).

In situations where it is more appropriate to treat fluid 1 (the more viscous fluid) as occup-
ing disconnected patches (e.g., when v1 � v2), the effective poroelastic moduli are defined by
replacing 2 with 3 (and 3 with 2) in the subscripts of equations (11)–(13). Again assuming the
phase-1 patches to be spheres of radius a embedded within radius R sphere of the two-phase
composite, we have that v1 = (a/R)3 and V/S = av1/3. The elliptic boundary-value problem
(25)–(27) can be solved in this case to give L2

1 = a2/15. Furthermore, the effective inertial
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coefficients in the Biot theory are defined ρ f = ρ f 2, ρ = (1 −φ)ρs +φ(v1ρ f 1 + v2ρ f 2), and
ρ̃ = −η2/(iωk).

In situations where both phases form continuous paths across each averaging volume, it
is best to determine the attenuation and phase velocity by seeking the plane longtitudinal-
wave solution of non-reduced “double-porosity” governing equations of the form (6)–(10).
However, this approach is not pursued here. We conclude by noting that if the embedded fluid
is fractally distributed, the lengths L1 will remain finite while (V/S)/L1 → 0 as the fractal
surface area S becomes large (however, V/S never reaches zero because the fractality has a
small-scale cutoff fixed by the grain size of the material).

Numerical Examples

In Fig. 2, we compare the prediction of Johnson (2001) for KU to our own for a consolidated
sandstone (frame properties as determined in the Appendix with k = 100 mD, c = 10, φ =
0.20) in which phase 1 is saturated with water and phase 2 is taken to be spherical regions
saturated with air. The two estimates have identical asymptotic dependence in both the limits
of high and low frequencies. In the cross-over range, the physics is not precisely modeled in
either approach. However, even in the cross-over range, the differences in the two models is
slight.

Figure 3 gives the P-velocity and attenuation for a model in which the frame properties
correspond to k = 10 mD, c = 15, and φ = 0.15. Phase 2 is saturated by air and is taken to
be isolated spheres of radius a = 1 cm. Phase 1 is saturated with water. The volume fraction
v2 occupied by these 1 cm spheres of gas is as shown in the figure. Even tiny amounts of gas
saturation yields rather large amounts of attenuation and dispersion.

SQUIRT-FLOW MODEL

Laboratory samples of consolidated rock often have broken grain contacts and/or microcracks
in the grains. Much of this damage occurs as the rock is brought from depth to the sur-
face. Since diagenetic processes in a sedimentary basin tend to cement microcracks and grain
contacts, it is uncertain whether in situ rocks have significant numbers of open microcracks.
Nonetheless, when such grain-scale damage is present, as it always is in laboratory rock sam-
ples at ambient pressures, the fluid-pressure response in the microcracks will be greater than
in the principal porespace when the rock is compressed by a P-wave. The resulting flow from
crack to pore is called “squirt flow” and Dvorkin et al. (1995) have obtained a quantitative
model for fully-saturated rocks.

In the squirt model of Dvorkin et al. (1995), the grains of a porous material are themselves
allowed to have porosity in the form of microcracks. The effect of each broken grain contact
is taken as equivalent to a microcrack in a grain. The number of such microcracks per grain is
thus limited by the coordination number of the packing and so the total porosity contribution
coming from the grains is always negligible compared to the porosity of the main porespace.
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Figure 2: The undrained bulk modulus KU (ω) in both the patchy-saturation model presented
in this chapter and the model of Johnson (2001). The top graph is Re{KU } while the bottom
graph is Q−1

K = −2Im{KU }/Re{KU }. The physical model is 10 cm spherical air pockets
embedded within a water-saturated region. The volume fraction of gas saturated rock is 3%
in this example. The properties of the rock correspond to a 100 mD consolidated sandstone.
jim3-pridejohn [NR]
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Figure 3: The P-wave velocity and attenuation of a sandstone saturated with water and contain-
ing small spherical pockets of gas having radius 1 cm and occuping a fraction of the volume
v2 as shown. jim3-vq [NR]
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Our modeling of squirt is also based on this idea but we use the double-porosity framework
of the previous sections. Phase 1 is now defined to be the pure fluid within the main porespace
of a sample and is characterized elastically by the single modulus K f (fluid bulk modulus).
Phase 2 is taken to be the porous (i.e., cracked) grains and characterized by the poroelastic
constants K d

2 (the drained modulus of an isolated porous grain), α2 (the Biot-Willis constant
of an isolated grain), and B2 (Skempton’s coefficient of an isolated grain) as well as by a
permeability k2. The overall composite of porous grains (phase 2) packed together within the
fluid (phase 1) has two distinct properties of its own that must be specified; an overall drained
modulus K , and an overall permeability k associated with flow through the main porespace.
The volume fractions occupied by each phase are again denoted vi where v1 = φ is the porosity
associated with the main porespace.

The theoretical approach is to again obtain the average fluid response in each of these two
phases and then to make an effective Biot theory by saying that the fluid within the grains
cannot communicate directly with the outside world; i.e., the fluid in the grains can only
communicate with the main pores. Equations (11)–(12) again define the effective poroelastic
moduli in the squirt model and we need only determine the ai j constants and internal transport
coefficient γ (ω) that are appropriate to squirt.

Squirt ai j Coefficients

To obtain the ai j coefficients in the squirt model, we first note that these coefficients are defined
under conditions where ζ̇int = 0 (no fluid passing between the porous grains and the principal
porespace). Under these conditions, the rate of fluid depletion ∇ · q1 of a sample (rate of
fluid volume being extruded from the principal pore space via the exterior sample surface as
normalized by the sample volume) is due to the difference between the rate of dilatation of
the principal porespace (denoted here as ė1) and the rate at which fluid in the pores is dilating
− ṗ f 1/K f . If we also perform a volume average of equation (3) over the porous grain space
and use the notation that v2ė2 = ∇ · (v2u̇2) we obtain the following three equations

∇ ·q1 = v1ė1 +
v1

K f
ṗ f 1 (81)

∇ ·q2 =
v2α2

K d
2

ṗc2 −
v2α2

B2K d
2

ṗ f 2 (82)

v2ė2 =
v2

K d
2

ṗc2 −
v2α2

K d
2

ṗ f 2. (83)

The macroscopic dilatation of interest is ∇ ·v = v1ė1+v2ė2. In order to obtain the macroscopic
compressibility laws for porous-grain/principal-porespace composite, we introduce linear re-
sponse laws of the form

ṗc2 = a1 Ṗc +a2 ṗ f 1 +a3 ṗ f 2 (84)

ė1 = b1 Ṗc +b2 ṗ f 1 +b3 ṗ f 2 (85)

where the ai and bi must be found. We note immediately that from the definition Ṗc = v1 ṗ f 1 +
v2 ṗc2 one has

0 = (1−v2a1)Ṗc − (v1 +v2a2) ṗ f 1 −v2a3 ṗ f 2 (86)
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which must hold true for any variation of the independent pressure variables so that a1 = 1/v2,
a2 = −v1/v2, a3 = 0.

To obtain the bi , we now combine the above into the macroscopic laws

−∇ ·v =

[

v1b1 +
1

K d
2

]

Ṗc

+

[

v1b2 −
v1

K d
2

]

ṗ f 1 +

[

v1b3 −
v2α2

K d
2

]

ṗ f 2 (87)

−∇ ·q1 = −v1b1 Ṗc −
[

v1b2 −
v1

K f

]

ṗ f 1 −v1b3 ṗ f 2 (88)

−∇ ·q2 =
−α2

K d
2

Ṗc +
v1α2

K d
2

ṗ f 1 +
v2α2

K d
2 B2

ṗ f 2 (89)

and use the fact that the coefficients of the matrix must be symmetric (ai j = aj i ). With
a11 = 1/K corresponding to the overall drained frame modulus of the composite (to be in-
dependently specified), we obtain v1b1 = 1/K − 1/K d

2 , v1b2 = −1/K + (1 + v1)/K d
2 , and

b3 = −α2/K d
2 . The final ai j coefficients are exactly

a11 = 1/K (90)
a22 = 1/K − (1+v1)/K d

2 +v1/K f (91)

a33 =
v2α2

B2K d
2

(92)

a12 = −1/K +1/K d
2 (93)

a13 = −α2/K d
2 (94)

a23 = v1α2/K d
2 . (95)

Reasonable models for K and K d
2 will be discussed shortly.

Squirt Transport

We next must obtain the coefficient γ (ω) in the mesoscopic transport law −iωζint = γ (ω)(p f 1−
p f 2). Again, the approach is to first obtain the limiting behaviour at low and high frequencies
and then to connect the two limits by a simple function.

The fluid response in phase 1 (the principal porespace) is governed by the Navier-Stokes
equation −∇ p f 1 + η∇2v1 = −iωρ f v1 and the compressibility law K f ∇ · v1 = iωp f 1 where
v1 is the local fluid velocity in the pores. Since for all frequencies of interest we have that
ω � K f /η (note that K f /η ≈ 1012 s−1 for liquids and 1010 s−1 for gases), the fluid pressure
in phase 1 is governed by the wave equation

∇2 p f 1 +ω2 ρ f

K f
p f 1 = 0 (96)
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and since the acoustic wavelength in the fluid is always much greater than the grain sizes,
the fluid pressure in the principal porespace satisfies p f 1(r) = p f 1 (a spatial constant) at all
frequencies.

The focus, then, is on determining the flow and fluid pressure within the cracked grains
(phase 2) that is governed by the local porous-continuum laws Q2 = −(k2/η)∇ p f 2 and

k2

η
∇ p f 2 + iω

α2

K d
2 B2

p f 2 = −iω
α2

K d
2

pc2 (97)

where pc2 = −K d
2 ∇ ·u2 +α2 p f 2. This deformation and pressure change is excited by applying

a uniform normal stress −1Pn to the surface of the averaging volume with the fluid pressure
satisfying the boundary conditions n ·∇ p f 2(r) = 0 on ∂ E2 and p f 2(r) = p f 1 on ∂�12.

Low-frequency limit of γ (ω)

The fluid pressure and confining pressure in the grains can again be developed as asymptotic
series in −iω [as in equations (60)–(61)]. The zero-order response corresponds to the static
limit in which the fluid pressure is everywhere the same and given by p(0)

f 2 = p f 1 = Bo1P
with Bo = −(a12 + a13)/(a22 + 2a23 + a33) and with the ai j as given by equations (90)–(95).
The detailed result for Bo can be expressed

1/K − (1−α2)/K d
2

Bo
=

1
K

−
(1−α2)

K d
2

+v1

[

1
K f

−
(1−α2)

K d
2

]

+v2
α2

K d
2

[

1
B2

−1
]

(98)

which reduces to the standard Gassmann expression given in the appendix (with a total poros-
ity given by v1 + φ2v2) when B2 and α2 are themselves given by the Gassmann expres-
sions. In this same zero-order limit, the undrained bulk modulus is defined as 1/K u

o =
a11 + (a12 + a13)Bo which also reduces to the standard Gassmann expression when B2 and
α2 are themselves given by Gassmann expressions.

The leading-order in −iω correction to uniform fluid pressure is thus governed by the
problem

∇2 p(1)
f 2 =

ηα2

k2K d
2

p(0)
c2 (99)

n ·∇ p(1)
f 2 = 0 on ∂ E2 (100)

p(1)
f 2 = 0 on ∂�12. (101)

Here, p(0)
c2 is the local confining pressure in the grain space in the static limit that can be

written p(0)
c2 (r) = p(0)

c2 + δP(r). The average static confining pressure throughout the grains is
determined from equation (84) with Pc = 1P and p f 2 = p f 1 = Bo1P to yield

p(0)
c2 =

(1−v1 Bo)
v2

1P . (102)
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The deviations δP(r) thus volume integrate to zero δP = 0 and are formally defined

δP(r) = −
(

1− (v1 +v2α2)Bo

v2

)

1P −
K d

2

α2
∇ ·u(0)(r). (103)

The local perturbations δP(r) are thus highly sensitive to the detailed nature of the grain
packing and grain geometry. Fortunately, these perturbations do not play an important role in
the theory.

The fluid pressure in the grains is now written in the scaled form

p(1)
f 2 (r) = −

ηα2(1−v1 Bo)
v2k2K d

s
1P 8(r) (104)

where the potential 8(r) is independent of 1P and is a solution of the elliptic problem

∇28(r) = −1−
v2

1−v1 Bo

δP(r)
1P

(105)

n ·∇8 = 0 on ∂ E2 (106)
8 = 0 on ∂�12. (107)

To leading-order in −iω, an average of equation (104) gives

p f 1 − p f 2 = iωp(1)
f 2 + O(ω2) (108)

= −iω
ηα2(1−v1 Bo)

v2k2K d
s

L2
21P + O(ω2) (109)

where the squared length L2
2 is defined

L2
2 = 8 = 8o

[

1+
v2

1−v1 Bo

8oδP

8o1P

]

(110)

with overlines denoting volume averages over the grain space and with the potential 8o defined
as the solution of

∇28o = −1 (111)
n ·∇8o = 0 on ∂ E2 (112)

8o = 0 on ∂�12. (113)

Although it is not generally true that 8oδP = 0 for all grain geometries, we nonetheless expect
this integral to be small because 8o is a smooth function and δP = 0. The local perturbations
in the static confining pressure δP(r) require a solution of the static displacements throughout
the entire grain space—a daunting numerical task. Whenever the length L2 needs to be esti-
mated, such as in the numerical results that follow, our approach is to simply use the reasonable
approximation that L2

2 = 8o.
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Last, from the definition ζ̇int of the internal transfer we have that to leading order in −iω

−iωζint =
iωk2

Vη

∫

∂�12

n ·∇ p(1)
f 2 (114)

=
−iωk2

Vη

∫

�2

∇2 p(1)
f 2 = −iω

α2

K d
2
v2 p(0)

c2 (115)

=
v2k2

ηL2
2

(p f 1 − p f 2). (116)

The normal n in equation (114) is outward to phase 1 which accounts for the sign change
in equation(115). Note as well that equation (115) is a volume average of equation (99)
while equation (116) follows from equations (102) and (109). The desired limit is thus
limω→0 γ (ω) = γsq = v2k2/(ηL2

2).

High-frequency limit of γ (ω)

In the extreme high-frequency limit, the fluid has no time to significantly escape from the
porous grains (phase 2) and enter the main porespace (phase 1). As such, the fluid pressure
distribution in each phase is reasonably modeled as

p f 1(r) = B∞
1 1P (117)

p f 2(r) = B∞
2 1P +C21Pe−i3/2√

ω/D2 x (118)

where x is again a local coordinate measuring distance normal to the interface ∂�12 and
where D2 is the fluid-pressure diffusivity within the porous grains that is given by D2 =
k2K d

2 B2/(ηα2). In reality, the local confining pressure pc2(r) throughout the grains has spatial
fluctuations about the average value and we have made the approximation that B2 pc2(r) ≈
B∞

2 1P = the average fluid pressure throughout the grain space. It is easy to demonstrate that
under undrained and unrelaxed conditions,

B∞
1 =

a13a23 −a33a12

a22a33 −a2
23

(119)

B∞
2 =

a12a23 −a22a13

a22a33 −a2
23

. (120)

Since these B∞
i do not appear in the final result, we do not bother substituting in the ai j

constants from equations (90)–(95).

The continuity of fluid pressure p f 2 = p f 1 along ∂�12 (x = 0) requires that C2 = B∞
1 −

B∞
2 . The definition of ζ̇int may now be used to write

−iωζint =
1
V

∫

∂�12

k2

η

∂p2

∂x
(121)

=
k2

η
i3/2

√

ω

D2

S
V

(B∞
1 − B∞

2 )1P (122)

= i3/2√ω

√

k2α2

ηB2K d
2

S
V

(p f 1 − p f 2) (123)
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where we have used, to leading order in the high-frequency limit, that p f 1 − p f 2 = (B∞
1 −

B∞
2 )1P . The desired limit is thus limω→∞ γ (ω) =

√

−iωk2α2/(ηB2K d
s )S/V .

Full model for γ (ω)

The high- and low-frequency limits are again causally connected via the simple function

γ (ω) = γsq

√

1−
iω
ωsq

(124)

but now the parameters are defined as

γsq =
v2k2

ηL2
2

(125)

ωsq =
B2K d

2

ηα2

k2

L2
2

(

v2V/S
L2

)2

. (126)

Squirt Flow Modeling Choices

To make numerical predictions of attenuation and dispersion, models must be proposed for the
phase 2 (porous grain) parameters.

If the grains are modeled as spheres of radius R, the fluid-pressure gradient length within
the grains can be estimated as L2 = R/

√
15 and the volume to surface ratio as V/S = R/(3v2).

The grain porosity is assumed to be in the form of microcracks and so it is natural to define an
effective aperature h for these cracks. If the cracks have an average effective radius of R/NR

where NR is roughly 2 or 3 and if there are on average Nc cracks per grain where Nc is also
roughly 2 or 3 then the permeability and porsity of the grains is reasonably modeled as

φ2 =
3Nc

4N2
R

h
R

and k2 = φ2h2/12 (127)

where φ2 is the fracture porosity within the porous grains. The dimensionless parameters
k2/L2

2 and (v2V/S)/L2 required in the expressions for γsq and ωsq are given by

k2

L2
2

=
15Nc

16N2
R

(

h
R

)3

and
(

v2V/S
L2

)2

=
5
3

. (128)

The normalized fracture aperature h/R is the key parameter in the squirt model.

The drained grain modulus K d
2 is necessarily a function of the crack porosity φ2 (and

therefore h/R). Real crack surfaces have micron (and smaller) scale asperities present upon
them. If effective stress is applied in order to make the normalized aperature h/R smaller
(so that, for example, the peak in squirt attenuation lies in the seismic band), new contacts
are created that make the crack stronger. In the limit as h/R → 0 (large effective stress), the
cracks are no longer present and K d

2 → Ks where Ks is the mineral modulus of the grain.
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Many models for such stiffening could be proposed. We intentionally make a conservative
estimate here in proposing a simple linear porosity dependence K d

2 = Ks(1−σφ2), where σ is
a fixed constant determined from fitting ultrasonic attenuation data. Effective medium theories
[see, for example, Berryman et al. (2002)] predict that σ should be inversely proportional to
the aspect ratios of the cracks present. As a crack closes and asperities are brought into contact,
there is naturally a decrease in φ2 but there should also be a decrease in σ due to the fact that
the remaining crack porosity becomes more spherical as new asperities come into contact.
Taking σ to be constant as crack porosity decreases is thus a minimalist estimate for how the
drained modulus increases.

Thus, the porous-grain elastic properties are taken to be

K d
2 = Ks(1−σφ2) (129)

α2 = 1− K d
2 /Ks (130)

1
B2

= 1+φ2
K d

2

K f

(

1− K f /Ks

1− K d
2 /Ks

)

(131)

where we have used the Gassmann fluid-substitution relations for α2 and B2. The overall
drained modulus K of the collection of porous (cracked) grains can be modeled for example
as

K =
K d

2 (1−v1)
1+ cv1

(132)

which is the same drained-modulus model as given in the appendix but with the solid grain
modulus Ks replaced by the cracked grain modulus K d

2 .

Numerical Examples

In Fig. 4, we plot the P-wave attenuation predicted using the above model when the overall
grain packing corresponds to a consolidated sandstone (v1 = 0.2 and c = 5) having a perme-
ability of 10 mD. For the grain properties we take σ = 0.8/(5 × 10−3), 3Nc/(4N2

R) = 1, and
Ks = 38 GPa (quartz) as fixed constants. This σ value was chosen so that there would be an
important peak in attenuation at ultrasonic frequencies and is taken to be the same for all val-
ues of h/R. The various curves can be thought of as being due to the application of effective
stress. The peak in Q−1 near 1 MHz that is invariant to h/R is that due to the macroscopic
Biot loss (fluid pressure equilibration at the scale of the wavelength). The peak that shifts with
h/R is that due to the squirt flow.

This figure indicates that although the squirt mechanism is probably operative and perhaps
even dominant at ultrasonic frequencies, it does not seem to be involved in explaining the
observed levels of intrinsic attenuation in exploration work. For real cracks inside of real
grains, the σ value will diminish with effective stress (i.e., with h/R), so that the effects of
squirt in the seismic band are likely to be even less than shown in Fig. 4.

We next introduce the grain parameters k2, φ2, and K d
2 as modeled here along with the

same overall drained modulus K into the model of Dvorkin et al. (1995) and compare the
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Figure 4: The squirt-flow model of P-wave attenuation when the grains are modeled as being
spherical of radius R and containing microcracks having effective aperatures h. The overall
drained modulus of the rock corresponds to a consolidated sandstone. jim3-nosquirt [NR]
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Figure 5: The undrained bulk modulus KU (ω) in the squirt model of the present study and
in the model of Dvorkin et al. (1995). The top graph is Re{KU } while the bottom graph
is Q−1

K = −2Im{KU }/Re{KU }. The frame properties are the same as in Fig. 4. The curves
having a smaller relaxation frequency (' 103 Hz) and almost no dispersion correspond to
h/R = 2 × 10−4 while the curves having the larger critical frequency (' 105 Hz) and more
dispersion correspond to h/R = 5×10−3. jim3-pridedvorkin [NR]
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results to our own model for two different values of h/R (Fig. 5). Although both models
have similar dependencies on the various material properties involved, there are nonetheless
significant differences. These are principally due to the fact that the Dvorkin et al. (1995)
model requires the grains to be in the form of effective cylinders of radius R, while in Fig.
5 we use a geometric parameter L2 and volume-to-surface ratio V/S that are appropriate
for spherically-shaped grains. However, in various limits as the frequency and/or fluid bulk
modulus become either large or small, we have verified that both models yield qualitatively
similar results.

CONCLUSIONS

Models for three different P-wave attenuation mechanisms were presented that differ only
in the values of the ai j constants and in the nature of the mesoscopic transport coefficient
γ (ω). These three models correspond to (1) mesoscopic-scale heterogeneity in the frame
moduli (“double porosity”), (2) mesoscopic-scale heterogeneity in the fluid type (“patchy-
saturation”), and (3) grain-scale heterogeneity due to microcracks in the grains (“squirt”).
In all three models, the amount of attenuation is controlled principally by the contrast of
elastic compressibility among the constituents. In the double-porosity model, it is the contrast
between the frame bulk-modulus of the two porous phases that is key, while in the patchy-
saturation model it is the contrast in the fluid bulk modulus (immiscible patches of different
fluids that have nearly identical bulk moduli would not produce much attenuation), and in the
squirt model, it is the contrast between the drained modulus of an isolated cracked grain and
that of the entire packing of grains.

Putting in small pockets of unconsolidated sand grains into an otherwise consolidated
sandstone can produce attenuation in the seismic band that is comparable to what is measured
in the field even when the pockets represent only a small amount of the total volume (< 1%
volume fractions). Since mesoscopic-scale heterogeneity is rather ubiquitous throughout the
earth’s crust, it seems reasonable to suppose that this mechanism may be responsible for most
of the attenuation observed in seismograms. The squirt mechanism produces a great deal
of attenuation at the ultrasonic frequencies used in laboratory measurements, but has trouble
explaining attenuation in the seismic band. This result is good news for some important appli-
cations of the theory because the mesoscopic-scale flow is affected by the permeability of the
material, while squirt flow is not. This leaves open the possibility of extracting permeability
information from the frequency dependence of seismically measured Q.

APPENDIX A. CONSTITUENT PROPERTIES

In order to use the unified double-porosity framework of the present paper, it is convenient to
have models for the various porous-continuum constituent properties.

For unconsolidated sands and soils, the frame moduli (drained bulk modulus K d and shear
modulus G) are well modeled using the following variant of the Walton (1987) theory [c.f.,
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Pride (2003) for details]

K d =
1
6

[

4(1−φo)2n2
o Po

π4C2
s

]1/3 (Pe/Po)1/2

{

1+ [16Pe/(9Po)]4
}1/24 , (133)

G = 3K d/5, (134)

where Pe is the effective overburden pressure [e.g., Pe = (1−φ)(ρs −ρ f )gh where g is gravity
and h is overburden thickness] and where Po is the effective pressure at which all grain-to-
grain contacts are established. For Pe < Po, the coordination number n (average number of
grain contacts per grain) is increasing as (Pe/Po)1/2. For Pe > Po, the coordination number
remains constant n = no. The parameter Po is commonly on the order of 10 MPa. As Po → 0,
the Walton (1987) result is obtained (all contacts in place starting from Pe = 0). The porosity
of the grain pack is φo and the compliance parameter Cs is defined

Cs =
1

4π

(

1
Gs

+
1

Ks + Gs/3

)

(135)

where Ks and Gs are the mineral moduli of the grains. For unimodal grain-size distributions
and random grain packs, one typically has 0.32 < φo < 0.36 and 8 < no < 11.

For consolidated sandstones, the frame moduli are modelled in the present paper as [c.f.,
Pride (2003) for details]

K d = Ks
1−φ

1+ cφ
, (136)

G = Gs
1−φ

1+3cφ/2
. (137)

The consolidation parameter c represents the degree of consolidation between the grains and
lies in the approximate range 2 < c < 20 for sandstones. If it is necessary to use a c greater
than say 20 or 30, then it is probably better to use the modified-Walton theory.

The undrained moduli K u and B are conveniently and exactly modeled using the Gassmann
(1951) theory whenever the grains are isotropic and composed of a single mineral. The results
are

B =
1/K d −1/Ks

1/K d −1/Ks +φ(1/K f −1/Ks)
, (138)

K u =
K d

1− B(1− K d/Ks)
, (139)

from which the Biot-Willis constant α may be determined to be α = 1 − K d/Ks . These
Gassmann results are often called the “fluid-substitution” relations.

The dynamic permeability k(ω) as modeled by Johnson et al. (1987) is

k(ω)
ko

=

[
√

1− i
4

n J

ω

ωc
− i

ω

ωc

]−1

, (140)
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where the relaxation frequency ωc, which controls the frequency at which viscous-boundary
layers first develop, is given by

ωc =
η

ρ f Fko
. (141)

Here, F is exactly the electrical formation factor when grain-surface electrical conduction is
not important and is conveniently (though crudely) modeled using Archie’s law F = φ−m . The
cementation exponent m is related to the distribution of grain shapes (or pore topology) in the
sample and is generally close to 3/2 in clean sands, close to 2 in shaly sands, and close to 1 in
rocks having fracture porosity. The parameter n J is, for convenience, taken to be 8 (cylinder
model of the porespace).
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