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Short Note

Reflection tomography with depth control

Weitian Chen, Robert G. Clapp, and Biondo Biondi1

INTRODUCTION

Reflection tomography (Stork and Clayton, 1991; Stork, 1992; Clapp, 2001) is one of the most
effective and widely used velocity estimation methods. However, reflection tomography has
velocity-depth ambiguity problem (we do not know how much a traveltime error is due to a
velocity error and how much is due to a reflector misposition) because of insufficient source-
receiver offset and lateral velocity changes (Bickel, 1990; Lines, 1993; Ross, 1994; Tieman,
1994).

From borehole data, we can obtain the correct reflection positions around the borehole.
The normal shift between the correct reflection positions and the apparent reflection positions
can be linearly mapped to the traveltime perturbation along the normal ray (van Trier, 1990).
However, from borehole data, we can only obtain the correct position for only a few reflection
points along the borehole. In this paper, we assume all the reflection points within a local area
around the borehole have the same normal shift. The normal ray traveltime perturbation for all
these reflection points are then backpropagated simultaneously with the reflection traveltime
perturbation. We applied this scheme on a synthetic model and obtained a better inversion re-
sult than using reflection tomography without this control. We further discuss how to improve
this method for more complex datasets.

BASIC PRINCIPLES OF REFLECTION TOMOGRAPHY

For reflection data, there are two things that can cause traveltime perturbation: slowness per-
turbation 1s and reflector movement 1r . Figure 1 demonstrates the basic geometry for the
reflection tomography problem. Here, ln is the normal ray, lo is the offset ray with aperture
angle θ , and 1r is the normal shift between exact reflector and apparent reflector.

According to Fermat’s principle, the traveltime perturbation caused by slowness pertur-
bation, 1to, can be mapped approximately to slowness perturbation by the following linear
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relationship:

1to ≈

∫
lo

1sdlo. (1)

According to van Trier (1990), the reflector movement 1r can be assumed equal to the resid-
ual zero-offset migration of the reflector. Consequently, 1r can be mapped to the slowness
perturbation along the normal (zero-offset) ray, which can be expressed by the following equa-
tion

1r ≈ −
1
s0

∫
ln

1sdln , (2)

where s0 is the local slowness at the reflection point. According to Fermat’s principle, the
reflector movement 1r causes −21rcosθ change in ray length. As a result, the traveltime
perturbation caused by reflector movement is

1tn ≈ 2so1rcosθ ≈ −2cosθ
∫

ln
1sdln . (3)

Figure 1: Geometry for reflection
wave propagation. lo is the offset ray.
ln is the normal ray. θ is the aper-
ture angle of the offset ray. 1r is the
normal shift between apparent reflec-
tor and correct reflector. chen1-ref
[NR]
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By summing 1to and 1tn, we can obtain the total traveltime perturbation:

1t = 1to +1tn ≈

∫
lo

1sdlo −2cosθ
∫

ln
1sdln . (4)

Equation (4) provides a linear relationship between reflection traveltime perturbation 1t and
slowness perturbation 1s which can be used for backpropagation.

For migration velocity analysis, reflection traveltime perturbation, 1t , can be effectively
obtained from angle-domain common-image-gathers (ADCIG) (Clapp, 2001). Figure 2 is
a sketch of ADCIG. Here, 1r is the normal shift between correct reflection position and
apparent reflection position; 1r2 is the residual moveout; and 1r1 is the total normal shift.
According to Biondi and Symes (2003), the traveltime perturbation 1to can be calculated
from total normal shift by following equation:

1to ≈ 2socosθ1r1. (5)
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Combining equation (5) and (3), we can obtain reflection traveltime perturbation from residual
moveout by following equation:

1t ≈ 2socosθ1r2. (6)

As we can see, 1to and 1tn can provide independent data information for velocity inversion.
However, from reflection data, we can not obtain them separately since the reflection data
alone can not provide the exact reflector position. Instead, we can only obtain 1t which is the
sum of 1to and 1tn for reflection tomography.

Figure 2: Illustration of calcu-
lating 1t for reflection tomog-
raphy from angle-domain CIGs
chen1-expl_data_adcig [NR]
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DEPTH CONTROLLED REFLECTION TOMOGRAPHY

Borehole seismic data can provide the exact position of the subsurface reflectors at the bore-
hole. Therefore, from borehole data, we can obtain 1r at these locations. 1r can be back-
propagated to slowness perturbation using equation (2). In order to integrate the depth control
to reflection tomography effectively, we transfer the reflector movement 1r to traveltime per-
turbation along normal ray, 1tn . The traveltime perturbation 1tn then is backpropagate to
slowness perturbation using following equation:

1tn ≈ −

∫
ln

1sdln (7)

Combining equation (4) and (7), we can obtain a depth controlled reflection tomography
(DCRT) scheme:

1t ≈ Tr1s (8)
1tn ≈ Tn1s (9)

0 ≈ εA1s (10)

Here, fitting goal (8) and (9) correspond to equation (4) and (7), respectively. Fitting goal 10
is the model styling goal. A is a regularization operator. We use a Laplacian as regularization
operator for the following application.
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RESULTS

We apply our DCRT scheme to a synthetic anticline model. Figure 3a and b show the cor-
rect velocity model and initial velocity model, respectively. There are seven reflectors for this
synthetic model, which are overlayed on Figure 3b. A well is assumed at surface location
x = 10km. Figure 4 shows the migration result using initial velocity model. The overlayed

Figure 3: Synthetic anticline velocity model, a), and initial velocity model, b) chen1-vel [ER]

points are those reflection points we choose for backpropagation. For each reflector, we can
only obtain the exact position for the reflection points where the well and the reflector cross.
We make the assumption that all the reflection points within a local area around those reflec-
tion points have same normal shift. In Figure 5a, we show the assumed normal shift for all
the reflection points we choose for adding depth control, which was used for DCRT in this ap-
plication. As a comparison, in Figure 5b, we show the exact normal shift for those reflection
points. After multiplying local slowness, we can obtain the corresponding traveltime perturba-
tion along the normal ray. Figure 6a and b shows the assumed and exact normal ray traveltime
perturbation, respectively.

Figure 4: The migration result us-
ing initial velocity model. Overlayed
are the reflection points chosen for
adding depth points to reflection to-
mography chen1-crp [CR]
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Figure 5: a) The approximated normal shift and b) the exact normal shift, for all the reflection
points chosen for adding depth control. chen1-shift [ER]

Figure 6: a) The approximated normal ray traveltime perturbation and b) the exact nor-
mal ray traveltime perturbation, for all the reflection points chosen for adding depth control
chen1-travtime [ER]
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The three panels in Figure 7, from left to right, show the inversion result of reflection
tomography, DCRT, and their difference. Notice the obvious difference around the borehole
between DCRT result and regular reflection tomography result. Figure 8 and Figure 9 shows
the migration and angle-domain common-image-gathers (ADCIGs) using velocity obtained by
regular reflection tomography and DCRT, respectively. The surface positions for 5 ADCIGs,
from left to right, are 9.6, 9.8, 10, 10.2, 10.4 km, respectively. Notice the improvement of the
image and the reduced residual moveout around the borehole after using the DCRT method.

Figure 7: a) Reflection tomography result, b) DCRT result, and c) the difference between a)
and b) chen1-allvel [ER]

Figure 8: a) Migration result and b) ADCGIs, using velocity from reflection tomography. The
surface location for 5 ADCIGs, from left to right, are 9.6, 9.8, 10, 10.2, 10.4 km, respectively.
chen1-int.ref [CR]
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Figure 9: a) Migration result and b) ADCGIs, using velocity from DCRT. The surface location
for 5 ADCIGs, from left to right, are 9.6, 9.8, 10, 10.2, 10.4 km, respectively. chen1-int.depth
[CR]

DISCUSSION

In this shortnote, we presented a method to add depth control to reflection tomography. We
transfer the exact reflector movement, which can be obtained from borehole data, to the travel-
time perturbation along the normal ray. The traveltime perturbation along normal ray provides
another data fitting goal for reflection tomography. By simultaneously backpropagating nor-
mal ray traveltime perturbation and reflection traveltime perturbation, we can improve the
inversion result.

In the finished work, we obtained the normal shift between the correct reflection point and
apparent reflection point, 1r , then transfer it to the traveltime perturbation along normal ray
for backpropagation. Notice in Figure 2, by summing 1r and residual moveout 1r2, we can
obtain the total normal shift 1r1, which can be transfered to traveltime perturbation along the
offset ray according to equation (5). Therefore, instead of using equation (7) for backpropa-
gation, we can backpropagate the traveltime along the offset ray by using the following linear
relationship:

1to =

∫
lo

1sdlo. (11)

An obvious advantage of backpropagating along the offset ray is that we can obtain better
ray coverage. Backpropagating along normal ray can only obtain velocity along normal ray
direction, whereas, when backpropagating along offset ray, we can obtain a much wider ray
coverage with varying aperture angle of offset ray.

In the completed work, we did not apply any weighting between fitting goal (8) and (9).
With an appropriate weighting scheme, the DCRT should improve the inversion result.

Another way to improve DCRT result is to use a spatially-varying Lagrange multiplier ε.
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We assume all the reflection points within a local area have the same normal shift. Such an
approximation is more reliable for the reflection points near the borehole, and less reliable for
those points away from the borehole. In order to take this into account during inversion, we
can apply spatially-varying ε to the model styling goal (10). We can apply small ε for the area
close to the well to emphasize the data fitting, whereas big ε for the area away from the well
to emphasize the model styling.
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