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Scale-up in poroelastic systems and applications to reservoirs

James G. Berryman!

ABSTRACT

A fundamental problem of heterogeneous systems is that the macroscale behavior is not
necessarily well-described by equations familiar to us at the meso- or microscale. In rel-
atively simple cases like electrical conduction and elasticity, it is true that the equations
describing macroscale behavior take the same form as those at the microscale. But in
more complex systems, these simple results do not hold. Consider fluid flow in porous
media where the microscale behavior is well-described by Navier-Stokes’ equations for
liquid in the pores while the macroscale behavior instead obeys Darcy’s equation. Rigor-
ous methods for establishing the form of such equations for macroscale behavior include
multiscale homogenization methods and also the volume averaging method. In addition,
it has been shown that Biot’s equations of poroelasticity follow in a scale-up of the mi-
croscale equations of elasticity coupled to Navier-Stokes. Laboratory measurements have
shown that Biot’s equations indeed hold for simple systems but heterogeneous systems
can have quite different behavior. So the question arises whether there is yet another
level of scale-up needed to arrive at equations valid for the reservoir scale? And if so, do
these equations take the form of Biot’s equations or some other form? We will discuss
these issues and show that the double-porosity equations play a special role in the scale-up
to equations describing reservoir behavior, for fluid pumping, geomechanics, as well as
seismic wave propagation.

INTRODUCTION

Earth materials composing either aquifers or oil and gas reservoirs are generally heteroge-
neous, porous, and often fractured or cracked. Distinguishing water, oil, and gas using seismic
signatures is a key issue in seismic exploration and reservoir monitoring. Traditional ap-
proaches to seismic monitoring have often used Biot’s theory of poroelasticity (Biot, 1941,
1956a,b, 1962; Gassmann, 1951). Many of the predictions of this theory, including the ex-
istence of the slow compressional wave, have been confirmed by both laboratory and field
experiments (Plona, 1980; Berryman 1980a; Johnson et al., 1982; Chin et al., 1985; Winkler,
1985; Pride and Morgan, 1991; Thompson and Gist, 1993; Pride, 1994). Nevertheless, this
theory always has been limited by an explicit assumption that the porosity itself is homoge-
neous. Although this assumption is often applied to acoustic or ultrasonic studies of many
core samples in the laboratory setting, heterogeneity of porosity still exists in the form of both
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pores and cracks. One approach to dealing with this source of heterogeneity is to construct a
model that is locally homogeneous (i.e., a finite element). This approach may be adequate for
some applications, and is certainly amenable to study with large computers. However, such
methods necessarily avoid the question of how we are to deal with heterogeneity on the local
scale (i.e., much smaller than the block size or wavelength in the cases being studied). Double
porosity models have been introduced as a means of dealing with these problems. Rather than
trying to deal with all the heterogeneity at once, we choose to consider a model intended to
capture two main features of importance. Just two types of porosity are often key at the reser-
voir scale: (1) Matrix porosity occupies a finite and substantial fraction of the volume of the
reservoir. This porosity is often called the storage porosity since it stores the fluids of interest.
(2) Fracture or crack porosity may occupy very little volume overall, but nevertheless has two
very big effects on reservoir behavior. First the fractures/cracks drastically weaken the rock
mechanically, so that a change in a very low effective stress level may introduce nonlinear
geomechanical responses. The second effect is that fractures/cracks introduce a fast pathway
for the fluid to escape from the reservoir. This effect is obviously key to reservoir analysis
and the economics of fluid withdrawal.

Many attempts have been made to incorporate fractures into rock models, and especially
models that try to account for compressional wave attenuation in rocks containing fluids. But
these models have often been viscoelastic rather poroelastic (Budiansky and O’Connell, 1976;
O’Connell and Budiansky, 1977). Berryman and Wang (1995) showed how to make a rigor-
ous extension of Biot’s poroelasticity to include fractures/cracks by making a generalization
to double-porosity/dual-permeability media modeling. That work concentrated on geome-
chanics and fluid flow aspects of the problem in order to deal with the interactions between
fluid withdrawal and elastic closure of fractures during reservoir drawdown. The resulting
equations were later applied to the reservoir consolidation problem by Lewallen and Wang
(1998). Berryman and Wang (2000) then showed how the double-porosity approach could be
applied to wave propagation problems, thereby generalizing Biot’s work on waves to allow for
heterogeneous porosities and permeabilities.

The present paper addresses the question of scale-up in heterogeneous reservoirs. If Biot’s
equations of poroelasticity are the correct equations at the mesoscale, then what are the correct
equations at the macroscale? We show that Biot’s equations are not the correct equations at
the macroscale when there is significant heterogeneity in fluid permeability. However, the
double-porosity dual-permeability approach appears to permit consistent modeling of such
reservoirs and also shows that no further up-scaling is required beyond the double-porosity
stage.

EQUATIONS OF BIOT’S SINGLE-POROSITY POROELASTICITY

For long-wavelength disturbances (A >> h, where £ is a typical pore size) propagating through
a single-porosity porous medium, we define average values of the (local) displacements in the
solid and also in the saturating fluid. The average displacement vector for the solid frame is u,
while that for the pore fluid is uy. The average displacement of the fluid relative to the frame is
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W = ¢(u—uy). For small strains, the frame dilatation is e, while the increment of fluid content
is defined by

{==V-w=d¢(e—ef). 6]

With time dependence of the form exp(—iwt), the coupled wave equations that follow in
the presence of dissipation are

—w*(pu+pyw) = HVe—CV + pg (Vu—Ve),
—w*(pputqw) = CVe—MV¢ = —Vpy, )

where 14 is the drained shear modulus, H, C, and M are bulk moduli,
p=¢pr+(1—)pm, 3)
and
q = psla/¢p+iFEn/ko). “)

The kinematic viscosity of the liquid is n; the permeability of the porous frame is «; the
dynamic viscosity factor is given approximately [or see Johnson ef al. (1987) for more discus-
sion], for our choice of sign for the frequency dependence, by

F(§) = 1{ET®)/[142T(§)/i&1}, (5)
where
_ ber'(§) —ibei'(§)
r&)= ber’(£) — ibei/ () ©
and
£ = (w/w)? = (waK/ng)? = (wh?/n)?. 7

The functions ber(§) and bei(£) are the real and imaginary parts of the Kelvin function. The
dynamic parameter 4 is a characteristic length generally associated with and comparable in
magnitude to the steady-flow hydraulic radius. The tortuosity o > 1 is a pure number related to
the frame inertia which has been measured (Johnson et al., 1982) and has also been estimated
theoretically (Berryman, 1980a; 1983a).

The coefficients H, C, and M are given by (Gassmann, 1951; Geertsma, 1957; Biot and
Willis, 1957; Geertsma and Schmidt, 1961; Stoll, 1974)

4
H= Kd+§ud+<1—Kd/Km>ZM, 8)

C=0-Kqs/Kn)M, ©))
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where

M=1/[1-¢—Ka/Kn)/Kn+¢/Ky]. (10)

The constants are drained bulk and shear moduli K; and pt;, mineral bulk modulus K,,, and
fluid bulk modulus K. Korringa (1981) showed equations (8)-(10) to be correct as long as
the porous material may be considered homogeneous on the microscopic scale as well as the
macroscopic scale. Also, see a recent tutorial on Gassmann’s equations (Gassmann, 1951) by
Berryman (1999).

To decouple the wave equations (2) into Helmholtz equations for the three modes of prop-
agation, we note that the displacements u and w can be decomposed as

u=VY+Vxp  w=Vy+Vxy, (11)

where Y, ¢ are scalar potentials and B X are vector potentials. Substituting (11) into (2), we
find (2) is satisfied if two pairs of equations are satisfied:

(V24+iDB=0, %=-psBlq (12)
and
(V24+k3)AL =0. (13)

The wavenumbers in (12) and (13) are defined by

kS = o0 = pf/9)/31 (14)
and
ki:%[b+f¢[(b—f)2+4cd]%], (15)
b= (pM —psO)/A,  c=w (oM —qO)/A,
d = o’ (o H—pC)/A,  f=wqH—psO)/A, (16)
with
A=HM—C>. (17)

The linear combination of scalar potentials has been chosen to be
AL =T4T+v, (18)
where
Fy=d/(ki—b)=(ki—[)c. (19)

With the identification (19), the decoupling is complete.
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K1 1/01 x k1

K2 1/Q> k2

K3 1/03 k3

K4 1/04 X k4

K5 1/05 X ks
Kk(z) 1/0(z) < k(z)
Kn—1 1/Qn—l X Kp—1
Kn 1/0, xky

Figure 1: Thin layering of isotropic materials produces an effective transversely isotropic
medium at low frequencies of propagation. Overall permeability «.rr normal to the layering
depends most strongly on the most impermeable layers since 1/k.rr = fOL k~1(z)dz/L, being
the harmonic mean. In contrast, the seismic attenuation (in the usual band from 1-100 Hz)
ordinarily depends most strongly on the ones that are most permeable, since 1/Q(z) o k(z2).
The character of this relationship between attenuation and permeability changes significantly
at higher frequencies as described in the text.
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LOW FREQUENCY ASYMPTOTICS FOR SINGLE-POROSITY

We will first demonstrate the dichotomy of interest by showing what Biot’s theory predicts if it
is applied to heterogeneous reservoirs. The main issues with up-scaling in poroelasticity occur
for the low frequency asymptotics, and so we limit discussion to this regime here. For low
frequencies, all the wavelengths are long, thereby covering large regions of the heterogeneous
medium, and so up-scaling is an issue that must always be addressed in this limit.

Compressional and Shear Waves

Compressional and shear waves have almost the same asymptotic behavior at low frequencies,
but the analysis for shear waves is much shorter, so we will present only the shear wave
analysis here.

The wavenumber k; for shear wave propagation is determined by (14), and when v — 0
we have ¢ — iprn/kw, so

2
kf:ﬂ[wipfm]. (20)
ILa on

Thus, when the loss tangent is a small number, we find the shear wave quality factor is

1/Qy = P52 @1)
np

Total attenuation along the path of a shear wave is then determined by the integral [ %dﬁ
along the path of the wave. We assume for the sake of argument that the fluid is the same
throughout the reservoir. So all fluid factors as well as frequency are constant. The solid
material parameters gy and p, and also the porosity ¢ (which is hidden in p) may vary in
the reservoir, but these variations will be treated here as negligible compared the variations in
the permeability . Thus, we find that the total attenuation along a path of length L = f dt
is approximately proportional to [ kd¢. The average attenuation per unit length of the travel
path is therefore proportional to [ kd¢/L, which is just the mean of the permeability along the
wave’s path. This result is also true for the compressional waves, but the other multiplicative
factors are a bit more complicated in that case.

Slow Waves

In contrast, the slow compressional wave can have two very different types of behavior at low
frequency depending on the magnitude of the permeability. The wavenumber k_ for slow wave
propagation is determined by (15). To simplify this equation, we note that it is an excellent
approximation to take

2
w
ki:b+f:K[qH—2pr+pM]. (22)
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So, at low frequencies, k2 is proportional to ¢, whereas ks2 was inversely proportional to
q. Then, for small frequencies but large values of the permeability, ¢ — prla/¢p +in/kw].
Substituting this into (22), we find that

2
)
k? = ~ [apr H/$ —2p;C + pM +inps H ko). (23)
So as w — 0 for large «, there will be an intermediate frequency regime in which the slow
wave has a well-defined quality factor

1/Q-~nprH/kw(aprH/—2prC+ pM), (24)

which for strong frame materials reduces to

1/0_~n¢/akw. 25)

Except for some factors of density, porosity, and tortuosity, this expression is essentially the
inverse of the corresponding expression for 1/Q;. Obviously both factors cannot be small
simultaneously except for a very limited range of frequencies, which is determined by the
factor ap/ppy. Although the tortuosity o > 1 in general it can have a wide range of values,
for granular media it is typical to find o > 2 or 3. In addition, « is also scale invariant, i.e., it
does not depend on the size of the particles composing the granular medium. So, the presence
of o multiplying « in (25) does not change the fact that the slow-wave attenuation is strongly
influenced by fluctuations in the permeability . Being proportional to the square of the typical
particle sizes, the permeability is itself not scale invariant. There is nevertheless a fairly small
range of frequencies in which the approximation in (25) is valid, say from about 20 kHz to a
few MHz for s on the order of 1 D (~ 10~!? m?). This is the range where a propagating slow
wave might be expected to be seen, and in fact has been observed in laboratory experiments
(Plona, 1980).

For still smaller permeabilities or smaller frequencies or both, the leading approximation
for the slow wave dispersion is instead given by

kz :lM

- A (26)

This type of dispersion relation corresponds to a purely diffusive process having a diffusion
coefficient D >~ M« /npy. This result follows directly from the second equation in (2) when
the porous frame is sufficiently rigid.

We reach the same conclusion about how fluctuating permeability affects the propagation
or diffusion of increments of fluid content (i.e., masses of excess fluid particles) in both of
these cases. For the wave propagation situation of (25), we clearly have, by simple analogy to
the arguments given already, that the average attenuation per unit length along the wave’s path
is proportional to [k ~'d¢/L. Similarly, in the limit of the diffusion process described by (26),
then for a planar excitation diffusing through such a system in a direction perpendicular to the
bedding planes, or for regions of isotropic random fluctuations in permeability, we again ex-
pect the overall effective diffusion rate to depend on the same average quantity: [« 'd¢/L.
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Thus, measurements of slow waves or of fluid increment diffusion on the macroscale will mea-
sure an effective permeability that is largely controlled by the smallest permeability present
in the system. Clearly, this is exactly the opposite dependence we found for the dependence
of the shear wave and also for the fast compressional wave, and must cause difficulties for
up-scaling in Biot’s theory, where only one permeability parameter is available for the fitting
of data.

Discussion

These observations show that there is a significant problem with up-scaling Biot’s theory,
i.e., that the resulting system of equations is no longer of the same form as Biot’s theory.
This is certainly no failing of Biot’s theory, but rather a failing of any attempted application
of Biot’s theory directly to the up-scaled macro-system. Biot’s theory predicts correctly tha
compressional and shear wave attenuation both depend on the integral of the permeability
k along the path of each wave. But the permeability itself along the same path averages
as the inverse of the permeability (harmonic mean). Thus, the overall permeability depends
most strongly on the smallest permeabilities present in the system, while the wave attenuation
depends most strongly on the largest permeabilities in the system (Berryman, 1988). When
we try to up-scale under these circumstances, we have an inherent problem due to the fact that
Biot’s theory contains only one permeability; yet, for heterogeneous systems, there are two
very distinct measures of permeability (the mean and the harmonic mean) that play significant
roles.

SUMMARY OF DOUBLE-POROSITY WAVE PROPAGATION ANALYSIS

Berryman and Wang (2000) provide a formulation, as well as some specific examples of the
predictions, of a double-porosity dual-permeability model for wave propagation in heteroge-
neous poroelastic media. The analysis is fairly tedious and we do not have space to present
details here. The main conclusion of the double-porosity analysis is that the presence of the
two porosities and permeabilities leads to new modes of propagation. In particular, bulk com-
pressional and shear waves very similar to those in Biot’s single-porosity formulation are
found, and now there are also two slow compressional waves. As the choices of parameters
are varied, there are many types of interactions among these waves that are possible, but — in
the simplest cases — each of the two slow waves acts individually like the one described here
for single-porosity poroelasticity in the preceding section.

Two Slow Waves

We assume that the two permeabilities in the double-porosity model differ greatly in magni-
tude so that k1 >> «, and that the corresponding porosities satisfy 0 < ¢; << ¢,. Thus, the
first porosity type is transport-like and the second is storage-like. The analysis of the pre-
ceding section of the present paper would suggest that the smaller of the two permeabilities
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Figure 2: The elements of a double porosity model are: porous rock matrix intersected by
fractures. Three types of macroscopic pressure are pertinent in such a model: external con-

fining pressure p., internal pressure of the matrix pore fluid p}l), and internal pressure of the

fracture pore fluid p](cz).

would result in a diffusive mode at all frequencies and the larger of the two would result in
a propagating slow wave at high frequencies while then degenerating into another diffusive
mode at low frequencies. This behavior is exactly what was found in the numerical examples
presented by Berryman and Wang (2000).

Shear and Compressional Waves

Shear waves were not studied explicitly by Berryman and Wang (2000), but Eq. (5) of that
paper can be used for that purpose simply by applying the curl operator to all three of the
equations in the set. When this is done, the result is that the first equation describes the actual
shear mode, while the other two equations provide constraints on the relative motion of the
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pore fluid in each type of porosity versus the displacement of the solid frame. In particular,
the shear components of the differences in fluid and solid displacements can be uniquely re-
lated by complex factors (that are known explicitly) to the displacement of the solid alone.
Furthermore, as in the case for single-porosity poroelasticity, all of the interesting behavior of
the shear mode — at least for isotropic media — comes from the inertial terms. The form of
the resulting dispersion relation at low frequencies is identical to (20) with the replacement

K — K1 tKk2 XKy, (27)

since we assume here that k| >> «3. A similar result follows for the compressional wave.
Thus, as for single-porosity, the attenuation of the shear and compressional waves is dominated
by the largest permeability present in the system. However, this leads to no contradiction in
the double-porosity formulation. Thus, the problem inherent in up-scaling with single-porosity
poroelasticity is resolved in an intellectually satisfying way in the double-porosity approach.

CONCLUSIONS

It is well-known that fluid flow in porous media is well-described at the microscale by Navier-
Stokes’ equations for fluids in the pores but at the macroscale the behavior instead obeys
Darcy’s equation. Rigorous methods for establishing the form of such equations for macroscale
behavior include multiscale homogenization methods and also the volume averaging method.
In particular, it has been shown that Biot’s equations of single-porosity poroelasticity follow
in a scale-up of the microscale equations of elasticity coupled to Navier-Stokes (Burridge and
Keller, 1981).

We have found that the equations of single-porosity poroelasticity are not the correct equa-
tions at the macroscale when there is significant heterogeneity in fluid permeability. How-
ever, the double-porosity dual-permeability approach appears to permit consistent modeling
of such reservoirs and also shows that no further up-scaling is required beyond the double-
porosity stage in many circumstances. Recent extensions of these ideas by Pride and Berryman
(2003a,b) and Pride et al. (2003) confirm these conclusions.
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