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Basis pursuit for geophysical inversion

Brad Artman and Mauricio Sacchi1

ABSTRACT

Accepting an inversion principle, it is possible to design an algorithm to meet any re-
quirements or constraints. Given the context of representing a signal with an arbitrary
overcomplete dictionary of waveforms within the signal, one can design an inversion al-
gorithm that will focus energy into a small number of model space coefficients. With this
principle in mind, an analogy to linear programming is developed that results in an algo-
rithm with: the properties of an l1 norm, a small and stable parameter space, definable
convergence, and impressive denoising capabilities. Linear programming methods solve
a nonlinear problem in an interior/barrier loop method similar to iteratively reweighted
least squares (IRLS) algorithms, and are much slower than a least squares solution ob-
tained with a conjugate gradient method. Velocity scanning with the hyperbolic radon
transform is implemented as a test case for the methodology.

INTRODUCTION

Chen et al. (1999) introduces the idea of “basis pursuit” (BP) as a principle to aid in precision
analysis of complex signals. The central tenet of the presentation lies in the assumption that
a minimal number of constituent members of a model space dictionary are responsible for the
signal being analyzed. Therefore, the distribution of energy across the coefficients associated
with dictionary atoms (be they sinusoids, wavelets, chirps, velocities, etc.) during the analysis
of a signal should be uneven and sparse. This idea of a sparse model space is counter to a
smoothly distributed l2 norm inversion, and thus a different algorithm needs development to
satisfy these requirements.

The development of this inversion principle into an algorithm can take any number of
forms. Guitton and Symes (2003) choose the Huber norm to effect an l1-like measure of
the inversion error. We will cast the problem through the primal-dual Linear Programming
(LP) structure resulting in a methodology wherein the concept of convergence is central to the
algorithm. This fact has two important consequences. Firstly, the precision of the output model
space is one of (the very few) input parameters. Secondly, the parameter space is insensitive
to manipulation as compared to ε in regularized least squares problems or the cutoff value
needed for Huber norm approaches.

Conventionally, LP methods deal almost exclusively in a small world of conveniently short
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time signals such as bursts of speech. Application of these methods to geophysical problems
of much larger size may prove prohibitive. While at its best the complexity of this method
can be comparable to IRLS, in practice the method is usually several times slower to produce
optimal solutions.

As an example of the method, the hyperbolic radon transforms are used as analysis opera-
tors of seismic and synthetic seismic data. An exploration of the method comparable to Gui-
tton and Symes (1999) will be used to highlight the strengths and weaknesses of the method
compared to conventional least squares and Huber norm inversion for velocity from seismic
data.

DEVELOPMENT

The development of the BP principle begins with the assumption that the dictionary of indexed
elementary waveform atoms, φi , used to analyze the signal is overcomplete. This means that a
signal, s, is decomposed to the sum of all the atoms in the dictionary scaled by a scalar energy
coefficient, αi where the last index number is much larger than the length of the input signal
with n points. Thus,

s =
∑

i

αi φi (1)

has many possible configurations where the waveform atoms are linearly independent, though
not necessarily orthogonal. This differs from conventional Fourier analysis where a signal of
length n is decomposed into a list of n independent, orthogonal bases. There, the representa-
tion of the signal through the waveform dictionary is unique if the dictionary is simply com-
plete. Many such dictionaries exist including wavelets, cosines, chirps, etc. An overcomplete
dictionary can be devised through the combination of multiple dictionaries, or oversampling
a single choice. Using the Fourier example again, a four-fold overcomplete dictionary would
be defined as one where the indexed frequencies of sinusoidal waveforms sweep through the
standard frequency range definition, but at a four-fold finer sampling interval. 2

Given an overcomplete dictionary for analysis, BP simply states the goal of choosing the
one representation of the signal whose coefficients, αi , have the smallest l1 norm. The pursuit
then is searching through the dictionary for a minimum number of atoms that will act as bases
and represent the signal precisely. Mathematically, this takes the form

min||α||1 subject to 8α = s (2)

where 8 is the decomposition operator associated with the indexed waveforms φi above. This
formulation, demanding an l1 minimization, has been investigated through IRLS by many
other authors in the geophysical literature (Nichols, 1994; Darche, 1989; Taylor et al., 1979).
Endemic to this approach, however, are issues related to defining convergence and the difficul-
ties in choosing appropriate values from the parameter space. Huber norm tactics also share

2Donoho and Huo (1999) prove for one dimensional time series, with a “highly sparse” model-space
representation, that the proposed decomposition is unique. Also included are definitions of concepts such as
“highly sparse”, and “sufficiently sparse”.
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similar issues. BP however has adopted the infrastructure of primal-dual Linear Programming
to solve the system.

Linear programming (LP) has a large literature and several techniques by which to solve
problems of the form

minxcT x subject to Ax = b, x ≥ 0 . (3)

This optimization problem minimizes an objective cost function, cT x, subject to two condi-
tions: some data and an operator, and a positivity requirement. The underlying proposition of
Chen et al. (1999) is the equivalence of the equations (2) and (3). If the analysis operator 8 is
used as A, the cost function c is set to ones, and use the signal s as the forcing vector b, the
BP principle falls neatly into the LP format.

Having recognized the format, one needs only choose among the available methods to
solve an LP problem. BP chooses an interior point (IP) method as opposed to the simplex
method of Claerbout and Muir (1973) to solve the LP. IP introduces a two loop structure to
the solver: a barrier loop that calculates fabrication and direction variables, and an interior
solver loop that uses a conjugate gradient minimization of the system derived from the cur-
rent status of the solution and the derived directions. Heuristically, we begin with non-zero
coefficients across the dictionary, and iteratively modify them, while maintaining the feasibil-
ity constraints, until energy begins to coalesce into the significant atoms of the sparse model
space. Upon reaching this concentration, the method pushes small energy values to zero and
completes the basis pursuit decomposition. For this reason, models where the answer has a
sparse representation converge much more rapidly. If the model space is not sparse, or cannot
be sparse, this is the wrong tool.

A particular benefit of adopting this structure to solve the decomposition problem lies in
the primal-dual nature of interior point (as opposed to simplex) LP methods. For any mini-
mization problem, the primal, there is a equally valid maximization problem, its dual, that can
be simultaneously evaluated during the iterative solving process. It is known that at conver-
gence, the primal and dual variables are the same. Thus, the separation between the primal and
dual model space can be evaluated to provide a rigorous test for convergence. The two loop
structure then takes the form of setting up a least squares problem that solves for the update
to the dual variable, then evaluating the new solutions from this answer and testing the dual-
ity gap. When the difference is less than the tolerance proscribed by the user, the algorithm
terminates.

The interior loop that uses a CG solver solves a system that looks like

min
∥

∥

∥

∥

(

D1/2AT

δ I

)

1y−

(

D1/2(t−X−1v)
r/δ

)∥

∥

∥

∥

2
(4)

where matrix D, and vectors t,v,r are calculated quantities from the IP method, X = diag(x),
1y is the barrier step update for the dual variable, and δ is an input parameter that controls
the regularization of the search direction for the IPLP solver. AT is the original operator from
equation (3), so we can see that during the inner loop we will be evaluating the operator and
its adjoint many times. If there is not either a sparse matrix representation or a fast implicit
algorithm for this operator, this step makes using the method prohibitive. Importantly, because
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the interior loop solves for model updates, it is not very important to produce precise results,
and thus any relatively accurate solution will help the iterative improvement of the next barrier
step.

During this brief explanation of the concept, only two user defined parameters have been
mentioned. The first is the desired tolerance associated with the duality gap, and the second is
δ. In a realistic implementation there are, of course, a few more parameters. They are largely
functions of these two mentioned, automatically updated in the IPLP algorithm, or constants.

δ has interesting properties to discuss. Saunders and Tomlin (1996) describes in detail
the mathematics associated with this approach. The regularization of the search direction
introduced with δ actually makes this one of a class of LP problems called perturbed, and
introduces a minor change to equation (3). Leaving those details to the reader, I will address
the choice of the parameter. Thankfully, the BP will converge if δ is anywhere between 1
and 4∗10−4. If the regularization parameter is small, the BP converges slowly, but to a more
precise solution that honors the data exactly. As δ → 1, the central equations solved in the inner
loop become highly damped resulting in three affects: 1) speedy convergence, 2) effective
denoising, and 3) less rigor attached to the “subject to” condition in equation (3). The penalty
is that the result lacks some sparsity and precision compared to the result with a small value.

IMPLEMENTATION

The condition of using an overcomplete dictionary will hopefully be satisfied by choosing the
number of model space variables to be roughly two times the number of data points. While
Chen et al. (1999) uses a minimum of four times oversampling for impressive super resolution
results with the Fourier transform, their examples are normally of the order n = 1∗103. Larger
dictionaries result in too slow processing for testing purposes.

Due to the fact that the LP infrastructure imposes a positivity constraint on the solution,
we are forced to solve for a model space twice as large as we would choose with both nega-
tivity and positivity constraints, and then combine the two. We will use the hyperbolic radon
transform (HRT) as the analysis operator, 8 in equation (2) or A in equation (3). This operator
is normally approximately 1% full and, therefore, a tractable operator to use for this method.
As such, the programming is implemented with a sparse matrix approach rather than operators
as it is traditional at SEP.

EXPERIMENTS

Synthetic problems

We use the same data panels as Guitton and Symes (1999) to compare the results of BP to
Huber norm results as they are both l1 minimization strategies. 3 Synthetic tests are designed

3Guitton and Symes (1999) include least squares inversion results with a CG method for each example as
well.
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evaluate the method’s performance to invert the HRT under circumstances of missing data, a
slow plane wave superimposed on hyperbolic events, and spiky data space noise. Two field
CMP’s are also analyzed and compared to the Huber norm result. The dissimilarities in axes
origin and formating of the plots are unimportant. The spikes are at the correct values, and
the important thing to note in the plots is the distribution of energy around the model space.
The HRT operator used for this implementation has no AVO qualities, although the synthetics
were modeled with a wavelet and amplitude variation.

Figure 1 shows the results of the BP method when addressing the problem of missing data.
We can see that the predicted data looks as accurate as the Huber norm result. The velocity
model space, however, shows considerable difference. Notice the resolution increase over the
same range of velocities and the lack of appreciable chatter away from basis atoms. With this
figure, and those to come dealing with the synthetic examples, the predicted data looses the
wavelet character and the amplitude seems to diminish with depth.

Figure 2 shows the results of the BP method when a slow plane wave is superimposed on
the data. The overcomplete dictionary now shows significantly less chatter about the velocity
panel, and very distinguishable differences in the predicted data panel are emerging on the
right side of the CMP where the events cross. Combination operators, linear and hyperbolic
hybrid operators (Trad et al., 2001), may be ideal for this situation, but have not been tried
exhaustively yet.

Figure 3 shows the results of the BP method when randomly distributed spikes contaminate
the data. BP had significant trouble resolving this model. Unlike the Huber norm implemen-
tations of Guitton and Symes (1999), the method has no capacity to utilize the properties of
the l1 norm in the data space, and so cannot handle the large spikes. Manually limiting the
number of outer loops to seven was the only way to avoid instability. However, this point is
easy to find as the duality gap begins increasing and the CG solver fails repeatedly to attain the
input tolerance. Regardless, the predicted data looks pretty bad, and while the model space is
sparse, the atoms that do have energy are inappropriate.

Real data

Two field data CMP’s are also analyzed with the BP algorithm. With an order of magnitude
increase in size, as well as much energy in the data that leads to a more full model space,
convergence does not seem as well behaved for real data. For the CMP with bad traces in
Figure 4, we needed only 10 minutes of CPU time. Normally, this computation requires user
intervention to stop the process as it looked to become unstable. The multiple ridden data
of Figure 7, however, required about 40 minutes to compute. The model space used in both
examples was only approximately 2.5-fold overcomplete, and this fact may contribute to the
problems experienced. Interestingly, with the regularization parameter δ = 1, the algorithm
has a drastic denoising effect as well.

Figure 4 compares the predicted data from CG least squares inversion, the Huber norm
inversion, and the BP inversion. The noise reduction of the near traces is remarkable and
deserves further research. A very powerful linear noise train bounds the data to the right,
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Figure 1: Missing data. Left column is velocity model space. Right column is data space. Row
1 is input velocity and modeled data. Row 2 is Huber norm inversion and modeled data. Row
3 and 4 are BP inversion and predicted data results. Row 3 model space has approximately
the same number of model variable as data points. Row 4 has four times the number of model
variables. brad2-miss [NR]
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Figure 2: Slow plane wave superposition. Same format as explained in the caption of Figure
1. brad2-surf [NR]
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Figure 3: Randomly spiked data. Same format as explained in the caption of Figure 1.
brad2-spike [NR]
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which we hypothesize is the result of the near offset noise in the raw data. Figure 6 contains
four powerful noisy traces between 2200 - 2700 m/s. Also noticeable is the tendency for the
forward model to bifurcate real events into a correct and a fast event such as at 1.25 seconds.
Replacing the high amplitude ringing trace with zeros did not fix the problem.

Figure 4: Modeled data after inversion compared to original a CMP that suffers from bad
traces and substantial near offset noise. brad2-badtr [NR]

Figure 7 compares the predicted data from CG least squares inversion, the Huber norm
inversion, and the BP inversion. The BP solver had great difficulty with the multiples infested
CMP. The garbage in the low velocity range above 1.4 seconds is troublesome. This may
contribute to the problems analyzing this data, as I may not have made the model space large
enough to achieve the necessary overcompleteness, or the linear events are not well described
by the hyperbolic dictionary. This type of data is a good candidate to try the amalgamated
linear/hyperbolic radon transform of Trad et al. (2001).
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Figure 5: Velocity panel comparison. The different output of the different programs makes di-
rect comparison impossible. The left panels scan to much higher velocity than was necessary.
brad2-vel-badtr [NR]
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Figure 6: Presentation of the enve-
lope of the velocity scan provides a
better look at the location of the fo-
cus of energy. The several verti-
cal noise traces probably lead to the
poor quality of the predicted data
(right panel, Figure 4). Disappoint-
ingly, some events have bifurcated.
brad2-vbadsolo [CR]

CONCLUSION

In the case of the synthetic examples using an overcomplete dictionary, the velocity panels are
truly sparse, and the convergence of the result is achieved within 20 outer loop iterations. In-
terestingly, with these sparse model examples, the number of CG iterations required drastically
diminishes through the process. The first step usually requires around 230 iterations, and then
immediately drops by at least an order of magnitude for the next several loops. After around
seven outer loops, it bumps back up to between 50 and several hundred CG iterations until
it achieves convergence. If the number of CG iterations is limited, especially during the first
few outer loops, the method does not recover within the limits of the authors’ patience. Seven
minutes was the longest run of the overcomplete decompositions, while the merely complete
dictionaries require only about one minute. In all cases, the sparsity of the velocity space is
remarkable, and thus warrants further research into the use of this tool.

Chen et al. (1999) mandates the use of an overcomplete dictionary, and Donoho and Huo
(1999) proves the uniqueness of the solution only for overcomplete dictionaries. While it is
true that super resolution, for which an impressive Fourier decomposition method is presented
by Chen et al. (1999), can only be achieved with the overcomplete dictionary, the use of such
with these experiments doubles the computational cost and provides only marginally better
results than a model space approximately the same size as the data space. It may be possible
that the extension of the problem to handle positive and negative results may naturally provide
sufficient overcompleteness during the solving process, but this is undetermined. It could
also be that this is a contributing factor to the difficulties handling the real (larger) data sets,
especially the multiples example.

The real data examples showed positive, though as yet inconclusive, quality results with
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Figure 7: Modeled data after inversion compared to original a CMP that suffers from internal
multiples and strong ground roll. brad2-mult [NR]
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Figure 8: Presentation of the enve-
lope of the velocity scan provides a
better look at the location of the focus
of energy. brad2-vmultsolo [CR]

this method. Usable, though not optimal, results can be achieved within a user terminated
dozen loops of BP, though if allowed to run longer, a better product may result. The bifur-
cation/event manufacturing in Figure 4 is unacceptable and needs serious attention in further
inquiry to the usefulness of the technique. The multiple data of Figure 7 gives a reasonable
result, though not sufficiently better, to warrant the extra cost when compared to the CG ver-
sion. These data exhibit a tendency to require several hundred CG iterations during the first
few outer loops, and then drop to single digits for a dozen iterations before becoming unstable,
after which the process is terminated.

A reason for the difficulty the algorithm has in convergence is its lack of understanding of
the bandlimited nature of the data. This quality of the data makes the BP inversion unstable
as it spends too much effort trying to solve for a sparse model of spikes that is inappropriate.
A frequency domain Radon transform may well perform better with this thought in mind, as it
will not carry the infinite frequency assumption through the modeling operator. Alternatively,
a second bandpass operator could be chained with an operator similar to the one used in
this example. In this manner, the composite operation could produce more stable and less
demanding results from the IPLP algorithm.

A tangent concept that this work introduces evolves from the idea of the waveform dictio-
naries used in any type of inversion. Rather than accepting the frequency, wavelet, or chirp
dictionaries from mathematical context, it may be possible to compile “seismic waveform”
dictionaries that have characteristics more directly suitable to the structures and features regu-
larly exhibited in seismic data. This could include pinch-outs, lapping configurations, and/or
variations of simple hyperbolas. These could be useful for many other situations with different
algorithms, and would not be restricted to this particular inversion implementation.
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